1
|
Helfrich-Förster C. The Never Given 2022 Pittendrigh/Aschoff Lecture: The Clock Network in the Brain-Insights From Insects. J Biol Rhythms 2024:7487304241290861. [PMID: 39529231 DOI: 10.1177/07487304241290861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
My journey into chronobiology began in 1977 with lectures and internships with Wolfgang Engelmann and Hans Erkert at the University of Tübingen in Germany. At that time, the only known animal clock gene was Period, and the location and organization of the master circadian clock in the brain was completely unknown for the model insect Drosophila melanogaster. I was thus privileged to witness and participate in the research that led us from discovering the first clock gene to identifying the clock network in the fly brain and the putative pathways linking it to behavior and physiology. This article highlights my role in these developments and also shows how the successful use of D. melanogaster for studies of circadian rhythms has contributed to the understanding of clock networks in other animals. I also report on my experiences in the German scientific system and hope that my story will be of interest to some of you.
Collapse
Affiliation(s)
- Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
2
|
Salvador RB, Tomotani BM. Clocks at a snail pace: biological rhythms in terrestrial gastropods. PeerJ 2024; 12:e18318. [PMID: 39494278 PMCID: PMC11529600 DOI: 10.7717/peerj.18318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/24/2024] [Indexed: 11/05/2024] Open
Abstract
Biological rhythms are ubiquitous across the tree of life. Organisms must allocate their activities into moments of the day and of the season that will increase their probability of surviving and reproducing, which is done in the form of daily and annual rhythms. So far, the vast majority of studies on biological rhythms have focused on classical laboratory model species. Still, the use of non-model species is gaining traction, as part of an effort to achieve a more holistic understanding of clock/calendar mechanisms in the "real world" but this requires species that can be studied in both the lab and in nature. Terrestrial gastropods, i.e., land snails and slugs, have the potential to be exciting models for the study of biological rhythms in nature. Therefore, we provide a review of the research on biological rhythms in terrestrial gastropods, with a focus on ecology and evolution. We present the state of the art in the field while giving a historical perspective of the studies, exploring each of the main lineages of terrestrial gastropods. We also point out some interesting directions that future studies could take to fill some of the more urgent gaps in current knowledge. We hope that our contribution will renew interest in this area and spark novel projects.
Collapse
Affiliation(s)
- Rodrigo Brincalepe Salvador
- The Arctic University Museum of Norway, UiT - The Arctic University of Norway, Tromsø, Norway
- Finnish Museum of Natural History, University of Helsinki, University of Helsinki, Helsinki, Finland
| | - Barbara Mizumo Tomotani
- Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
3
|
R R, Prüser T, Schulz NKE, Mayer PMF, Ogueta M, Stanewsky R, Kurtz J. Deciphering a Beetle Clock: Individual and Sex-Dependent Variation in Daily Activity Patterns. J Biol Rhythms 2024; 39:484-501. [PMID: 39082472 PMCID: PMC11416735 DOI: 10.1177/07487304241263619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Circadian clocks are inherent to most organisms, including cryptozoic animals that seldom encounter direct light, and regulate their daily activity cycles. A conserved suite of clock genes underpins these rhythms. In this study, we explore the circadian behaviors of the red flour beetle Tribolium castaneum, a significant pest impacting stored grain globally. We report on how daily light and temperature cues synchronize distinct activity patterns in these beetles, characterized by reduced morning activity and increased evening activity, anticipating the respective environmental transitions. Although less robust, rhythmicity in locomotor activity is maintained in constant dark and constant light conditions. Notably, we observed more robust rhythmic behaviors in males than females with individual variation exceeding those previously reported for other insect species. RNA interference targeting the Clock gene weakened locomotor activity rhythms. Our findings demonstrate the existence of a circadian clock and of clock-controlled behaviors in T. castaneum. Furthermore, they highlight substantial individual differences in circadian activity, laying the groundwork for future research on the relevance of individual variation in circadian rhythms in an ecological and evolutionary context.
Collapse
Affiliation(s)
- Reshma R
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Tobias Prüser
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Nora K. E. Schulz
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Paula M. F. Mayer
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Maite Ogueta
- Institute of Neuro- and Behavioural Biology, University of Münster, Münster, Germany
| | - Ralf Stanewsky
- Institute of Neuro- and Behavioural Biology, University of Münster, Münster, Germany
- Joint Institute for Individualisation in a Changing Environment, University of Münster and Bielefeld University, Münster and Bielefeld, Germany
| | - Joachim Kurtz
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
- Joint Institute for Individualisation in a Changing Environment, University of Münster and Bielefeld University, Münster and Bielefeld, Germany
| |
Collapse
|
4
|
Vaze KM, Manoli G, Helfrich-Förster C. Drosophila ezoana uses morning and evening oscillators to adjust its rhythmic activity to different daylengths but only the morning oscillator to measure night length for photoperiodic responses. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:535-548. [PMID: 37329349 PMCID: PMC11226516 DOI: 10.1007/s00359-023-01646-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/11/2023] [Accepted: 05/30/2023] [Indexed: 06/19/2023]
Abstract
Animals living at high latitudes are exposed to prominent seasonal changes to which they need to adapt to survive. By applying Zeitgeber cycles of different periods and photoperiods we show here that high-latitude D. ezoana flies possess evening oscillators and highly damped morning oscillators that help them adapting their activity rhythms to long photoperiods. In addition, the damped morning oscillators are involved in timing diapause. The flies measure night length and use external coincidence for timing diapause. We discuss the clock protein TIMELESS (d-TIM) as the molecular correlate and the small ventrolateral clock neurons (s-LNvs) as the anatomical correlates of the components measuring night length.
Collapse
Affiliation(s)
- Koustubh M Vaze
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Giulia Manoli
- Neurobiology and Genetics, University of Würzburg, Biocentre, Theodor-Boveri-Institute, Am Hubland, 97074, Würzburg, Germany
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, University of Würzburg, Biocentre, Theodor-Boveri-Institute, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
5
|
Colizzi FS, Martínez-Torres D, Helfrich-Förster C. The circadian and photoperiodic clock of the pea aphid. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:627-639. [PMID: 37482577 PMCID: PMC11226554 DOI: 10.1007/s00359-023-01660-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/25/2023]
Abstract
The pea aphid, Acyrthosiphon pisum, is a paradigmatic photoperiodic species that exhibits a remarkable annual life cycle, which is tightly coupled to the seasonal changes in day length. During spring and summer, characterised by longer days, aphid populations consist exclusively of viviparous females that reproduce parthenogenetically. When autumn comes and the days shorten, aphids switch their reproductive mode and generate males and oviparous sexual females, which mate and produce cold-resistant eggs that overwinter and survive the unfavourable season. While the photoperiodic responses have been well described, the nature of the timing mechanisms which underlie day length discrimination are still not completely understood. Experiments from the 1960's suggested that aphids rely on an 'hourglass' clock measuring the elapsed time during the dark night by accumulating a biochemical factor, which reaches a critical threshold at a certain night length and triggers the switch in reproduction mode. However, the photoperiodic responses of aphids can also be attributed to a strongly dampened circadian clock. Recent studies have uncovered the molecular components and the location of the circadian clock in the brain of the pea aphid and revealed that it is well connected to the neurohormonal system controlling aphid reproduction. We provide an overview of the putative mechanisms of photoperiodic control in aphids, from the photoreceptors involved in this process to the circadian clock and the neuroendocrine system.
Collapse
Affiliation(s)
- Francesca Sara Colizzi
- University of Würzburg, Neurobiology and Genetics, Biocenter, Am Hubland, 97074, Würzburg, Germany
| | - David Martínez-Torres
- Institut de Biologia Integrativa de Sistemes, Parc Cientific Universitat de València, C/ Catedrático José Beltrán nº 2, 46980, Paterna,, València, Spain
| | | |
Collapse
|
6
|
Helfrich-Förster C, Rieger D. A clock for all seasons. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:473-480. [PMID: 38896260 PMCID: PMC11226552 DOI: 10.1007/s00359-024-01711-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
Circadian clocks play an essential role in adapting locomotor activity as well as physiological, and metabolic rhythms of organisms to the day-night cycles on Earth during the four seasons. In addition, they can serve as a time reference for measuring day length and adapt organisms in advance to annual changes in the environment, which can be particularly pronounced at higher latitudes. The physiological responses of organisms to day length are also known as photoperiodism. This special issue of the Journal of Comparative Physiology A aims to account for diurnal and photoperiodic adaptations by presenting a collection of ten review articles, five original research articles, and three perspective pieces. The contributions include historical accounts, circadian and photoperiodic clock models, epigenetic, molecular, and neuronal mechanisms of seasonal adaptations, latitudinal differences in photoperiodic responses and studies in the wild that address the challenges of global change.
Collapse
Affiliation(s)
| | - Dirk Rieger
- Neurobiology and Genetics, Biocentre, University of Würzburg, Würzburg, Germany
| |
Collapse
|
7
|
Hofbauer B, Zandawala M, Reinhard N, Rieger D, Werner C, Evers JF, Wegener C. The neuropeptide pigment-dispersing factor signals independently of Bruchpilot-labelled active zones in daily remodelled terminals of Drosophila clock neurons. Eur J Neurosci 2024; 59:2665-2685. [PMID: 38414155 DOI: 10.1111/ejn.16294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/29/2024]
Abstract
The small ventrolateral neurons (sLNvs) are key components of the central clock in the Drosophila brain. They signal via the neuropeptide pigment-dispersing factor (PDF) to align the molecular clockwork of different central clock neurons and to modulate downstream circuits. The dorsal terminals of the sLNvs undergo daily morphological changes that affect presynaptic sites organised by the active zone protein Bruchpilot (BRP), a homolog of mammalian ELKS proteins. However, the role of these presynaptic sites for PDF release is ill-defined. Here, we combined expansion microscopy with labelling of active zones by endogenously tagged BRP to examine the spatial correlation between PDF-containing dense-core vesicles and BRP-labelled active zones. We found that the number of BRP-labelled puncta in the sLNv terminals was similar while their density differed between Zeitgeber time (ZT) 2 and 14. The relative distance between BRP- and PDF-labelled puncta was increased in the morning, around the reported time of PDF release. Spontaneous dense-core vesicle release profiles of sLNvs in a publicly available ssTEM dataset (FAFB) consistently lacked spatial correlation to BRP-organised active zones. RNAi-mediated downregulation of brp and other active zone proteins expressed by the sLNvs did not affect PDF-dependent locomotor rhythmicity. In contrast, down-regulation of genes encoding proteins of the canonical vesicle release machinery, the dense-core vesicle-related protein CADPS, as well as PDF impaired locomotor rhythmicity. Taken together, our study suggests that PDF release from the sLNvs is independent of BRP-organised active zones, while BRP may be redistributed to active zones in a time-dependent manner.
Collapse
Affiliation(s)
- Benedikt Hofbauer
- Biocenter, Theodor-Boveri-Institute, Neurobiology and Genetics, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Meet Zandawala
- Biocenter, Theodor-Boveri-Institute, Neurobiology and Genetics, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
- Department of Biochemistry and Molecular Biology, University of Nevada Reno, Reno, NV, USA
| | - Nils Reinhard
- Biocenter, Theodor-Boveri-Institute, Neurobiology and Genetics, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Dirk Rieger
- Biocenter, Theodor-Boveri-Institute, Neurobiology and Genetics, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Christian Werner
- Biocenter, Theodor-Boveri-Institute, Department of Biotechnology and Biophysics, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Jan Felix Evers
- Centre for organismal studies COS, Universität Heidelberg, Heidelberg, Germany
- Cairn GmbH, Heidelberg, Germany
| | - Christian Wegener
- Biocenter, Theodor-Boveri-Institute, Neurobiology and Genetics, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| |
Collapse
|
8
|
Häfker NS, Holcik L, Mat AM, Ćorić A, Vadiwala K, Beets I, Stockinger AW, Atria CE, Hammer S, Revilla-i-Domingo R, Schoofs L, Raible F, Tessmar-Raible K. Molecular circadian rhythms are robust in marine annelids lacking rhythmic behavior. PLoS Biol 2024; 22:e3002572. [PMID: 38603542 PMCID: PMC11008795 DOI: 10.1371/journal.pbio.3002572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/29/2024] [Indexed: 04/13/2024] Open
Abstract
The circadian clock controls behavior and metabolism in various organisms. However, the exact timing and strength of rhythmic phenotypes can vary significantly between individuals of the same species. This is highly relevant for rhythmically complex marine environments where organismal rhythmic diversity likely permits the occupation of different microenvironments. When investigating circadian locomotor behavior of Platynereis dumerilii, a model system for marine molecular chronobiology, we found strain-specific, high variability between individual worms. The individual patterns were maintained for several weeks. A diel head transcriptome comparison of behaviorally rhythmic versus arrhythmic wild-type worms showed that 24-h cycling of core circadian clock transcripts is identical between both behavioral phenotypes. While behaviorally arrhythmic worms showed a similar total number of cycling transcripts compared to their behaviorally rhythmic counterparts, the annotation categories of their transcripts, however, differed substantially. Consistent with their locomotor phenotype, behaviorally rhythmic worms exhibit an enrichment of cycling transcripts related to neuronal/behavioral processes. In contrast, behaviorally arrhythmic worms showed significantly increased diel cycling for metabolism- and physiology-related transcripts. The prominent role of the neuropeptide pigment-dispersing factor (PDF) in Drosophila circadian behavior prompted us to test for a possible functional involvement of Platynereis pdf. Differing from its role in Drosophila, loss of pdf impacts overall activity levels but shows only indirect effects on rhythmicity. Our results show that individuals arrhythmic in a given process can show increased rhythmicity in others. Across the Platynereis population, rhythmic phenotypes exist as a continuum, with no distinct "boundaries" between rhythmicity and arrhythmicity. We suggest that such diel rhythm breadth is an important biodiversity resource enabling the species to quickly adapt to heterogeneous or changing marine environments. In times of massive sequencing, our work also emphasizes the importance of time series and functional tests.
Collapse
Affiliation(s)
- N. Sören Häfker
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Laurenz Holcik
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
- Center for Integrative Bioinformatics Vienna, Max Perutz Labs, University of Vienna, Medical University of Vienna, Vienna, Austria
| | - Audrey M. Mat
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Aida Ćorić
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Karim Vadiwala
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Isabel Beets
- Division of animal Physiology and Neurobiology, KU Leuven, Leuven, Belgium
| | - Alexander W. Stockinger
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Carolina E. Atria
- Department of Neuro- and Developmental Biology, University of Vienna, Vienna, Austria
- Research Platform Single-Cell Regulation of Stem Cells, University of Vienna, Vienna, Austria
| | - Stefan Hammer
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Roger Revilla-i-Domingo
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- Department of Neuro- and Developmental Biology, University of Vienna, Vienna, Austria
- Research Platform Single-Cell Regulation of Stem Cells, University of Vienna, Vienna, Austria
| | - Liliane Schoofs
- Division of animal Physiology and Neurobiology, KU Leuven, Leuven, Belgium
| | - Florian Raible
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Kristin Tessmar-Raible
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
9
|
Lumian J, Grettenberger C, Jungblut AD, Mackey TJ, Hawes I, Alatorre-Acevedo E, Sumner DY. Genomic profiles of four novel cyanobacteria MAGs from Lake Vanda, Antarctica: insights into photosynthesis, cold tolerance, and the circadian clock. Front Microbiol 2024; 14:1330602. [PMID: 38282730 PMCID: PMC10812107 DOI: 10.3389/fmicb.2023.1330602] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/29/2023] [Indexed: 01/30/2024] Open
Abstract
Cyanobacteria in polar environments face environmental challenges, including cold temperatures and extreme light seasonality with small diurnal variation, which has implications for polar circadian clocks. However, polar cyanobacteria remain underrepresented in available genomic data, and there are limited opportunities to study their genetic adaptations to these challenges. This paper presents four new Antarctic cyanobacteria metagenome-assembled genomes (MAGs) from microbial mats in Lake Vanda in the McMurdo Dry Valleys in Antarctica. The four MAGs were classified as Leptolyngbya sp. BulkMat.35, Pseudanabaenaceae cyanobacterium MP8IB2.15, Microcoleus sp. MP8IB2.171, and Leptolyngbyaceae cyanobacterium MP9P1.79. The MAGs contain 2.76 Mbp - 6.07 Mbp, and the bin completion ranges from 74.2-92.57%. Furthermore, the four cyanobacteria MAGs have average nucleotide identities (ANIs) under 90% with each other and under 77% with six existing polar cyanobacteria MAGs and genomes. This suggests that they are novel cyanobacteria and demonstrates that polar cyanobacteria genomes are underrepresented in reference databases and there is continued need for genome sequencing of polar cyanobacteria. Analyses of the four novel and six existing polar cyanobacteria MAGs and genomes demonstrate they have genes coding for various cold tolerance mechanisms and most standard circadian rhythm genes with the Leptolyngbya sp. BulkMat.35 and Leptolyngbyaceae cyanobacterium MP9P1.79 contained kaiB3, a divergent homolog of kaiB.
Collapse
Affiliation(s)
- Jessica Lumian
- Department of Earth and Planetary Sciences, Microbiology Graduate Group, University of California Davis, Davis, CA, United States
| | - Christen Grettenberger
- Department of Earth and Planetary Sciences, University of California Davis, Davis, CA, United States
- Department of Environmental Toxicology, University of California Davis, Davis, CA, United States
| | - Anne D. Jungblut
- Department of Sciences, The Natural History Museum, London, United Kingdom
| | - Tyler J. Mackey
- Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM, United States
| | - Ian Hawes
- Coastal Marine Field Station, University of Waikato, Tauranga, New Zealand
| | - Eduardo Alatorre-Acevedo
- Department of Earth and Planetary Sciences, University of California Davis, Davis, CA, United States
| | - Dawn Y. Sumner
- Department of Earth and Planetary Sciences, University of California Davis, Davis, CA, United States
| |
Collapse
|
10
|
Giesler JK, Harder T, Wohlrab S. Microbiome and photoperiod interactively determine thermal sensitivity of polar and temperate diatoms. Biol Lett 2023; 19:20230151. [PMID: 37964575 PMCID: PMC10646449 DOI: 10.1098/rsbl.2023.0151] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023] Open
Abstract
The effect of temperature on ectothermic organisms in the context of climate change has long been considered in isolation (i.e. as a single driver). This is challenged by observations demonstrating that temperature-dependent growth is correlated to further factors. However, little is known how the chronobiological history of an organism reflected in its adaptation to re-occurring cyclic patterns in its environment (e.g. annual range of photoperiods in its habitat) and biotic interactions with its microbiome, contribute to shaping its realized niche. To address this, we conducted a full-factorial microcosm multi-stressor experiment with the marine diatoms Thalassiosira gravida (polar) and Thalassiosira rotula (temperate) across multiple levels of temperature (4°C; 9°C; 13.5°C) and photoperiod (4 h; 16 h; 24 h), both in the presence or absence of their microbiomes. While temperature-dependent growth of the temperate diatom was constrained by short and long photoperiods, the polar diatom coped with a 24 h photoperiod up to its thermal optimum (9°C). The algal microbiomes particularly supported host growth at the margins of their respective fundamental niches except for the combination of the warmest temperature tested at 24 h photoperiod. Overall, this study demonstrates that temperature tolerances may have evolved interactively and that the mutualistic effect of the microbiome can only be determined once the multifactorial abiotic niche is defined.
Collapse
Affiliation(s)
- Jakob K. Giesler
- Section Ecological Chemistry, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
| | - Tilmann Harder
- Section Ecological Chemistry, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
- Marine Chemistry, Department of Chemistry and Biology, University of Bremen, 28359 Bremen, Germany
| | - Sylke Wohlrab
- Section Ecological Chemistry, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), 23129 Oldenburg, Germany
| |
Collapse
|
11
|
Manoli G, Zandawala M, Yoshii T, Helfrich-Förster C. Characterization of clock-related proteins and neuropeptides in Drosophila littoralis and their putative role in diapause. J Comp Neurol 2023; 531:1525-1549. [PMID: 37493077 DOI: 10.1002/cne.25522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/25/2023] [Accepted: 06/26/2023] [Indexed: 07/27/2023]
Abstract
Insects from high latitudes spend the winter in a state of overwintering diapause, which is characterized by arrested reproduction, reduced food intake and metabolism, and increased life span. The main trigger to enter diapause is the decreasing day length in summer-autumn. It is thus assumed that the circadian clock acts as an internal sensor for measuring photoperiod and orchestrates appropriate seasonal changes in physiology and metabolism through various neurohormones. However, little is known about the neuronal organization of the circadian clock network and the neurosecretory system that controls diapause in high-latitude insects. We addressed this here by mapping the expression of clock proteins and neuropeptides/neurohormones in the high-latitude fly Drosophila littoralis. We found that the principal organization of both systems is similar to that in Drosophila melanogaster, but with some striking differences in neuropeptide expression levels and patterns. The small ventrolateral clock neurons that express pigment-dispersing factor (PDF) and short neuropeptide F (sNPF) and are most important for robust circadian rhythmicity in D. melanogaster virtually lack PDF and sNPF expression in D. littoralis. In contrast, dorsolateral clock neurons that express ion transport peptide in D. melanogaster additionally express allatostatin-C and appear suited to transfer day-length information to the neurosecretory system of D. littoralis. The lateral neurosecretory cells of D. littoralis contain more neuropeptides than D. melanogaster. Among them, the cells that coexpress corazonin, PDF, and diuretic hormone 44 appear most suited to control diapause. Our work sets the stage to investigate the roles of these diverse neuropeptides in regulating insect diapause.
Collapse
Affiliation(s)
- Giulia Manoli
- Neurobiology and Genetics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Meet Zandawala
- Neurobiology and Genetics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Taishi Yoshii
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | | |
Collapse
|
12
|
Evidence of separate influence of moon and sun on light synchronization of mussel's daily rhythm during the polar night. iScience 2023; 26:106168. [PMID: 36876122 PMCID: PMC9978622 DOI: 10.1016/j.isci.2023.106168] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/24/2022] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Marine organisms living at high latitudes are faced with a light climate that undergoes drastic annual changes, especially during the polar night (PN) when the sun remains below the horizon for months. This raises the question of a possible synchronization and entrainment of biological rhythms under the governance of light at very low intensities. We analyzed the rhythms of the mussel Mytilus sp. during PN. We show that (1) mussels expressed a rhythmic behavior during PN; (2) a monthly moonlight rhythm was expressed; (3) a daily rhythm was expressed and influenced by both sunlight and moonlight; and (4) depending on the different times of PN and moon cycle characteristics, we were able to discriminate whether the moon or the sun synchronize the daily rhythm. Our findings fuel the idea that the capability of moonlight to synchronize daily rhythms when sunlight is not sufficient would be a crucial advantage during PN.
Collapse
|
13
|
Siqueira JA, Wakin T, Batista-Silva W, Silva JCF, Vicente MH, Silva JC, Clarindo WR, Zsögön A, Peres LEP, De Veylder L, Fernie AR, Nunes-Nesi A, Araújo WL. A long and stressful day: Photoperiod shapes aluminium tolerance in plants. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128704. [PMID: 35313159 DOI: 10.1016/j.jhazmat.2022.128704] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/06/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Aluminium (Al), a limiting factor for crop productivity in acidic soils (pH ≤ 5.5), imposes drastic constraints for food safety in developing countries. The major mechanisms that allow plants to cope with Al involve manipulations of organic acids metabolism and DNA-checkpoints. When assumed individually both approaches have been insufficient to overcome Al toxicity. On analysing the centre of origin of most cultivated plants, we hypothesised that day-length seems to be a pivotal agent modulating Al tolerance across distinct plant species. We observed that with increasing distance from the Equator, Al tolerance decreases, suggesting a relationship with the photoperiod. We verified that long-day (LD) species are generally more Al-sensitive than short-day (SD) species, whereas genetic conversion of tomato for SD growth habit boosts Al tolerance. Reduced Al tolerance correlates with DNA-checkpoint activation under LD. Furthermore, DNA-checkpoint-related genes are under positive selection in Arabidopsis accessions from regions with shorter days, suggesting that photoperiod act as a selective barrier for Al tolerance. A diel regulation and genetic diversity affect Al tolerance, suggesting that day-length orchestrates Al tolerance. Altogether, photoperiodic control of Al tolerance might contribute to solving the historical obstacle that imposes barriers for developing countries to reach a sustainable agriculture.
Collapse
Affiliation(s)
- João Antonio Siqueira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Thiago Wakin
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Willian Batista-Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - José Cleydson F Silva
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Matheus H Vicente
- Laboratory of Hormonal Control of Plant Development. Departamento de Ciências Biológicas (LCB), Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP 13418-900, Brazil
| | - Jéssica C Silva
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Wellington R Clarindo
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Agustin Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Lazaro E P Peres
- Laboratory of Hormonal Control of Plant Development. Departamento de Ciências Biológicas (LCB), Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP 13418-900, Brazil
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent B-9052, Belgium; VIB Center for Plant Systems Biology, Ghent B-9052, Belgium
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm 14476, Germany
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil.
| |
Collapse
|
14
|
Zanon M, Zanini D, Haase A. All-optical manipulation of the Drosophila olfactory system. Sci Rep 2022; 12:8506. [PMID: 35595846 PMCID: PMC9123005 DOI: 10.1038/s41598-022-12237-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/09/2022] [Indexed: 11/09/2022] Open
Abstract
Thanks to its well-known neuroanatomy, limited brain size, complex behaviour, and the extensive genetic methods, Drosophila has become an indispensable model in neuroscience. A vast number of studies have focused on its olfactory system and the processing of odour information. Optogenetics is one of the recently developed genetic tools that significantly advance this field of research, allowing to replace odour stimuli by direct neuronal activation with light. This becomes a universal all-optical toolkit when spatially selective optogenetic activation is combined with calcium imaging to read out neuronal responses. Initial experiments showed a successful implementation to study the olfactory system in fish and mice, but the olfactory system of Drosophila has been so far precluded from an application. To fill this gap, we present here optogenetic tools to selectively stimulate functional units in the Drosophila olfactory system, combined with two-photon calcium imaging to read out the activity patterns elicited by these stimuli at different levels of the brain. This method allows to study the spatial and temporal features of the information flow and reveals the functional connectivity in the olfactory network.
Collapse
Affiliation(s)
- Mirko Zanon
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy.
- Department of Physics, University of Trento, Trento, Italy.
| | - Damiano Zanini
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
- Neurobiology and Genetics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Albrecht Haase
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy.
- Department of Physics, University of Trento, Trento, Italy.
| |
Collapse
|
15
|
Kotwica-Rolinska J, Damulewicz M, Chodakova L, Kristofova L, Dolezel D. Pigment Dispersing Factor Is a Circadian Clock Output and Regulates Photoperiodic Response in the Linden Bug, Pyrrhocoris apterus. Front Physiol 2022; 13:884909. [PMID: 35574487 PMCID: PMC9099023 DOI: 10.3389/fphys.2022.884909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/29/2022] [Indexed: 12/20/2022] Open
Abstract
Daily and annually cycling conditions manifested on the Earth have forced organisms to develop time-measuring devices. Circadian clocks are responsible for adjusting physiology to the daily cycles in the environment, while the anticipation of seasonal changes is governed by the photoperiodic clock. Circadian clocks are cell-autonomous and depend on the transcriptional/translational feedback loops of the conserved clock genes. The synchronization among clock centers in the brain is achieved by the modulatory function of the clock-dependent neuropeptides. In insects, the most prominent clock neuropeptide is Pigment Dispersing Factor (PDF). Photoperiodic clock measures and computes the day and/or night length and adjusts physiology accordingly to the upcoming season. The exact mechanism of the photoperiodic clock and its direct signaling molecules are unknown but, in many insects, circadian clock genes are involved in the seasonal responses. While in Drosophila, PDF signaling participates both in the circadian clock output and in diapause regulation, the weak photoperiodic response curve of D. melanogaster is a major limitation in revealing the full role of PDF in the photoperiodic clock. Here we provide the first description of PDF in the linden bug, Pyrrhocoris apterus, an organism with a robust photoperiodic response. We characterize in detail the circadian and photoperiodic phenotype of several CRISPR/Cas9-generated pdf mutants, including three null mutants and two mutants with modified PDF. Our results show that PDF acts downstream of CRY and plays a key role as a circadian clock output. Surprisingly, in contrast to the diurnal activity of wild-type bugs, pdf null mutants show predominantly nocturnal activity, which is caused by the clock-independent direct response to the light/dark switch. Moreover, we show that together with CRY, PDF is involved in the photoperiod-dependent diapause induction, however, its lack does not disrupt the photoperiodic response completely, suggesting the presence of additional clock-regulated factors. Taken together our data provide new insight into the role of PDF in the insect’s circadian and photoperiodic systems.
Collapse
Affiliation(s)
- Joanna Kotwica-Rolinska
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- *Correspondence: Joanna Kotwica-Rolinska,
| | - Milena Damulewicz
- Institute of Zoology and Biomedical Research, Jagiellonian University, Kraków, Poland
| | - Lenka Chodakova
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Lucie Kristofova
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - David Dolezel
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
16
|
Lamaze A, Chen C, Leleux S, Xu M, George R, Stanewsky R. A natural timeless polymorphism allowing circadian clock synchronization in "white nights". Nat Commun 2022; 13:1724. [PMID: 35361756 PMCID: PMC8971440 DOI: 10.1038/s41467-022-29293-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 03/08/2022] [Indexed: 11/09/2022] Open
Abstract
Daily temporal organisation offers a fitness advantage and is determined by an interplay between environmental rhythms and circadian clocks. While light:dark cycles robustly synchronise circadian clocks, it is not clear how animals experiencing only weak environmental cues deal with this problem. Like humans, Drosophila originate in sub-Saharan Africa and spread North up to the polar circle, experiencing long summer days or even constant light (LL). LL disrupts clock function, due to constant activation of CRYPTOCHROME, which induces degradation of the clock protein TIMELESS (TIM), but temperature cycles are able to overcome these deleterious effects of LL. We show here that for this to occur a recently evolved natural timeless allele (ls-tim) is required, encoding the less light-sensitive L-TIM in addition to S-TIM, the only form encoded by the ancient s-tim allele. We show that only ls-tim flies can synchronise their behaviour to semi-natural conditions typical for Northern European summers, suggesting that this functional gain is driving the Northward ls-tim spread. The genus Drosophila originate in subSaharan Africa and spread North up to the polar circle where they experience long days in the summer or even constant light. Here, the authors show that a form of the TIMELESS protein enables flies to synchronise their behavioural activity to long summer days
Collapse
Affiliation(s)
- Angelique Lamaze
- Institute of Neuro- and Behavioral Biology, Westfälische Wilhelms University, Münster, Germany.
| | - Chenghao Chen
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA. .,Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA.
| | - Solene Leleux
- Institute of Neuro- and Behavioral Biology, Westfälische Wilhelms University, Münster, Germany
| | - Min Xu
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA
| | - Rebekah George
- Institute of Neuro- and Behavioral Biology, Westfälische Wilhelms University, Münster, Germany
| | - Ralf Stanewsky
- Institute of Neuro- and Behavioral Biology, Westfälische Wilhelms University, Münster, Germany.
| |
Collapse
|
17
|
Hoikkala A, Poikela N. Adaptation and ecological speciation in seasonally varying environments at high latitudes: Drosophila virilis group. Fly (Austin) 2022; 16:85-104. [PMID: 35060806 PMCID: PMC8786326 DOI: 10.1080/19336934.2021.2016327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Living in high latitudes and altitudes sets specific requirements on species’ ability to forecast seasonal changes and to respond to them in an appropriate way. Adaptation into diverse environmental conditions can also lead to ecological speciation through habitat isolation or by inducing changes in traits that influence assortative mating. In this review, we explain how the unique time-measuring systems of Drosophila virilis group species have enabled the species to occupy high latitudes and how the traits involved in species reproduction and survival exhibit strong linkage with latitudinally varying photoperiodic and climatic conditions. We also describe variation in reproductive barriers between the populations of two species with overlapping distributions and show how local adaptation and the reinforcement of prezygotic barriers have created partial reproductive isolation between conspecific populations. Finally, we consider the role of species-specific chromosomal inversions and the X chromosome in the development of reproductive barriers between diverging lineages.
Collapse
Affiliation(s)
- Anneli Hoikkala
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Noora Poikela
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
18
|
Perception of Daily Time: Insights from the Fruit Flies. INSECTS 2021; 13:insects13010003. [PMID: 35055846 PMCID: PMC8780729 DOI: 10.3390/insects13010003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/21/2021] [Accepted: 12/07/2021] [Indexed: 11/17/2022]
Abstract
We create mental maps of the space that surrounds us; our brains also compute time—in particular, the time of day. Visual, thermal, social, and other cues tune the clock-like timekeeper. Consequently, the internal clock synchronizes with the external day-night cycles. In fact, daylength itself varies, causing the change of seasons and forcing our brain clock to accommodate layers of plasticity. However, the core of the clock, i.e., its molecular underpinnings, are highly resistant to perturbations, while the way animals adapt to the daily and annual time shows tremendous biological diversity. How can this be achieved? In this review, we will focus on 75 pairs of clock neurons in the Drosophila brain to understand how a small neural network perceives and responds to the time of the day, and the time of the year.
Collapse
|
19
|
Costa R, Kyriacou C. Editorial: Entrainment of Biological Rhythms. Front Physiol 2021; 12:757000. [PMID: 34589000 PMCID: PMC8473895 DOI: 10.3389/fphys.2021.757000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/19/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Rodolfo Costa
- Department of Biology, University of Padua, Padua, Italy.,Neuroscience Institute of the Italian National Research Council (CNR), Padua, Italy
| | - Charalambos Kyriacou
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
20
|
Poikela N, Tyukmaeva V, Hoikkala A, Kankare M. Multiple paths to cold tolerance: the role of environmental cues, morphological traits and the circadian clock gene vrille. BMC Ecol Evol 2021; 21:117. [PMID: 34112109 PMCID: PMC8191109 DOI: 10.1186/s12862-021-01849-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 06/03/2021] [Indexed: 11/10/2022] Open
Abstract
Background Tracing the association between insect cold tolerance and latitudinally and locally varying environmental conditions, as well as key morphological traits and molecular mechanisms, is essential for understanding the processes involved in adaptation. We explored these issues in two closely-related species, Drosophila montana and Drosophila flavomontana, originating from diverse climatic locations across several latitudes on the coastal and mountainous regions of North America. We also investigated the association between sequence variation in one of the key circadian clock genes, vrille, and cold tolerance in both species. Finally, we studied the impact of vrille on fly cold tolerance and cold acclimation ability by silencing it with RNA interference in D. montana. Results We performed a principal component analysis (PCA) on variables representing bioclimatic conditions on the study sites and used latitude as a proxy of photoperiod. PC1 separated the mountainous continental sites from the coastal ones based on temperature variability and precipitation, while PC2 arranged the sites based on summer and annual mean temperatures. Cold tolerance tests showed D. montana to be more cold-tolerant than D. flavomontana and chill coma resistance (CTmin) of this species showed an association with PC2. Chill coma recovery time (CCRT) of both species improved towards northern latitudes, and in D. flavomontana this trait was also associated with PC1. D. flavomontana flies were darkest in the coast and in the northern mountainous populations, but coloration showed no linkage with cold tolerance. Body size decreased towards cold environments in both species, but only within D. montana populations largest flies showed fastest recovery from cold. Finally, both the sequence analysis and RNAi study on vrille suggested this gene to play an essential role in D. montana cold resistance and acclimation, but not in recovery time. Conclusions Our study demonstrates the complexity of insect cold tolerance and emphasizes the need to trace its association with multiple environmental variables and morphological traits to identify potential agents of natural selection. It also shows that a circadian clock gene vrille is essential both for short- and long-term cold acclimation, potentially elucidating the connection between circadian clock system and cold tolerance. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01849-y.
Collapse
Affiliation(s)
- Noora Poikela
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland.
| | - Venera Tyukmaeva
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland.,Centre d'Ecologie Fonctionelle et Evolutive, CNRS, Montpellier, France
| | - Anneli Hoikkala
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | - Maaria Kankare
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| |
Collapse
|
21
|
Widely rhythmic transcriptome in Calanus finmarchicus during the high Arctic summer solstice period. iScience 2021; 24:101927. [PMID: 33385120 PMCID: PMC7770977 DOI: 10.1016/j.isci.2020.101927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/05/2020] [Accepted: 12/07/2020] [Indexed: 11/23/2022] Open
Abstract
Solar light/dark cycles and seasonal photoperiods underpin daily and annual rhythms of life on Earth. Yet, the Arctic is characterized by several months of permanent illumination ("midnight sun"). To determine the persistence of 24h rhythms during the midnight sun, we investigated transcriptomic dynamics in the copepod Calanus finmarchicus during the summer solstice period in the Arctic, with the lowest diel oscillation and the highest altitude of the sun's position. Here we reveal that in these extreme photic conditions, a widely rhythmic daily transcriptome exists, showing that very weak solar cues are sufficient to entrain organisms. Furthermore, at extremely high latitudes and under sea-ice, gene oscillations become re-organized to include <24h rhythms. Environmental synchronization may therefore be modulated to include non-photic signals (i.e. tidal cycles). The ability of zooplankton to be synchronized by extremely weak diel and potentially tidal cycles, may confer an adaptive temporal reorganization of biological processes at high latitudes.
Collapse
|
22
|
Abe MS, Matsumura K, Yoshii T, Miyatake T. Amplitude of circadian rhythms becomes weaken in the north, but there is no cline in the period of rhythm in a beetle. PLoS One 2021; 16:e0245115. [PMID: 33444354 PMCID: PMC7808652 DOI: 10.1371/journal.pone.0245115] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/22/2020] [Indexed: 11/19/2022] Open
Abstract
Many species show rhythmicity in activity, from the timing of flowering in plants to that of foraging behavior in animals. The free-running periods and amplitude (sometimes called strength or power) of circadian rhythms are often used as indicators of biological clocks. Many reports have shown that these traits are highly geographically variable, and interestingly, they often show latitudinal or longitudinal clines. In many cases, the higher the latitude is, the longer the free-running circadian period (i.e., period of rhythm) in insects and plants. However, reports of positive correlations between latitude or longitude and circadian rhythm traits, including free-running periods, the power of the rhythm and locomotor activity, are limited to certain taxonomic groups. Therefore, we collected a cosmopolitan stored-product pest species, the red flour beetle Tribolium castaneum, in various parts of Japan and examined its rhythm traits, including the power and period of the rhythm, which were calculated from locomotor activity. The analysis revealed that the power was significantly lower for beetles collected in northern areas than southern areas in Japan. However, it is worth noting that the period of circadian rhythm did not show any clines; specifically, it did not vary among the sampling sites, despite the very large sample size (n = 1585). We discuss why these cline trends were observed in T. castaneum.
Collapse
Affiliation(s)
- Masato S. Abe
- Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan
| | - Kentarou Matsumura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Taishi Yoshii
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Takahisa Miyatake
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
- * E-mail:
| |
Collapse
|
23
|
Beer K, Helfrich-Förster C. Model and Non-model Insects in Chronobiology. Front Behav Neurosci 2020; 14:601676. [PMID: 33328925 PMCID: PMC7732648 DOI: 10.3389/fnbeh.2020.601676] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/30/2020] [Indexed: 12/20/2022] Open
Abstract
The fruit fly Drosophila melanogaster is an established model organism in chronobiology, because genetic manipulation and breeding in the laboratory are easy. The circadian clock neuroanatomy in D. melanogaster is one of the best-known clock networks in insects and basic circadian behavior has been characterized in detail in this insect. Another model in chronobiology is the honey bee Apis mellifera, of which diurnal foraging behavior has been described already in the early twentieth century. A. mellifera hallmarks the research on the interplay between the clock and sociality and complex behaviors like sun compass navigation and time-place-learning. Nevertheless, there are aspects of clock structure and function, like for example the role of the clock in photoperiodism and diapause, which can be only insufficiently investigated in these two models. Unlike high-latitude flies such as Chymomyza costata or D. ezoana, cosmopolitan D. melanogaster flies do not display a photoperiodic diapause. Similarly, A. mellifera bees do not go into "real" diapause, but most solitary bee species exhibit an obligatory diapause. Furthermore, sociality evolved in different Hymenoptera independently, wherefore it might be misleading to study the social clock only in one social insect. Consequently, additional research on non-model insects is required to understand the circadian clock in Diptera and Hymenoptera. In this review, we introduce the two chronobiology model insects D. melanogaster and A. mellifera, compare them with other insects and show their advantages and limitations as general models for insect circadian clocks.
Collapse
Affiliation(s)
- Katharina Beer
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocentre, Am Hubland, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
24
|
Payton L, Noirot C, Hoede C, Hüppe L, Last K, Wilcockson D, Ershova EA, Valière S, Meyer B. Daily transcriptomes of the copepod Calanus finmarchicus during the summer solstice at high Arctic latitudes. Sci Data 2020; 7:415. [PMID: 33235200 PMCID: PMC7686379 DOI: 10.1038/s41597-020-00751-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/29/2020] [Indexed: 11/09/2022] Open
Abstract
The zooplankter Calanus finmarchicus is a member of the so-called "Calanus Complex", a group of copepods that constitutes a key element of the Arctic polar marine ecosystem, providing a crucial link between primary production and higher trophic levels. Climate change induces the shift of C. finmarchicus to higher latitudes with currently unknown impacts on its endogenous timing. Here we generated a daily transcriptome of C. finmarchicus at two high Arctic stations, during the more extreme time of Midnight Sun, the summer solstice. While the southern station (74.5 °N) was sea ice-free, the northern one (82.5 °N) was sea ice-covered. The mRNAs of the 42 samples have been sequenced with an average of 126 ± 5 million reads (mean ± SE) per sample, and aligned to the reference transcriptome. We detail the quality assessment of the datasets and the complete annotation procedure, providing the possibility to investigate daily gene expression of this ecologically important species at high Arctic latitudes, and to compare gene expression according to latitude and sea ice-coverage.
Collapse
Affiliation(s)
- Laura Payton
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, 26111, Germany.
- Section Polar Biological Oceanography, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, 27570, Germany.
| | - Céline Noirot
- Plateforme bio-informatique GenoToul, MIAT, INRAE, UR875 Mathématiques et Informatique Appliquées Toulouse, F-31326, Castanet-Tolosan, France
| | - Claire Hoede
- Plateforme bio-informatique GenoToul, MIAT, INRAE, UR875 Mathématiques et Informatique Appliquées Toulouse, F-31326, Castanet-Tolosan, France
| | - Lukas Hüppe
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, 26111, Germany
- Section Polar Biological Oceanography, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, 27570, Germany
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB) at the University of Oldenburg, Oldenburg, 26111, Germany
| | - Kim Last
- Scottish Association for Marine Science, Oban, Argyll, PA37 1QA, UK
| | - David Wilcockson
- Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - Elizaveta A Ershova
- Department for Arctic and Marine Biology, Faculty for Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, Tromsø, N-9037, Norway
- Shirshov Institute of Oceanology, Russian Academy of Sciences, 36 Nakhimova Avenue, Moscow, Russian Federation, 117997, Russia
| | - Sophie Valière
- Plateforme Génomique, INRAE US 1426 GeT-PlaGe, Centre INRAE de Toulouse Occitanie, 24 Chemin de Borde Rouge, Auzeville, 31326, Castanet-Tolosan cedex, France
| | - Bettina Meyer
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, 26111, Germany
- Section Polar Biological Oceanography, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, 27570, Germany
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB) at the University of Oldenburg, Oldenburg, 26111, Germany
| |
Collapse
|
25
|
Li Y, Ma J, Yao K, Su W, Tan B, Wu X, Huang X, Li T, Yin Y, Tosini G, Yin J. Circadian rhythms and obesity: Timekeeping governs lipid metabolism. J Pineal Res 2020; 69:e12682. [PMID: 32656907 DOI: 10.1111/jpi.12682] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 12/29/2022]
Abstract
Almost all living organisms have evolved autoregulatory transcriptional-translational feedback loops that produce oscillations with a period of approximately 24-h. These endogenous time keeping mechanisms are called circadian clocks. The main function of these circadian clocks is to drive overt circadian rhythms in the physiology of the organisms to ensure that main physiological functions are in synchrony with the external environment. Disruption of circadian rhythms caused by genetic or environmental factors has long-term consequences for metabolic health. Of relevance, host circadian rhythmicity and lipid metabolism are increasingly recognized to cross-regulate and the circadian clock-lipid metabolism interplay may involve in the development of obesity. Multiple systemic and molecular mechanisms, such as hormones (ie, melatonin, leptin, and glucocorticoid), the gut microbiome, and energy metabolism, link the circadian clock and lipid metabolism, and predictably, the deregulation of circadian clock-lipid metabolism interplay can increase the risk of obesity, which in turn may exacerbate circadian disorganization. Feeding time and dietary nutrients are two of key environmental Zeitgebers affecting the circadian rhythm-lipid metabolism interplay, and the influencing mechanisms in obesity development are highlighted in this review. Together, the characterization of the clock machinery in lipid metabolism aimed at producing a healthy circadian lifestyle may improve obesity care.
Collapse
Affiliation(s)
- Yuying Li
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie Ma
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Kang Yao
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Wenxuan Su
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bie Tan
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xin Wu
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Xingguo Huang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Tiejun Li
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yulong Yin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Gianluca Tosini
- Department of Pharmacology and Toxicology and Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, USA
| | - Jie Yin
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
26
|
Hüppe L, Payton L, Last K, Wilcockson D, Ershova E, Meyer B. Evidence for oscillating circadian clock genes in the copepod Calanus finmarchicus during the summer solstice in the high Arctic. Biol Lett 2020; 16:20200257. [PMID: 32673547 PMCID: PMC7423037 DOI: 10.1098/rsbl.2020.0257] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The circadian clock provides a mechanism for anticipating environmental cycles and is synchronized by temporal cues such as daily light/dark cycle or photoperiod. However, the Arctic environment is characterized by several months of Midnight Sun when the sun is continuously above the horizon and where sea ice further attenuates photoperiod. To test if the oscillations of circadian clock genes remain in synchrony with subtle environmental changes, we sampled the copepod Calanus finmarchicus, a key zooplankter in the north Atlantic, to determine in situ daily circadian clock gene expression near the summer solstice at a southern (74.5° N) sea ice-free and a northern (82.5° N) sea ice-covered station. Results revealed significant oscillation of genes at both stations, indicating the persistence of the clock at this time. While copepods from the southern station showed oscillations in the daily range, those from the northern station exhibited an increase in ultradian oscillations. We suggest that in C. finmarchicus, even small daily changes of solar altitude seem to be sufficient to entrain the circadian clock and propose that at very high latitudes, in under-ice ecosystems, tidal cues may be used as an additional entrainment cue.
Collapse
Affiliation(s)
- Lukas Hüppe
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, 26111 Oldenburg, Germany.,Helmholtz Institute for Functional Marine Biodiversity (HIFMB) at the University of Oldenburg, 26111 Oldenburg, Germany.,Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Department of Biosciences, Section Polar Biological Oceanography, 27570 Bremerhaven, Germany
| | - Laura Payton
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, 26111 Oldenburg, Germany.,Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Department of Biosciences, Section Polar Biological Oceanography, 27570 Bremerhaven, Germany
| | - Kim Last
- Scottish Association for Marine Science, Oban, Argyll PA37 1QA, UK
| | - David Wilcockson
- Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK
| | - Elizaveta Ershova
- Department for Arctic and Marine Biology, Faculty for Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, 9019 Tromsø, Norway.,Shirshov Institute of Oceanology, Russian Academy of Sciences, Russian Federation, 36 Nakhimova Avenue, Moscow 117997, Russia
| | - Bettina Meyer
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, 26111 Oldenburg, Germany.,Helmholtz Institute for Functional Marine Biodiversity (HIFMB) at the University of Oldenburg, 26111 Oldenburg, Germany.,Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Department of Biosciences, Section Polar Biological Oceanography, 27570 Bremerhaven, Germany
| |
Collapse
|
27
|
EYES ABSENT and TIMELESS integrate photoperiodic and temperature cues to regulate seasonal physiology in Drosophila. Proc Natl Acad Sci U S A 2020; 117:15293-15304. [PMID: 32541062 PMCID: PMC7334534 DOI: 10.1073/pnas.2004262117] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Extracting information regarding calendar time from seasonal changes in photoperiod and temperature is critical for organisms to maintain annual cycles in physiology and behavior. Here we found that, in flies, EYES ABSENT (EYA) protein acts as a seasonal sensor by adjusting its abundance and phase in response to changes in photoperiod and temperature. We show that the manipulation of EYA levels is sufficient to impair the ability of female Drosophila to regulate seasonal variation in reproductive dormancy. Finally, our results suggest an important role for the circadian clock protein TIMELESS (TIM) in modulating EYA level through its ability to measure night length, linking the circadian clock to seasonal timing. Organisms possess photoperiodic timing mechanisms to detect variations in day length and temperature as the seasons progress. The nature of the molecular mechanisms interpreting and signaling these environmental changes to elicit downstream neuroendocrine and physiological responses are just starting to emerge. Here, we demonstrate that, in Drosophila melanogaster, EYES ABSENT (EYA) acts as a seasonal sensor by interpreting photoperiodic and temperature changes to trigger appropriate physiological responses. We observed that tissue-specific genetic manipulation of eya expression is sufficient to disrupt the ability of flies to sense seasonal cues, thereby altering the extent of female reproductive dormancy. Specifically, we observed that EYA proteins, which peak at night in short photoperiod and accumulate at higher levels in the cold, promote reproductive dormancy in female D. melanogaster. Furthermore, we provide evidence indicating that the role of EYA in photoperiodism and temperature sensing is aided by the stabilizing action of the light-sensitive circadian clock protein TIMELESS (TIM). We postulate that increased stability and level of TIM at night under short photoperiod together with the production of cold-induced and light-insensitive TIM isoforms facilitate EYA accumulation in winter conditions. This is supported by our observations that tim null mutants exhibit reduced incidence of reproductive dormancy in simulated winter conditions, while flies overexpressing tim show an increased incidence of reproductive dormancy even in long photoperiod.
Collapse
|
28
|
Doležel D. Chronobiology: The Circadian Clock under Extreme Photoperiods. Curr Biol 2019; 29:R1176-R1178. [PMID: 31743671 DOI: 10.1016/j.cub.2019.09.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Circadian clocks are time-measuring devices found in a majority of organisms synchronizing their behavior and metabolism with the day-light cycle. What happens in extreme latitudes, where the environmental conditions can be harsh at any time of day?
Collapse
Affiliation(s)
- David Doležel
- Biology Center of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic.
| |
Collapse
|