1
|
Chai Y, Zhang RY. Exploring methodological frontiers in laminar fMRI. PSYCHORADIOLOGY 2024; 4:kkae027. [PMID: 39777367 PMCID: PMC11706213 DOI: 10.1093/psyrad/kkae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/09/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025]
Abstract
This review examines the methodological challenges and advancements in laminar functional magnetic resonance imaging (fMRI). With the advent of ultra-high-field MRI scanners, laminar fMRI has become pivotal in elucidating the intricate micro-architectures and functionalities of the human brain at a mesoscopic scale. Despite its profound potential, laminar fMRI faces significant challenges such as signal loss at high spatial resolution, limited specificity to laminar signatures, complex layer-specific analysis, the necessity for precise anatomical alignment, and prolonged acquisition times. This review discusses current methodologies, highlights typical challenges in laminar fMRI research, introduces innovative sequence and analysis methods, and outlines potential solutions for overcoming existing technical barriers. It aims to provide a technical overview of the field's current state, emphasizing both the impact of existing hurdles and the advancements that shape future prospects.
Collapse
Affiliation(s)
- Yuhui Chai
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana 61801, Illinois, USA
| | - Ru-Yuan Zhang
- Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine and School of Psychology, Shanghai 200030, the People Republic of China
| |
Collapse
|
2
|
Sihn D, Chae S, Kim SP. A method to find temporal structure of neuronal coactivity patterns with across-trial correlations. J Neurosci Methods 2024; 408:110172. [PMID: 38782124 DOI: 10.1016/j.jneumeth.2024.110172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND The across-trial correlation of neurons' coactivity patterns emerges to be important for information coding, but methods for finding their temporal structures remain largely unexplored. NEW METHOD In the present study, we propose a method to find time clusters in which coactivity patterns of neurons are correlated across trials. We transform the multidimensional neural activity at each timing into a coactivity pattern of binary states, and predict the coactivity patterns at different timings. We devise a method suitable for these coactivity pattern predictions, call general event prediction. Cross-temporal prediction accuracy is then used to estimate across-trial correlations between coactivity patterns at two timings. We extract time clusters from the cross-temporal prediction accuracy by a modified k-means algorithm. RESULTS The feasibility of the proposed method is verified through simulations based on ground truth. We apply the proposed method to a calcium imaging dataset recorded from the motor cortex of mice, and demonstrate time clusters of motor cortical coactivity patterns during a motor task. COMPARISON WITH EXISTING METHODS While the existing cosine similarity method, which does not account for across-trial correlation, shows temporal structures only for contralateral neural responses, the proposed method reveals those for both contralateral and ipsilateral neural responses, demonstrating the effect of across-trial correlations. CONCLUSIONS This study introduces a novel method for measuring the temporal structure of neuronal ensemble activity.
Collapse
Affiliation(s)
- Duho Sihn
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, the Republic of Korea
| | - Soyoung Chae
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, the Republic of Korea
| | - Sung-Phil Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, the Republic of Korea.
| |
Collapse
|
3
|
Iwama S, Tsuchimoto S, Mizuguchi N, Ushiba J. EEG decoding with spatiotemporal convolutional neural network for visualization and closed-loop control of sensorimotor activities: A simultaneous EEG-fMRI study. Hum Brain Mapp 2024; 45:e26767. [PMID: 38923184 PMCID: PMC11199199 DOI: 10.1002/hbm.26767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Closed-loop neurofeedback training utilizes neural signals such as scalp electroencephalograms (EEG) to manipulate specific neural activities and the associated behavioral performance. A spatiotemporal filter for high-density whole-head scalp EEG using a convolutional neural network can overcome the ambiguity of the signaling source because each EEG signal includes information on the remote regions. We simultaneously acquired EEG and functional magnetic resonance images in humans during the brain-computer interface (BCI) based neurofeedback training and compared the reconstructed and modeled hemodynamic responses of the sensorimotor network. Filters constructed with a convolutional neural network captured activities in the targeted network with spatial precision and specificity superior to those of the EEG signals preprocessed with standard pipelines used in BCI-based neurofeedback paradigms. The middle layers of the trained model were examined to characterize the neuronal oscillatory features that contributed to the reconstruction. Analysis of the layers for spatial convolution revealed the contribution of distributed cortical circuitries to reconstruction, including the frontoparietal and sensorimotor areas, and those of temporal convolution layers that successfully reconstructed the hemodynamic response function. Employing a spatiotemporal filter and leveraging the electrophysiological signatures of the sensorimotor excitability identified in our middle layer analysis would contribute to the development of a further effective neurofeedback intervention.
Collapse
Affiliation(s)
- Seitaro Iwama
- Department of Biosciences and Informatics, Faculty of Science and TechnologyKeio UniversityYokohamaJapan
| | - Shohei Tsuchimoto
- School of Fundamental Science and TechnologyGraduate School of Keio UniversityYokohamaJapan
- Department of System NeuroscienceNational Institute for Physiological SciencesOkazakiJapan
| | - Nobuaki Mizuguchi
- Research Organization of Science and TechnologyRitsumeikan UniversityKusatsuJapan
- Institute of Advanced Research for Sport and Health ScienceRitsumeikan UniversityKusatsuJapan
| | - Junichi Ushiba
- Department of Biosciences and Informatics, Faculty of Science and TechnologyKeio UniversityYokohamaJapan
| |
Collapse
|
4
|
Dresbach S, Huber R, Gulban OF, Pizzuti A, Trampel R, Ivanov D, Weiskopf N, Goebel R. Characterisation of laminar and vascular spatiotemporal dynamics of CBV and BOLD signals using VASO and ME-GRE at 7T in humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.576050. [PMID: 38410457 PMCID: PMC10896347 DOI: 10.1101/2024.01.25.576050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Interpretation of cortical laminar functional magnetic resonance imaging (fMRI) activity requires detailed knowledge of the spatiotemporal haemodynamic response across vascular compartments due to the well-known vascular biases (e.g. the draining veins). Further complications arise from the spatiotemporal hemodynamic response that differs depending on the duration of stimulation. This information is crucial for future studies using depth-dependent cerebral blood volume (CBV) measurements, which promise higher specificity for the cortical microvasculature than the blood oxygenation level dependent (BOLD) contrast. To date, direct information about CBV dynamics with respect to stimulus duration, cortical depth and vasculature is missing in humans. Therefore, we characterized the cortical depth-dependent CBV-haemodynamic responses across a wide set of stimulus durations with 0.9 mm isotropic spatial and 0.785 seconds effective temporal resolution in humans using slice-selective slab-inversion vascular space occupancy (SS-SI VASO). Additionally, we investigated signal contributions from macrovascular compartments using fine-scale vascular information from multi-echo gradient-echo (ME-GRE) data at 0.35 mm isotropic resolution. In total, this resulted in >7.5h of scanning per participant (n=5). We have three major findings: (I) While we could demonstrate that 1 second stimulation is viable using VASO, more than 12 seconds stimulation provides better CBV responses in terms of specificity to microvasculature, but durations beyond 24 seconds of stimulation may be wasteful for certain applications. (II) We observe that CBV responses show dilation patterns across the cortex. (III) While we found increasingly strong BOLD signal responses in vessel-dominated voxels with longer stimulation durations, we found increasingly strong CBV signal responses in vessel-dominated voxels only until 4 second stimulation durations. After 4 seconds, only the signal from non-vessel dominated voxels kept increasing. This might explain why CBV responses are more specific to the underlying neuronal activity for long stimulus durations.
Collapse
Affiliation(s)
- Sebastian Dresbach
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Renzo Huber
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- National Institutes of Health, Bethesda, MD, USA
| | - Omer Faruk Gulban
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Brain innovation, Maastricht, the Netherlands
| | - Alessandra Pizzuti
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Brain innovation, Maastricht, the Netherlands
| | - Robert Trampel
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Dimo Ivanov
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth System Sciences, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, 12 Queen Square, London WC1N 3AR, UK
| | - Rainer Goebel
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Brain innovation, Maastricht, the Netherlands
| |
Collapse
|
5
|
Finn ES, Poldrack RA, Shine JM. Functional neuroimaging as a catalyst for integrated neuroscience. Nature 2023; 623:263-273. [PMID: 37938706 DOI: 10.1038/s41586-023-06670-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/22/2023] [Indexed: 11/09/2023]
Abstract
Functional magnetic resonance imaging (fMRI) enables non-invasive access to the awake, behaving human brain. By tracking whole-brain signals across a diverse range of cognitive and behavioural states or mapping differences associated with specific traits or clinical conditions, fMRI has advanced our understanding of brain function and its links to both normal and atypical behaviour. Despite this headway, progress in human cognitive neuroscience that uses fMRI has been relatively isolated from rapid advances in other subdomains of neuroscience, which themselves are also somewhat siloed from one another. In this Perspective, we argue that fMRI is well-placed to integrate the diverse subfields of systems, cognitive, computational and clinical neuroscience. We first summarize the strengths and weaknesses of fMRI as an imaging tool, then highlight examples of studies that have successfully used fMRI in each subdomain of neuroscience. We then provide a roadmap for the future advances that will be needed to realize this integrative vision. In this way, we hope to demonstrate how fMRI can help usher in a new era of interdisciplinary coherence in neuroscience.
Collapse
Affiliation(s)
- Emily S Finn
- Department of Psychological and Brain Sciences, Dartmouth College, Dartmouth, NH, USA.
| | | | - James M Shine
- School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
6
|
Tacchino A, Pedullà L, Podda J, Monti Bragadin M, Battaglia MA, Bisio A, Bove M, Brichetto G. Motor imagery has a priming effect on motor execution in people with multiple sclerosis. Front Hum Neurosci 2023; 17:1179789. [PMID: 37746058 PMCID: PMC10512728 DOI: 10.3389/fnhum.2023.1179789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023] Open
Abstract
Priming is a learning process that refers to behavioral changes caused by previous exposure to a similar stimulus. Motor imagery (MI), which involves the mental rehearsal of action representations in working memory without engaging in actual execution, could be a strategy for priming the motor system. This study investigates whether MI primes action execution in Multiple Sclerosis (MS). Here, 17 people with MS (PwMS) and 19 healthy subjects (HS), all right-handed and good imaginers, performed as accurately and quickly as possible, with a pencil, actual or mental pointing movements between targets of small (1.0 × 1.0 cm) or large (1.5 × 1.5 cm) size. In actual trials, they completed five pointing cycles between the left and right targets, whereas in mental trials, the first 4 cycles were imagined while the fifth was actually executed. The fifth cycle was introduced to assess the MI priming effect on actual execution. All conditions, presented randomly, were performed with both dominant (i.e., right) and non-dominant arms. Analysis of the duration of the first 4 cycles in both actual and mental trials confirmed previous findings, showing isochrony in HS with both arms and significantly faster mental than actual movements (anisochrony) in PwMS (p < 0.01) [time (s); HS right: actual: 4.23 ± 0.15, mental: 4.36 ± 0.16; left: actual: 4.32 ± 0.15, mental: 4.43 ± 0.18; PwMS right: actual: 5.85 ± 0.16, mental: 5.99 ± 0.21; left: actual: 6.68 ± 0.20, mental: 5.94 ± 0.23]; anisochrony in PwMS was present when the task was performed with the non-dominant arm. Of note, temporal analysis of the fifth actual cycle showed no differences between actual and mental trials for HS with both arms, whereas in PwMS the fifth actual cycle was significantly faster after the four actual cycles for the non-dominant arm (p < 0.05) [time (s); HS right: actual: 1.03 ± 0.04, mental: 1.03 ± 0.03; left: actual: 1.08 ± 0.04, mental: 1.05 ± 0.03; PwMS right: actual: 1.48 ± 0.04, mental: 1.48 ± 0.06; left: actual: 1.66 ± 0.05, mental: 1.48 ± 0.06]. These results seem to suggest that a few mental repetitions of an action might be sufficient to exert a priming effect on the actual execution of the same action in PwMS. This would indicate further investigation of the potential use of MI as a new motor-cognitive tool for MS neurorehabilitation.
Collapse
Affiliation(s)
- Andrea Tacchino
- Scientific Research Area, Italian Multiple Sclerosis Foundation, Genoa, Italy
| | - Ludovico Pedullà
- Scientific Research Area, Italian Multiple Sclerosis Foundation, Genoa, Italy
| | - Jessica Podda
- Scientific Research Area, Italian Multiple Sclerosis Foundation, Genoa, Italy
| | | | - Mario Alberto Battaglia
- Department of Physiopathology, Experimental Medicine, and Public Health, University of Siena, Siena, Italy
| | - Ambra Bisio
- Section of Human Physiology, Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy
| | - Marco Bove
- Section of Human Physiology, Department of Experimental Medicine, University of Genoa, Genoa, Italy
- IRCCS Policlinico San Martino, Genoa, Italy
| | - Giampaolo Brichetto
- Scientific Research Area, Italian Multiple Sclerosis Foundation, Genoa, Italy
- AISM Rehabilitation Service, Italian Multiple Sclerosis Society, Genoa, Italy
| |
Collapse
|
7
|
Martin A. Supramodality does not specify the nature of conceptual representations. LANGUAGE, COGNITION AND NEUROSCIENCE 2023; 39:850-853. [PMID: 39184914 PMCID: PMC11343472 DOI: 10.1080/23273798.2023.2211691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 08/27/2024]
Affiliation(s)
- Alex Martin
- Laboratory of Brain and Cognition, National Institute of mental health, NIH, Bethesda, MD, USA
| |
Collapse
|
8
|
Northall A, Doehler J, Weber M, Vielhaber S, Schreiber S, Kuehn E. Layer-specific vulnerability is a mechanism of topographic map aging. Neurobiol Aging 2023; 128:17-32. [PMID: 37141729 DOI: 10.1016/j.neurobiolaging.2023.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 05/06/2023]
Abstract
Topographic maps form a critical feature of cortical organization, yet are poorly described with respect to their microstructure in the living aging brain. We acquired quantitative structural and functional 7T-MRI data from younger and older adults to characterize layer-wise topographic maps of the primary motor cortex (M1). Using parcellation-inspired techniques, we show that quantitative T1 and Quantitative Susceptibility Maps values of the hand, face, and foot areas differ significantly, revealing microstructurally distinct cortical fields in M1. We show that these fields are distinct in older adults and that myelin borders between them do not degenerate. We further show that the output layer 5 of M1 shows a particular vulnerability to age-related increased iron, while layer 5 and the superficial layer show increased diamagnetic substance, likely reflecting calcifications. Taken together, we provide a novel 3D model of M1 microstructure, where body parts form distinct structural units, but layers show specific vulnerability toward increased iron and calcium in older adults. Our findings have implications for understanding sensorimotor organization and aging, in addition to topographic disease spread.
Collapse
Affiliation(s)
- Alicia Northall
- Institute for Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Saxony-Anhalt, Germany.
| | - Juliane Doehler
- Institute for Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Saxony-Anhalt, Germany
| | - Miriam Weber
- Department of Neurology, Otto-von-Guericke University Magdeburg, Magdeburg, Saxony-Anhalt, Germany
| | - Stefan Vielhaber
- Department of Neurology, Otto-von-Guericke University Magdeburg, Magdeburg, Saxony-Anhalt, Germany
| | - Stefanie Schreiber
- Department of Neurology, Otto-von-Guericke University Magdeburg, Magdeburg, Saxony-Anhalt, Germany; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Saxony-Anhalt, Germany; Center for Behavioral Brain Sciences (CBBS) Magdeburg, Magdeburg, Saxony-Anhalt, Germany
| | - Esther Kuehn
- Institute for Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Saxony-Anhalt, Germany; German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Saxony-Anhalt, Germany; Center for Behavioral Brain Sciences (CBBS) Magdeburg, Magdeburg, Saxony-Anhalt, Germany; Hertie Institute for Clinical Brain Research, Tübingen, Germany
| |
Collapse
|
9
|
Knudsen L, Bailey CJ, Blicher JU, Yang Y, Zhang P, Lund TE. Improved sensitivity and microvascular weighting of 3T laminar fMRI with GE-BOLD using NORDIC and phase regression. Neuroimage 2023; 271:120011. [PMID: 36914107 DOI: 10.1016/j.neuroimage.2023.120011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
INTRODUCTION Functional MRI with spatial resolution in the submillimeter domain enables measurements of activation across cortical layers in humans. This is valuable as different types of cortical computations, e.g., feedforward versus feedback related activity, take place in different cortical layers. Laminar fMRI studies have almost exclusively employed 7T scanners to overcome the reduced signal stability associated with small voxels. However, such systems are relatively rare and only a subset of those are clinically approved. In the present study, we examined if the feasibility of laminar fMRI at 3T could be improved by use of NORDIC denoising and phase regression. METHODS 5 healthy subjects were scanned on a Siemens MAGNETOM Prisma 3T scanner. To assess across-session reliability, each subject was scanned in 3-8 sessions on 3-4 consecutive days. A 3D gradient echo EPI (GE-EPI) sequence was used for BOLD acquisitions (voxel size 0.82 mm isotopic, TR = 2.2 s) using a block design finger tapping paradigm. NORDIC denoising was applied to the magnitude and phase time series to overcome limitations in temporal signal-to-noise ratio (tSNR) and the denoised phase time series were subsequently used to correct for large vein contamination through phase regression. RESULTS AND CONCLUSION NORDIC denoising resulted in tSNR values comparable to or higher than commonly observed at 7T. Layer-dependent activation profiles could thus be extracted robustly, within and across sessions, from regions of interest located in the hand knob of the primary motor cortex (M1). Phase regression led to substantially reduced superficial bias in obtained layer profiles, although residual macrovascular contribution remained. We believe the present results support an improved feasibility of laminar fMRI at 3T.
Collapse
Affiliation(s)
- Lasse Knudsen
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Universitetsbyen 3, Aarhus C 8000, Denmark; Sino-Danish Center for Education and Research (SDC), University of Chinese Academy of Sciences, 380 Huaibeizhuang, Huairou District, Beijing 101400, PR China.
| | - Christopher J Bailey
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Universitetsbyen 3, Aarhus C 8000, Denmark; Sino-Danish Center for Education and Research (SDC), University of Chinese Academy of Sciences, 380 Huaibeizhuang, Huairou District, Beijing 101400, PR China
| | - Jakob U Blicher
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Universitetsbyen 3, Aarhus C 8000, Denmark; Department of Neurology, Aalborg University Hospital, Aalborg, Denmark
| | - Yan Yang
- Sino-Danish Center for Education and Research (SDC), University of Chinese Academy of Sciences, 380 Huaibeizhuang, Huairou District, Beijing 101400, PR China; Institute of Biophysics, Chinese Academy of Sciences, Beijing, PR China
| | - Peng Zhang
- Sino-Danish Center for Education and Research (SDC), University of Chinese Academy of Sciences, 380 Huaibeizhuang, Huairou District, Beijing 101400, PR China; Institute of Biophysics, Chinese Academy of Sciences, Beijing, PR China
| | - Torben E Lund
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Universitetsbyen 3, Aarhus C 8000, Denmark
| |
Collapse
|
10
|
Dietsch AM, Westemeyer RM, Schultz DH. Brain activity associated with taste stimulation: A mechanism for neuroplastic change? Brain Behav 2023; 13:e2928. [PMID: 36860129 PMCID: PMC10097078 DOI: 10.1002/brb3.2928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/21/2023] [Accepted: 02/08/2023] [Indexed: 03/03/2023] Open
Abstract
PURPOSE Neuroplasticity may be enhanced by increasing brain activation and bloodflow in neural regions relevant to the target behavior. We administered precisely formulated and dosed taste stimuli to determine whether the associated brain activity patterns included areas that underlie swallowing control. METHODS Five taste stimuli (unflavored, sour, sweet-sour, lemon, and orange suspensions) were administered in timing-regulated and temperature-controlled 3 mL doses via a customized pump/tubing system to 21 healthy adults during functional magnetic resonance imaging (fMRI). Whole-brain analyses of fMRI data assessed main effects of taste stimulation as well as differential effects of taste profile. RESULTS Differences in brain activity associated with taste stimulation overall as well as specific stimulus type were observed in key taste and swallowing regions including the orbitofrontal cortex, insula, cingulate, and pre- and postcentral gyri. Overall, taste stimulation elicited increased activation in swallowing-related brain regions compared to unflavored trials. Different patterns of blood oxygen level-dependent (BOLD) signal were noted by taste profile. For most areas, sweet-sour and sour trials elicited increases in BOLD compared to unflavored trials within that region, whereas lemon and orange trials yielded reductions in BOLD. This was despite identical concentrations of citric acid and sweetener in the lemon, orange, and sweet-sour solutions. CONCLUSIONS These results suggest that neural activity in swallowing-relevant regions can be amplified with taste stimuli and may be differentially affected by specific properties within very similar taste profiles. These findings provide critical foundational information for interpreting disparities in previous studies of taste effects on brain activity and swallowing function, defining optimal stimuli to increase brain activity in swallowing-relevant regions, and harnessing taste to enhance neuroplasticity and recovery for persons with swallowing disorders.
Collapse
Affiliation(s)
- Angela M Dietsch
- Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, Nebraska.,Center for Brain, Biology, and Behavior, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Ross M Westemeyer
- Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Douglas H Schultz
- Center for Brain, Biology, and Behavior, University of Nebraska-Lincoln, Lincoln, Nebraska.,Department of Psychology, University of Nebraska-Lincoln, Lincoln, Nebraska
| |
Collapse
|
11
|
Huber L, Kassavetis P, Gulban OF, Hallett M, Horovitz SG. Laminar VASO fMRI in focal hand dystonia patients. DYSTONIA 2023; 2. [PMID: 37035517 PMCID: PMC10081516 DOI: 10.3389/dyst.2023.10806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Focal Hand Dystonia (FHD) is a disabling movement disorder characterized by involuntary movements, cramps and spasms. It is associated with pathological neural microcircuits in the cortical somatosensory system. While invasive preclinical modalities allow researchers to probe specific neural microcircuits of cortical layers and columns, conventional functional magnetic resonance imaging (fMRI) cannot resolve such small neural computational units. In this study, we take advantage of recent developments in ultra-high-field MRI hardware and MR-sequences to capture altered digit representations and laminar processing in FHD patients. We aim to characterize the capability and challenges of layer-specific imaging and analysis tools in resolving laminar and columnar structures in clinical research setups. We scanned N = 4 affected and N = 5 unaffected hemispheres at 7T and found consistent results of altered neural microcircuitry in FHD patients: 1) In affected hemispheres of FHD patients, we found a breakdown of ordered finger representation in the primary somatosensory cortex, as suggested from previous low-resolution fMRI. 2) In affected primary motor cortices of FHD patients, we furthermore found increased fMRI activity in superficial cortico-cortical neural input layers (II/III), compared to relatively weaker activity in the cortico-spinal output layers (Vb/VI). Overall, we show that layer-fMRI acquisition and analysis tools have the potential to address clinically-driven neuroscience research questions about altered computational mechanisms at the spatial scales that were previously only accessible in animal models. We believe that this study paves the way for easier translation of preclinical work into clinical research in focal hand dystonia and beyond.
Collapse
Affiliation(s)
- Laurentius Huber
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Panagiotis Kassavetis
- Department of Neurology, University of Utah, Salt Lake City, UT, United States
- Human Motor Control Section, NINDS, NIH, Bethesda, MD, United States
| | - Omer Faruk Gulban
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Brain Innovation, Maastricht, Netherlands
| | - Mark Hallett
- Human Motor Control Section, NINDS, NIH, Bethesda, MD, United States
| | - Silvina G. Horovitz
- Human Motor Control Section, NINDS, NIH, Bethesda, MD, United States
- CORRESPONDENCE Silvina G. Horovitz,
| |
Collapse
|
12
|
Renner J, Rasia-Filho AA. Morphological Features of Human Dendritic Spines. ADVANCES IN NEUROBIOLOGY 2023; 34:367-496. [PMID: 37962801 DOI: 10.1007/978-3-031-36159-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dendritic spine features in human neurons follow the up-to-date knowledge presented in the previous chapters of this book. Human dendrites are notable for their heterogeneity in branching patterns and spatial distribution. These data relate to circuits and specialized functions. Spines enhance neuronal connectivity, modulate and integrate synaptic inputs, and provide additional plastic functions to microcircuits and large-scale networks. Spines present a continuum of shapes and sizes, whose number and distribution along the dendritic length are diverse in neurons and different areas. Indeed, human neurons vary from aspiny or "relatively aspiny" cells to neurons covered with a high density of intermingled pleomorphic spines on very long dendrites. In this chapter, we discuss the phylogenetic and ontogenetic development of human spines and describe the heterogeneous features of human spiny neurons along the spinal cord, brainstem, cerebellum, thalamus, basal ganglia, amygdala, hippocampal regions, and neocortical areas. Three-dimensional reconstructions of Golgi-impregnated dendritic spines and data from fluorescence microscopy are reviewed with ultrastructural findings to address the complex possibilities for synaptic processing and integration in humans. Pathological changes are also presented, for example, in Alzheimer's disease and schizophrenia. Basic morphological data can be linked to current techniques, and perspectives in this research field include the characterization of spines in human neurons with specific transcriptome features, molecular classification of cellular diversity, and electrophysiological identification of coexisting subpopulations of cells. These data would enlighten how cellular attributes determine neuron type-specific connectivity and brain wiring for our diverse aptitudes and behavior.
Collapse
Affiliation(s)
- Josué Renner
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Alberto A Rasia-Filho
- Department of Basic Sciences/Physiology and Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
- Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
13
|
Neige C, Ciechelski V, Lebon F. The recruitment of indirect waves within primary motor cortex during motor imagery: A directional transcranial magnetic stimulation study. Eur J Neurosci 2022; 56:6187-6200. [PMID: 36215136 PMCID: PMC10092871 DOI: 10.1111/ejn.15843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/15/2022] [Accepted: 09/28/2022] [Indexed: 12/29/2022]
Abstract
Motor imagery (MI) refers to the mental simulation of an action without overt movement. While numerous transcranial magnetic stimulation (TMS) studies provided evidence for a modulation of corticospinal excitability and intracortical inhibition during MI, the neural signature within the primary motor cortex is not clearly established. In the current study, we used directional TMS to probe the modulation of the excitability of early and late indirect waves (I-waves) generating pathways during MI. Corticospinal responses evoked by TMS with posterior-anterior (PA) and anterior-posterior (AP) current flow within the primary motor cortex evoke preferentially early and late I-waves, respectively. Seventeen participants were instructed to stay at rest or to imagine maximal isometric contractions of the right flexor carpi radialis. We demonstrated that the increase of corticospinal excitability during MI is greater with PA than AP orientation. By using paired-pulse stimulations, we confirmed that short-interval intracortical inhibition (SICI) increased during MI in comparison to rest with PA orientation, whereas we found that it decreased with AP orientation. Overall, these results indicate that the pathways recruited by PA and AP orientations that generate early and late I-waves are differentially modulated by MI.
Collapse
Affiliation(s)
- Cécilia Neige
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, Dijon, France.,Centre Hospitalier Le Vinatier, Université Claude Bernard Lyon 1, INSERM, CNRS, CRNL U1028 UMR5292, PsyR2 Team, Bron, France
| | - Valentin Ciechelski
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, Dijon, France
| | - Florent Lebon
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, Dijon, France
| |
Collapse
|
14
|
Pais-Roldán P, Yun SD, Shah NJ. Pre-processing of Sub-millimeter GE-BOLD fMRI Data for Laminar Applications. FRONTIERS IN NEUROIMAGING 2022; 1:869454. [PMID: 37555171 PMCID: PMC10406219 DOI: 10.3389/fnimg.2022.869454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/31/2022] [Indexed: 08/10/2023]
Abstract
Over the past 30 years, brain function has primarily been evaluated non-invasively using functional magnetic resonance imaging (fMRI) with gradient-echo (GE) sequences to measure blood-oxygen-level-dependent (BOLD) signals. Despite the multiple advantages of GE sequences, e.g., higher signal-to-noise ratio, faster acquisitions, etc., their relatively inferior spatial localization compromises the routine use of GE-BOLD in laminar applications. Here, in an attempt to rescue the benefits of GE sequences, we evaluated the effect of existing pre-processing methods on the spatial localization of signals obtained with EPIK, a GE sequence that affords voxel volumes of 0.25 mm3 with near whole-brain coverage. The methods assessed here apply to both task and resting-state fMRI data assuming the availability of reconstructed magnitude and phase images.
Collapse
Affiliation(s)
- Patricia Pais-Roldán
- Institute of Neuroscience and Medicine 4, Medical Imaging Physics, Forschungszentrum Jülich, Jülich, Germany
| | - Seong Dae Yun
- Institute of Neuroscience and Medicine 4, Medical Imaging Physics, Forschungszentrum Jülich, Jülich, Germany
| | - N. Jon Shah
- Institute of Neuroscience and Medicine 4, Medical Imaging Physics, Forschungszentrum Jülich, Jülich, Germany
- Institute of Neuroscience and Medicine 11, Molecular Neuroscience and Neuroimaging, Jülich Aachen Research Alliance, Forschungszentrum Jülich, Jülich, Germany
- Jlich Aachen Research Alliance, Brain - Translational Medicine, Aachen, Germany
- Department of Neurology, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen, Germany
| |
Collapse
|
15
|
Shao X, Guo F, Shou Q, Wang K, Jann K, Yan L, Toga AW, Zhang P, Wang DJJ. Laminar perfusion imaging with zoomed arterial spin labeling at 7 Tesla. Neuroimage 2021; 245:118724. [PMID: 34780918 PMCID: PMC8727512 DOI: 10.1016/j.neuroimage.2021.118724] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/23/2021] [Accepted: 11/11/2021] [Indexed: 10/19/2022] Open
Abstract
Laminar fMRI based on BOLD and CBV contrast at ultrahigh magnetic fields has been applied for studying the dynamics of mesoscopic brain networks. However, the quantitative interpretations of BOLD/CBV fMRI results are confounded by different baseline physiology across cortical layers. Here we introduce a novel 3D zoomed pseudo-continuous arterial spin labeling (pCASL) technique at 7T that offers the capability for quantitative measurements of laminar cerebral blood flow (CBF) both at rest and during task activation with high spatial specificity and sensitivity. We found arterial transit time in superficial layers is ∼100 ms shorter than in middle/deep layers revealing the time course of labeled blood flowing from pial arteries to downstream microvasculature. Resting state CBF peaked in the middle layers which is highly consistent with microvascular density measured from human cortex specimens. Finger tapping induced a robust two-peak laminar profile of CBF increases in the superficial (somatosensory and premotor input) and deep (spinal output) layers of M1, while finger brushing task induced a weaker CBF increase in superficial layers (somatosensory input). This observation is highly consistent with reported laminar profiles of CBV activation on M1. We further demonstrated that visuospatial attention induced a predominant CBF increase in deep layers and a smaller CBF increase on top of the lower baseline CBF in superficial layers of V1 (feedback cortical input), while stimulus driven activity peaked in the middle layers (feedforward thalamic input). With the capability for quantitative CBF measurements both at baseline and during task activation, high-resolution ASL perfusion fMRI at 7T provides an important tool for in vivo assessment of neurovascular function and metabolic activities of neural circuits across cortical layers.
Collapse
Affiliation(s)
- Xingfeng Shao
- Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Ave, Los Angeles, CA 90033, USA
| | - Fanhua Guo
- State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qinyang Shou
- Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Ave, Los Angeles, CA 90033, USA
| | - Kai Wang
- Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Ave, Los Angeles, CA 90033, USA
| | - Kay Jann
- Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Ave, Los Angeles, CA 90033, USA; Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Lirong Yan
- Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Ave, Los Angeles, CA 90033, USA; Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Arthur W Toga
- Laboratory of Neuroimaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Peng Zhang
- State Key Laboratory of Brain and Cognitive Science, Beijing MRI Center for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Danny J J Wang
- Laboratory of FMRI Technology (LOFT), USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 2025 Zonal Ave, Los Angeles, CA 90033, USA; Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
16
|
Fischer J, Mahon BZ. What tool representation, intuitive physics, and action have in common: The brain's first-person physics engine. Cogn Neuropsychol 2021; 38:455-467. [PMID: 35994054 PMCID: PMC11498101 DOI: 10.1080/02643294.2022.2106126] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/17/2022] [Accepted: 07/21/2022] [Indexed: 10/15/2022]
Abstract
An overlapping set of brain regions in parietal and frontal cortex are engaged by different types of tasks and stimuli: (i) making inferences about the physical structure and dynamics of the world, (ii) passively viewing, or actively interacting with, manipulable objects, and (iii) planning and execution of reaching and grasping actions. We suggest the observed neural overlap is because a common superordinate computation is engaged by each of those different tasks: A forward model of physical reasoning about how first-person actions will affect the world and be affected by unfolding physical events. This perspective offers an account of why some physical predictions are systematically incorrect - there can be a mismatch between how physical scenarios are experimentally framed and the native format of the inferences generated by the brain's first-person physics engine. This perspective generates new empirical expectations about the conditions under which physical reasoning may exhibit systematic biases.
Collapse
Affiliation(s)
- Jason Fischer
- Johns Hopkins University, Department of Psychological and Brain Sciences, Baltimore, MD 21218, USA
| | - Bradford Z. Mahon
- Carnegie Mellon University, Department of Psychology, 5000 Forbes Ave, Pittsburgh, PA 15213, USA
- Carnegie Mellon Neuroscience Institute, 5000 Forbes Ave, Pittsburgh, PA 15213, USA
| |
Collapse
|
17
|
Berlot E, Popp NJ, Grafton ST, Diedrichsen J. Combining Repetition Suppression and Pattern Analysis Provides New Insights into the Role of M1 and Parietal Areas in Skilled Sequential Actions. J Neurosci 2021; 41:7649-7661. [PMID: 34312223 PMCID: PMC8425980 DOI: 10.1523/jneurosci.0863-21.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/02/2021] [Accepted: 07/09/2021] [Indexed: 11/21/2022] Open
Abstract
How does the brain change during learning? In functional magnetic resonance imaging (fMRI) studies, both multivariate pattern analysis (MVPA) and repetition suppression (RS) have been used to detect changes in neuronal representations. In the context of motor sequence learning, the two techniques have provided discrepant findings: pattern analysis showed that only premotor and parietal regions, but not primary motor cortex (M1), develop a representation of trained sequences. In contrast, RS suggested trained sequence representations in all these regions. Here, we applied both analysis techniques to a five-week finger sequence training study, in which participants executed each sequence twice before switching to a different sequence. Both RS and pattern analysis indicated learning-related changes for parietal areas, but only RS showed a difference between trained and untrained sequences in M1. A more fine-grained analysis, however, revealed that the RS effect in M1 reflects a fundamentally different process than in parietal areas. On the first execution, M1 represents especially the first finger of each sequence, likely reflecting preparatory processes. This effect dramatically reduces during the second execution. In contrast, parietal areas represent the identity of a sequence, and this representation stays relatively stable on the second execution. These results suggest that the RS effect does not reflect a trained sequence representation in M1, but rather a preparatory signal for movement initiation. More generally, our study demonstrates that across regions RS can reflect different representational changes in the neuronal population code, emphasizing the importance of combining pattern analysis and RS techniques.SIGNIFICANCE STATEMENT Previous studies using pattern analysis have suggested that primary motor cortex (M1) does not represent learnt sequential actions. However, a study using repetition suppression (RS) has reported M1 changes during motor sequence learning. Combining both techniques, we first replicate the discrepancy between them, with learning-related changes in M1 in RS, but not pattern dissimilarities. We further analyzed the representational changes with repetition, and found that the RS effects differ across regions. M1's activity represents the starting finger of the sequence, an effect that vanishes with repetition. In contrast, activity patterns in parietal areas exhibit sequence dependency, which persists with repetition. These results demonstrate the importance of combining RS and pattern analysis to understand the function of brain regions.
Collapse
Affiliation(s)
- Eva Berlot
- The Brain and Mind Institute, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Nicola J Popp
- The Brain and Mind Institute, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Scott T Grafton
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, California 93106
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, California 93106
| | - Jörn Diedrichsen
- The Brain and Mind Institute, University of Western Ontario, London, Ontario N6A 5B7, Canada
- Department of Statistical and Actuarial Sciences, University of Western Ontario, London, Ontario N6A 5B7, Canada
- Department of Computer Science, University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
18
|
Huber LR, Poser BA, Bandettini PA, Arora K, Wagstyl K, Cho S, Goense J, Nothnagel N, Morgan AT, van den Hurk J, Müller AK, Reynolds RC, Glen DR, Goebel R, Gulban OF. LayNii: A software suite for layer-fMRI. Neuroimage 2021; 237:118091. [PMID: 33991698 PMCID: PMC7615890 DOI: 10.1016/j.neuroimage.2021.118091] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 02/19/2021] [Accepted: 04/16/2021] [Indexed: 01/06/2023] Open
Abstract
High-resolution fMRI in the sub-millimeter regime allows researchers to resolve brain activity across cortical layers and columns non-invasively. While these high-resolution data make it possible to address novel questions of directional information flow within and across brain circuits, the corresponding data analyses are challenged by MRI artifacts, including image blurring, image distortions, low SNR, and restricted coverage. These challenges often result in insufficient spatial accuracy of conventional analysis pipelines. Here we introduce a new software suite that is specifically designed for layer-specific functional MRI: LayNii. This toolbox is a collection of command-line executable programs written in C/C++ and is distributed opensource and as pre-compiled binaries for Linux, Windows, and macOS. LayNii is designed for layer-fMRI data that suffer from SNR and coverage constraints and thus cannot be straightforwardly analyzed in alternative software packages. Some of the most popular programs of LayNii contain 'layerification' and columnarization in the native voxel space of functional data as well as many other layer-fMRI specific analysis tasks: layer-specific smoothing, model-based vein mitigation of GE-BOLD data, quality assessment of artifact dominated sub-millimeter fMRI, as well as analyses of VASO data.
Collapse
Affiliation(s)
| | - Benedikt A Poser
- MBIC, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands
| | | | - Kabir Arora
- MBIC, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands
| | - Konrad Wagstyl
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Shinho Cho
- CMRR, University of Minneapolis, MN, USA
| | | | | | | | | | | | | | | | - Rainer Goebel
- MBIC, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands; Brain Innovation, Maastricht, the Netherlands
| | - Omer Faruk Gulban
- MBIC, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands; Brain Innovation, Maastricht, the Netherlands
| |
Collapse
|
19
|
|
20
|
Chai Y, Liu TT, Marrett S, Li L, Khojandi A, Handwerker DA, Alink A, Muckli L, Bandettini PA. Topographical and laminar distribution of audiovisual processing within human planum temporale. Prog Neurobiol 2021; 205:102121. [PMID: 34273456 DOI: 10.1016/j.pneurobio.2021.102121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/20/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
The brain is capable of integrating signals from multiple sensory modalities. Such multisensory integration can occur in areas that are commonly considered unisensory, such as planum temporale (PT) representing the auditory association cortex. However, the roles of different afferents (feedforward vs. feedback) to PT in multisensory processing are not well understood. Our study aims to understand that by examining laminar activity patterns in different topographical subfields of human PT under unimodal and multisensory stimuli. To this end, we adopted an advanced mesoscopic (sub-millimeter) fMRI methodology at 7 T by acquiring BOLD (blood-oxygen-level-dependent contrast, which has higher sensitivity) and VAPER (integrated blood volume and perfusion contrast, which has superior laminar specificity) signal concurrently, and performed all analyses in native fMRI space benefiting from an identical acquisition between functional and anatomical images. We found a division of function between visual and auditory processing in PT and distinct feedback mechanisms in different subareas. Specifically, anterior PT was activated more by auditory inputs and received feedback modulation in superficial layers. This feedback depended on task performance and likely arose from top-down influences from higher-order multimodal areas. In contrast, posterior PT was preferentially activated by visual inputs and received visual feedback in both superficial and deep layers, which is likely projected directly from the early visual cortex. Together, these findings provide novel insights into the mechanism of multisensory interaction in human PT at the mesoscopic spatial scale.
Collapse
Affiliation(s)
- Yuhui Chai
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Tina T Liu
- Section on Neurocircuitry, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Sean Marrett
- Functional MRI Core, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Linqing Li
- Functional MRI Core, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Arman Khojandi
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Daniel A Handwerker
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Arjen Alink
- University Medical Centre Hamburg-Eppendorf, Department of Systems Neuroscience, Hamburg, Germany
| | - Lars Muckli
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Peter A Bandettini
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA; Functional MRI Core, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
21
|
Ocklenburg S, Metzen D, Schlüter C, Fraenz C, Arning L, Streit F, Güntürkün O, Kumsta R, Genç E. Polygenic scores for handedness and their association with asymmetries in brain structure. Brain Struct Funct 2021; 227:515-527. [PMID: 34235564 PMCID: PMC8844179 DOI: 10.1007/s00429-021-02335-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 07/01/2021] [Indexed: 11/28/2022]
Abstract
Handedness is the most widely investigated motor preference in humans. The genetics of handedness and especially the link between genetic variation, brain structure, and right-left preference have not been investigated in detail. Recently, several well-powered genome-wide association studies (GWAS) on handedness have been published, significantly advancing the understanding of the genetic determinants of left and right-handedness. In the present study, we estimated polygenic scores (PGS) of handedness-based on the GWAS by de Kovel and Francks (Sci Rep 9: 5986, 2019) in an independent validation cohort (n = 296). PGS reflect the sum effect of trait-associated alleles across many genetic loci. For the first time, we could show that these GWAS-based PGS are significantly associated with individual handedness lateralization quotients in an independent validation cohort. Additionally, we investigated whether handedness-derived polygenic scores are associated with asymmetries in gray matter macrostructure across the whole brain determined using magnetic resonance imaging. None of these associations reached significance after correction for multiple comparisons. Our results implicate that PGS obtained from large-scale handedness GWAS are significantly associated with individual handedness in smaller validation samples with more detailed phenotypic assessment.
Collapse
Affiliation(s)
- Sebastian Ocklenburg
- Department of Biopsychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany.
| | - Dorothea Metzen
- Department of Biopsychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Caroline Schlüter
- Department of Biopsychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Christoph Fraenz
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Department of Psychology and Neurosciences, Dortmund, Germany
| | - Larissa Arning
- Department of Human Genetics, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Fabian Streit
- Medical Faculty Mannheim, Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Onur Güntürkün
- Department of Biopsychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Robert Kumsta
- Department of Genetic Psychology, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Erhan Genç
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Department of Psychology and Neurosciences, Dortmund, Germany
| |
Collapse
|
22
|
Huber LR, Poser BA, Kaas AL, Fear EJ, Dresbach S, Berwick J, Goebel R, Turner R, Kennerley AJ. Validating layer-specific VASO across species. Neuroimage 2021; 237:118195. [PMID: 34038769 DOI: 10.1016/j.neuroimage.2021.118195] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 01/27/2023] Open
Abstract
Cerebral blood volume (CBV) has been shown to be a robust and important physiological parameter for quantitative interpretation of functional (f)MRI, capable of delivering highly localized mapping of neural activity. Indeed, with recent advances in ultra-high-field (≥7T) MRI hardware and associated sequence libraries, it has become possible to capture non-invasive CBV weighted fMRI signals across cortical layers. One of the most widely used approaches to achieve this (in humans) is through vascular-space-occupancy (VASO) fMRI. Unfortunately, the exact contrast mechanisms of layer-dependent VASO fMRI have not been validated for human fMRI and thus interpretation of such data is confounded. Here we validate the signal source of layer-dependent SS-SI VASO fMRI using multi-modal imaging in a rat model in response to neuronal activation (somatosensory cortex) and respiratory challenge (hypercapnia). In particular VASO derived CBV measures are directly compared to concurrent measures of total haemoglobin changes from high resolution intrinsic optical imaging spectroscopy (OIS). Quantified cortical layer profiling is demonstrated to be in agreement between VASO and contrast enhanced fMRI (using monocrystalline iron oxide nanoparticles, MION). Responses show high spatial localisation to layers of cortical processing independent of confounding large draining veins which can hamper BOLD fMRI studies, (depending on slice positioning). Thus, a cross species comparison is enabled using VASO as a common measure. We find increased VASO based CBV reactivity (3.1 ± 1.2 fold increase) in humans compared to rats. Together, our findings confirm that the VASO contrast is indeed a reliable estimate of layer-specific CBV changes. This validation study increases the neuronal interpretability of human layer-dependent VASO fMRI as an appropriate method in neuroscience application studies, in which the presence of large draining intracortical and pial veins limits neuroscientific inference with BOLD fMRI.
Collapse
Affiliation(s)
- Laurentius Renzo Huber
- MBIC, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands.
| | - Benedikt A Poser
- MBIC, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands
| | - Amanda L Kaas
- MBIC, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands
| | - Elizabeth J Fear
- Hull-York-Medical-School (HYMS), University of York, York, United Kingdom
| | - Sebastian Dresbach
- MBIC, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands
| | - Jason Berwick
- Department of Psychology, University of Sheffield, Sheffield, United Kingdom
| | - Rainer Goebel
- MBIC, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, the Netherlands
| | - Robert Turner
- Neurophysics Department Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, United Kingdom
| | | |
Collapse
|
23
|
Gotts SJ, Milleville SC, Martin A. Enhanced inter-regional coupling of neural responses and repetition suppression provide separate contributions to long-term behavioral priming. Commun Biol 2021; 4:487. [PMID: 33879819 PMCID: PMC8058068 DOI: 10.1038/s42003-021-02002-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 03/18/2021] [Indexed: 11/15/2022] Open
Abstract
Stimulus identification commonly improves with repetition over long delays ("repetition priming"), whereas neural activity commonly decreases ("repetition suppression"). Multiple models have been proposed to explain this brain-behavior relationship, predicting alterations in functional and/or effective connectivity (Synchrony and Predictive Coding models), in the latency of neural responses (Facilitation model), and in the relative similarity of neural representations (Sharpening model). Here, we test these predictions with fMRI during overt and covert naming of repeated and novel objects. While we find partial support for predictions of the Facilitation and Sharpening models in the left fusiform gyrus and left frontal cortex, the data were most consistent with the Synchrony model, with increased coupling between right temporoparietal and anterior cingulate cortex for repeated objects that correlated with priming magnitude across participants. Increased coupling and repetition suppression varied independently, each explaining unique variance in priming and requiring modifications of all current models.
Collapse
Affiliation(s)
- Stephen J Gotts
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Shawn C Milleville
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Alex Martin
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
24
|
Geers L, Pesenti M, Derosiere G, Duque J, Dricot L, Andres M. Role of the fronto-parietal cortex in prospective action judgments. Sci Rep 2021; 11:7454. [PMID: 33811223 PMCID: PMC8018944 DOI: 10.1038/s41598-021-86719-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 03/19/2021] [Indexed: 11/09/2022] Open
Abstract
Prospective judgments about one's capability to perform an action are assumed to involve mental simulation of the action. Previous studies of motor imagery suggest this simulation is supported by a large fronto-parietal network including the motor system. Experiment 1 used fMRI to assess the contribution of this fronto-parietal network to judgments about one's capacity to grasp objects of different sizes between index and thumb. The neural network underlying prospective graspability judgments overlapped the fronto-parietal network involved in explicit motor imagery of grasping. However, shared areas were located in the right hemisphere, outside the motor cortex, and were also activated during perceptual length judgments, suggesting a contribution to object size estimate rather than motor simulation. Experiment 2 used TMS over the motor cortex to probe transient excitability changes undetected with fMRI. Results show that graspability judgments elicited a selective increase of excitability in the thumb and index muscles, which was maximal before the object display and intermediate during the judgment. Together, these findings suggest that prospective action judgments do not rely on the motor system to simulate the action per se but to refresh the memory of one's maximal grip aperture and facilitate its comparison with object size in right fronto-parietal areas.
Collapse
Affiliation(s)
- Laurie Geers
- Psychological Sciences Research Institute, Université catholique de Louvain, Place Cardinal Mercier 10, Louvain-la-Neuve, Belgium
| | - Mauro Pesenti
- Psychological Sciences Research Institute, Université catholique de Louvain, Place Cardinal Mercier 10, Louvain-la-Neuve, Belgium.,Institute of Neuroscience, Université catholique de Louvain, Avenue Mounier 53, Brussels, Belgium
| | - Gerard Derosiere
- Institute of Neuroscience, Université catholique de Louvain, Avenue Mounier 53, Brussels, Belgium
| | - Julie Duque
- Institute of Neuroscience, Université catholique de Louvain, Avenue Mounier 53, Brussels, Belgium
| | - Laurence Dricot
- Institute of Neuroscience, Université catholique de Louvain, Avenue Mounier 53, Brussels, Belgium
| | - Michael Andres
- Psychological Sciences Research Institute, Université catholique de Louvain, Place Cardinal Mercier 10, Louvain-la-Neuve, Belgium. .,Institute of Neuroscience, Université catholique de Louvain, Avenue Mounier 53, Brussels, Belgium.
| |
Collapse
|
25
|
Bencivenga F, Sulpizio V, Tullo MG, Galati G. Assessing the effective connectivity of premotor areas during real vs imagined grasping: a DCM-PEB approach. Neuroimage 2021; 230:117806. [PMID: 33524574 DOI: 10.1016/j.neuroimage.2021.117806] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/20/2021] [Accepted: 01/23/2021] [Indexed: 12/16/2022] Open
Abstract
The parieto-frontal circuit underlying grasping, which requires the serial involvement of the anterior intraparietal area (aIPs) and the ventral premotor cortex (PMv), has been recently extended enlightening the role of the dorsal premotor cortex (PMd). The supplementary motor area (SMA) has been also suggested to encode grip force for grasping actions; furthermore, both PMd and SMA are known to play a crucial role in motor imagery. Here, we aimed at assessing the dynamic couplings between left aIPs, PMv, PMd, SMA and primary motor cortex (M1) by comparing executed and imagined right-hand grasping, using Dynamic Causal Modelling (DCM) and Parametrical Empirical Bayes (PEB) analyses. 24 subjects underwent an fMRI exam (3T) during which they were asked to perform or imagine a grasping movement visually cued by photographs of commonly used objects. We tested whether the two conditions a) exert a modulatory effect on both forward and feedback couplings among our areas of interest, and b) differ in terms of strength and sign of these parameters. Results of the real condition confirmed the serial involvement of aIPs, PMv and M1. PMv also exerted a positive influence on PMd and SMA, but received an inhibitory feedback only from PMd. Our results suggest that a general motor program for grasping is planned by the aIPs-PMv circuit; then, PMd and SMA encode high-level features of the movement. During imagery, the connection strength from aIPs to PMv was weaker and the information flow stopped in PMv; thus, a less complex motor program was planned. Moreover, results suggest that SMA and PMd cooperate to prevent motor execution. In conclusion, the comparison between execution and imagery reveals that during grasping premotor areas dynamically interplay in different ways, depending on task demands.
Collapse
Affiliation(s)
- Federica Bencivenga
- Brain Imaging Laboratory, Department of Psychology, Sapienza University, Rome, Italy; PhD program in Behavioral Neuroscience, Sapienza University, Rome, Italy; Cognitive and Motor Rehabilitation and Neuroimaging Unit, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.
| | - Valentina Sulpizio
- Brain Imaging Laboratory, Department of Psychology, Sapienza University, Rome, Italy; Cognitive and Motor Rehabilitation and Neuroimaging Unit, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Maria Giulia Tullo
- Brain Imaging Laboratory, Department of Psychology, Sapienza University, Rome, Italy; PhD program in Behavioral Neuroscience, Sapienza University, Rome, Italy; Cognitive and Motor Rehabilitation and Neuroimaging Unit, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Gaspare Galati
- Brain Imaging Laboratory, Department of Psychology, Sapienza University, Rome, Italy; Cognitive and Motor Rehabilitation and Neuroimaging Unit, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| |
Collapse
|
26
|
Viewing images of foods evokes taste quality-specific activity in gustatory insular cortex. Proc Natl Acad Sci U S A 2021; 118:2010932118. [PMID: 33384331 DOI: 10.1073/pnas.2010932118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Previous studies have shown that the conceptual representation of food involves brain regions associated with taste perception. The specificity of this response, however, is unknown. Does viewing pictures of food produce a general, nonspecific response in taste-sensitive regions of the brain? Or is the response specific for how a particular food tastes? Building on recent findings that specific tastes can be decoded from taste-sensitive regions of insular cortex, we asked whether viewing pictures of foods associated with a specific taste (e.g., sweet, salty, and sour) can also be decoded from these same regions, and if so, are the patterns of neural activity elicited by the pictures and their associated tastes similar? Using ultrahigh-resolution functional magnetic resonance imaging at high magnetic field strength (7-Tesla), we were able to decode specific tastes delivered during scanning, as well as the specific taste category associated with food pictures within the dorsal mid-insula, a primary taste responsive region of brain. Thus, merely viewing food pictures triggers an automatic retrieval of specific taste quality information associated with the depicted foods, within gustatory cortex. However, the patterns of activity elicited by pictures and their associated tastes were unrelated, thus suggesting a clear neural distinction between inferred and directly experienced sensory events. These data show how higher-order inferences derived from stimuli in one modality (i.e., vision) can be represented in brain regions typically thought to represent only low-level information about a different modality (i.e., taste).
Collapse
|
27
|
Shamma S, Patel P, Mukherjee S, Marion G, Khalighinejad B, Han C, Herrero J, Bickel S, Mehta A, Mesgarani N. Learning Speech Production and Perception through Sensorimotor Interactions. Cereb Cortex Commun 2020; 2:tgaa091. [PMID: 33506209 PMCID: PMC7811190 DOI: 10.1093/texcom/tgaa091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 12/21/2022] Open
Abstract
Action and perception are closely linked in many behaviors necessitating a close coordination between sensory and motor neural processes so as to achieve a well-integrated smoothly evolving task performance. To investigate the detailed nature of these sensorimotor interactions, and their role in learning and executing the skilled motor task of speaking, we analyzed ECoG recordings of responses in the high-γ band (70-150 Hz) in human subjects while they listened to, spoke, or silently articulated speech. We found elaborate spectrotemporally modulated neural activity projecting in both "forward" (motor-to-sensory) and "inverse" directions between the higher-auditory and motor cortical regions engaged during speaking. Furthermore, mathematical simulations demonstrate a key role for the forward projection in "learning" to control the vocal tract, beyond its commonly postulated predictive role during execution. These results therefore offer a broader view of the functional role of the ubiquitous forward projection as an important ingredient in learning, rather than just control, of skilled sensorimotor tasks.
Collapse
Affiliation(s)
- Shihab Shamma
- Department of Electrical and Computer Engineering, Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
- Laboratoire des Systèmes Perceptifs, Department des Etudes Cognitive, École Normale Supérieure, PSL University, 75005 Paris, France
| | - Prachi Patel
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
- Mortimer B Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Shoutik Mukherjee
- Department of Electrical and Computer Engineering, Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
| | - Guilhem Marion
- Laboratoire des Systèmes Perceptifs, Department des Etudes Cognitive, École Normale Supérieure, PSL University, 75005 Paris, France
| | - Bahar Khalighinejad
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
- Mortimer B Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Cong Han
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
- Mortimer B Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Jose Herrero
- Neurosurgery, Hofstra Northwell School of Medicine, Manhasset, NY, USA
| | - Stephan Bickel
- Neurosurgery, Hofstra Northwell School of Medicine, Manhasset, NY, USA
| | - Ashesh Mehta
- Neurosurgery, Hofstra Northwell School of Medicine, Manhasset, NY, USA
- The Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
| | - Nima Mesgarani
- Department of Electrical Engineering, Columbia University, New York, NY 10027, USA
- Mortimer B Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| |
Collapse
|
28
|
Bollmann S, Barth M. New acquisition techniques and their prospects for the achievable resolution of fMRI. Prog Neurobiol 2020; 207:101936. [PMID: 33130229 DOI: 10.1016/j.pneurobio.2020.101936] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/10/2020] [Accepted: 10/18/2020] [Indexed: 01/17/2023]
Abstract
This work reviews recent advances in technologies for functional magnetic resonance imaging (fMRI) of the human brain and highlights the push for higher functional specificity based on increased spatial resolution and specific MR contrasts to reveal previously undetectable functional properties of small-scale cortical structures. We discuss how the combination of MR hardware, advanced acquisition techniques and various MR contrast mechanisms have enabled recent progress in functional neuroimaging. However, these advanced fMRI practices have only been applied to a handful of neuroscience questions to date, with the majority of the neuroscience community still using conventional imaging techniques. We thus discuss upcoming challenges and possibilities for fMRI technology development in human neuroscience. We hope that readers interested in functional brain imaging acquire an understanding of current and novel developments and potential future applications, even if they don't have a background in MR physics or engineering. We summarize the capabilities of standard fMRI acquisition schemes with pointers to relevant literature and comprehensive reviews and introduce more recent developments.
Collapse
Affiliation(s)
- Saskia Bollmann
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
| | - Markus Barth
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia; School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia; ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
29
|
Finn ES, Huber L, Bandettini PA. Higher and deeper: Bringing layer fMRI to association cortex. Prog Neurobiol 2020; 207:101930. [PMID: 33091541 DOI: 10.1016/j.pneurobio.2020.101930] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/22/2020] [Accepted: 10/12/2020] [Indexed: 01/13/2023]
Abstract
Recent advances in fMRI have enabled non-invasive measurements of brain function in awake, behaving humans at unprecedented spatial resolutions, allowing us to separate activity in distinct cortical layers. While most layer fMRI studies to date have focused on primary cortices, we argue that the next big steps forward in our understanding of cognition will come from expanding this technology into higher-order association cortex, to characterize depth-dependent activity during increasingly sophisticated mental processes. We outline phenomena and theories ripe for investigation with layer fMRI, including perception and imagery, selective attention, and predictive coding. We discuss practical and theoretical challenges to cognitive applications of layer fMRI, including localizing regions of interest in the face of substantial anatomical heterogeneity across individuals, designing appropriate task paradigms within the confines of acquisition parameters, and generating hypotheses for higher-order brain regions where the laminar circuitry is less well understood. We consider how applying layer fMRI in association cortex may help inform computational models of brain function as well as shed light on consciousness and mental illness, and issue a call to arms to our fellow methodologists and neuroscientists to bring layer fMRI to this next frontier.
Collapse
Affiliation(s)
- Emily S Finn
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD, USA; Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA.
| | - Laurentius Huber
- MR-Methods Group, Maastricht Brain Imaging Center, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Peter A Bandettini
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD, USA
| |
Collapse
|
30
|
Abstract
A recent study in which primary motor cortex activity was imaged with sub-laminar resolution has found that, while overt motor actions led to activity in both superficial and deep cortical layers, motor imagery engaged only superficial layers.
Collapse
Affiliation(s)
- Bradford Z Mahon
- Department of Psychology, Carnegie Mellon University, Neuroscience Institute, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA; Department of Neurosurgery, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|