1
|
Berges BJP, van der Knaap I, van Keeken OA, Reubens J, Winter HV. Strong site fidelity, residency and local behaviour of Atlantic cod ( Gadus morhua) at two types of artificial reefs in an offshore wind farm. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240339. [PMID: 39076370 PMCID: PMC11285481 DOI: 10.1098/rsos.240339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 07/31/2024]
Abstract
Globally, biogenic temperate reefs are among the most threatened habitats. In the North Sea in particular, large shellfish reefs were lost owing to fishing activities in the 1900s. The impact of offshore wind farms (OWFs) on marine wildlife is extensive, and it offers the possibility to reintroduce new hard substrate habitats that are protected from fisheries at a large scale. In addition to the submerged structures of OWFs, marine hard substrate habitat can be further enhanced by providing extra artificial reefs. In an operational OWF along the Dutch coast, four artificial reefs (two with a scour bed and two without) were deployed in the vicinity of a wind turbine. Acoustic telemetry was used to monitor the fine-scale movement of 64 Atlantic cod (Gadus morhua). The monitoring ran from July 2021 to January 2023. Detailed information on behaviour, area utilization and attraction to the structures was determined. Results showed strong attraction (high site fidelity and residency) to the artificial reef, with no significant difference between the two tested types of reefs, and only a few individuals staying over winter. Cod spent a large proportion of their time hiding in the artificial reefs, suggesting that adding pipes for shelter has a beneficiary effect.
Collapse
Affiliation(s)
| | - I. van der Knaap
- van Hall-Larenstein University of Applied Sciences, Leeuwarden, The Netherlands
| | | | - J. Reubens
- Flanders Marine Institute (VLIZ), Oostende, Belgium
| | - H. V. Winter
- Wageningen Marine Research, Yerseke, The Netherlands
- Aquaculture & Fisheries Group, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
2
|
Nickel AK, Campana SE, Ólafsdóttir GÁ. Temperature and body size affect movement of juvenile Atlantic cod (Gadus morhua) and saithe (Pollachius virens) at nearshore nurseries. JOURNAL OF FISH BIOLOGY 2024. [PMID: 38924061 DOI: 10.1111/jfb.15850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/22/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
Seasonal migrations of marine fish between shallow summer feeding habitats and deep overwintering grounds are driven by fluctuations in the biotic and abiotic environment as well as by changes in the internal state. Ontogenetic shifts in physiology and metabolism affect the response to environmental drivers and may lead to changes in migration timing and propensity. In this study, we investigated the effect of temperature and body size on migration timing and depth distribution in acoustically tagged Atlantic cod, Gadus morhua, and saithe, Pollachius virens, during the period of seasonal migration from shallow summer habitats. The results from our study revealed a wide range of horizontal and vertical distribution of age 1 and 2 G. morhua within the fjord. Larger G. morhua inhabited deeper, cooler waters than smaller juveniles, likely reflecting size-dependent thermal preferences and predation pressure. Conversely, juvenile P. virens occupied primarily shallow waters close to land. The variation in depth distribution of G. morhua was mainly explained by body size and not, against our predictions, by water temperature. Conversely, the dispersal from the in-fjord habitats occurred when water temperatures were high, suggesting that seasonal temperature fluctuations can trigger the migration timing of P. virens and larger G. morhua from summer habitats. Partial migration of small juvenile G. morhua from in-fjord foraging grounds, likely influenced by individual body condition, suggested seasonal migration as a flexible strategy that individuals may use to reduce predation and energetic expenditure. Predation mortality rates of tagged juveniles were higher than previously suggested and are the first robust predation mortality rates for juvenile G. morhua and P. virens estimated based on acoustic transmitters with acidity sensors. The results have relevance for climate-informed marine spatial planning as under the scenario of increasing ocean temperatures, increasing summer temperatures may reduce the juveniles' resource utilization in the shallow summer nurseries, resulting in lower growth rates, increased predation pressure, and lower chances of juvenile winter survival.
Collapse
Affiliation(s)
- Anja K Nickel
- University of Iceland, Research Centre of the Westfjords, Bolungarvík, Iceland
| | - Steven E Campana
- University of Iceland, Faculty of Life and Environmental Sciences, Reykjavík, Iceland
| | | |
Collapse
|
3
|
Norman H, Munson A, Cortese D, Koeck B, Killen SS. The interplay between sleep and ecophysiology, behaviour and responses to environmental change in fish. J Exp Biol 2024; 227:jeb247138. [PMID: 38860399 PMCID: PMC11213526 DOI: 10.1242/jeb.247138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Evidence of behavioural sleep has been observed in every animal species studied to date, but current knowledge of the behaviour, neurophysiology and ecophysiology associated with sleep is concentrated on mammals and birds. Fish are a hugely diverse group that can offer novel insights into a variety of sleep-related behaviours across environments, but the ecophysiological relevance of sleep in fish has been largely overlooked. Here, we systematically reviewed the literature to assess the current breadth of knowledge on fish sleep, and surveyed the diverse physiological effects and behaviours associated with sleep. We also discuss possible ways in which unstudied external factors may alter sleep behaviours. For example, predation risk may alter sleep patterns, as has been shown in mammalian, avian and reptilian species. Other environmental factors - such as water temperature and oxygen availability - have the potential to alter sleep patterns in fish differently than for terrestrial endotherms. Understanding the ecological influences on sleep in fish is vital, as sleep deprivation has the potential to affect waking behaviour and fitness owing to cognitive and physiological impairments, possibly affecting ecological phenomena and sensitivity to environmental stressors in ways that have not been considered.
Collapse
Affiliation(s)
- Helena Norman
- School of Biodiversity, One Health, and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Amelia Munson
- School of Biodiversity, One Health, and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Daphne Cortese
- School of Biodiversity, One Health, and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Barbara Koeck
- School of Biodiversity, One Health, and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Shaun S. Killen
- School of Biodiversity, One Health, and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
4
|
McQueen K, Sivle LD, Forland TN, Meager JJ, Skjæraasen JE, Olsen EM, Karlsen Ø, Kvadsheim PH, de Jong K. Continuous sound from a marine vibrator causes behavioural responses of free-ranging, spawning Atlantic cod (Gadus morhua). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123322. [PMID: 38211875 DOI: 10.1016/j.envpol.2024.123322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/18/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
Marine vibrators are a new technology being developed for seismic surveys. These devices can transmit continuous instead of impulsive sound and operate over a narrower frequency band and at lower peak pressure than airguns, which is assumed to reduce their environmental impacts. We exposed spawning Atlantic cod (Gadus morhua) to sound produced by a prototype, but full-scale, marine vibrator, and monitored behavioural responses of tagged cod using acoustic telemetry. Fish were exposed to 10 × 3 h continuous sound treatments over a 4-day period using a randomised-block design. Sound exposure levels were comparable to airgun exposure experiments conducted previously with the same set-up ranging from ∼115 to 145 dB re 1 μPa2s during exposure. Telemetry data were used to assess 1) whether marine vibrator exposure displaced cod from the spawning ground, through estimation of residence and survival probabilities, and 2) fine-scale behavioural responses within the test site, namely swimming depth, activity levels, displacement, and home ranges. Forty-two spawning cod were tagged prior to the exposure, with 22 present during the exposure. All 22 tags were equipped with pressure sensors and ten of these additionally with accelerometers. While no premature departure from the spawning site was observed, cod reacted to the exposure by decreasing their activity levels (by up to 50%, SE = 7%) and increasing their swimming depth (by up to 2.5 m, SE = 1.0 m) within the test site during the exposure period. These behavioural responses varied by sex and time of day. Cod reactions to a marine vibrator may be more pronounced than reactions to airguns, possibly because continuous sound is more disturbing to fish than intermittent sound at the same exposure levels. However, given sample size limitations of the present study, further studies with continuous sound are necessary to fully understand its impact and biological significance.
Collapse
Affiliation(s)
- Kate McQueen
- Institute of Marine Research, P.O. Box 1870 Nordnes, 5817, Bergen, Norway.
| | | | | | - Justin J Meager
- Natural Resources, GHD, 3 South Sea Islander Way, Maroochydore, Qld, 4558, Australia
| | | | - Esben Moland Olsen
- Institute of Marine Research, P.O. Box 1870 Nordnes, 5817, Bergen, Norway
| | - Ørjan Karlsen
- Institute of Marine Research, P.O. Box 1870 Nordnes, 5817, Bergen, Norway
| | - Petter H Kvadsheim
- Norwegian Defence Research Establishment (FFI), PO Box 115, Horten, 3191, Norway
| | - Karen de Jong
- Institute of Marine Research, P.O. Box 1870 Nordnes, 5817, Bergen, Norway
| |
Collapse
|
5
|
Hubert J, Demuynck JM, Remmelzwaal MR, Muñiz C, Debusschere E, Berges B, Slabbekoorn H. An experimental sound exposure study at sea: No spatial deterrence of free-ranging pelagic fisha). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2024; 155:1151-1161. [PMID: 38341743 DOI: 10.1121/10.0024720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/18/2024] [Indexed: 02/13/2024]
Abstract
Acoustic deterrent devices are used to guide aquatic animals from danger or toward migration paths. At sea, moderate sounds can potentially be used to deter fish to prevent injury or death due to acoustic overexposure. In sound exposure studies, acoustic features can be compared to improve deterrence efficacy. In this study, we played 200-1600 Hz pulse trains from a drifting vessel and investigated changes in pelagic fish abundance and behavior by utilizing echosounders and hydrophones mounted to a transect of bottom-moored frames. We monitored fish presence and tracked individual fish. This revealed no changes in fish abundance or behavior, including swimming speed and direction of individuals, in response to the sound exposure. We did find significant changes in swimming depth of individually tracked fish, but this could not be linked to the sound exposures. Overall, the results clearly show that pelagic fish did not flee from the current sound exposures, and we found no clear changes in behavior due to the sound exposure. We cannot rule out that different sounds at higher levels elicit a deterrence response; however, it may be that pelagic fish are just more likely to respond to sound with (short-lasting) changes in school formation.
Collapse
Affiliation(s)
- Jeroen Hubert
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | | | | | - Carlota Muñiz
- Marine Observation Centre, Flanders Marine Institute, Oostende, Belgium
| | | | - Benoit Berges
- Wageningen Marine Research, Wageningen University and Research, IJmuiden, The Netherlands
| | - Hans Slabbekoorn
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| |
Collapse
|
6
|
Pieniazek RH, Beach RK, Dycha GM, Mickle MF, Higgs DM. Navigating noisy waters: A review of field studies examining anthropogenic noise effects on wild fisha). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:2828-2842. [PMID: 37930177 DOI: 10.1121/10.0022254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023]
Abstract
Anthropogenic noise is globally increasing in aquatic ecosystems, and there is concern that it may have adverse consequences in many fish species, yet the effects of noise in field settings are not well understood. Concern over the applicability of laboratory-conducted bioacoustic experiments has led to a call for, and a recent increase in, field-based studies, but the results have been mixed, perhaps due to the wide variety of techniques used and species studied. Previous reviews have explored the behavioral, physiological, and/or anatomical costs of fish exposed to anthropogenic noise, but few, if any, have focused on the field techniques and sound sources themselves. This review, therefore, aims to summarize, quantify, and interpret field-based literature, highlight novel approaches, and provide recommendations for future research into the effects of noise on fish.
Collapse
Affiliation(s)
- R H Pieniazek
- Department of Integrative Biology, University of Windsor, Windsor, Ontario, Canada
| | - R K Beach
- Department of Integrative Biology, University of Windsor, Windsor, Ontario, Canada
| | - G M Dycha
- Department of Integrative Biology, University of Windsor, Windsor, Ontario, Canada
| | - M F Mickle
- Department of Integrative Biology, University of Windsor, Windsor, Ontario, Canada
| | - D M Higgs
- Department of Integrative Biology, University of Windsor, Windsor, Ontario, Canada
| |
Collapse
|
7
|
Popper AN, Calfee RD. Sound and sturgeon: Bioacoustics and anthropogenic sounda). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:2021-2035. [PMID: 37782124 DOI: 10.1121/10.0021166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/11/2023] [Indexed: 10/03/2023]
Abstract
Sturgeons are basal bony fishes, most species of which are considered threatened and/or endangered. Like all fishes, sturgeons use hearing to learn about their environment and perhaps communicate with conspecifics, as in mating. Thus, anything that impacts the ability of sturgeon to hear biologically important sounds could impact fitness and survival of individuals and populations. There is growing concern that the sounds produced by human activities (anthropogenic sound), such as from shipping, commercial barge navigation on rivers, offshore windfarms, and oil and gas exploration, could impact hearing by aquatic organisms. Thus, it is critical to understand how sturgeon hear, what they hear, and how they use sound. Such data are needed to set regulatory criteria for anthropogenic sound to protect these animals. However, very little is known about sturgeon behavioral responses to sound and their use of sound. To help understand the issues related to sturgeon and anthropogenic sound, this review first examines what is known about sturgeon bioacoustics. It then considers the potential effects of anthropogenic sound on sturgeon and, finally identifies areas of research that could substantially improve knowledge of sturgeon bioacoustics and effects of anthropogenic sound. Filling these gaps will help regulators establish appropriate protection for sturgeon.
Collapse
Affiliation(s)
- Arthur N Popper
- Department of Biology, University of Maryland, College Park, Maryland 20742, USA
| | - Robin D Calfee
- United States Geological Survey, Columbia Environmental Research Center, 4200 New Haven Road, Columbia, Missouri 65201, USA
| |
Collapse
|
8
|
Lennox RJ, Eldøy SH, Dahlmo LS, Matley JK, Vollset KW. Acoustic accelerometer transmitters and their growing relevance to aquatic science. MOVEMENT ECOLOGY 2023; 11:45. [PMID: 37501158 PMCID: PMC10375738 DOI: 10.1186/s40462-023-00403-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023]
Abstract
There has recently been great interest in the use of accelerometers onboard electronic transmitters to characterise various aspects of the ecology of wild animals. We review use cases and outline how these tools can provide opportunities for studying activity and survival, exercise physiology of wild animals, the response to stressors, energy landscapes and conservation planning tools, and the means with which to identify behaviours remotely from transmitted data. Accelerometer transmitters typically send data summaries to receivers at fixed intervals after filtering out static acceleration and calculating root-mean square error or overall dynamic body action of 2- or 3-axis acceleration values (often at 5-12.5 Hz) from dynamic acceleration onboard the tag. Despite the popularity of these transmitters among aquatic ecologists, we note that there is wide variation in the sampling frequencies and windows used among studies that will potentially affect the ability to make comparisons in the future. Accelerometer transmitters will likely become increasingly popular tools for studying finer scale details about cryptic species that are difficult to recapture and hence not suitable for studies using data loggers. We anticipate that there will continue to be opportunities to adopt methods used for analysing data from loggers to datasets generated from acceleration transmitters, to generate new knowledge about the ecology of aquatic animals.
Collapse
Affiliation(s)
- Robert J Lennox
- Norwegian Institute for Nature Research, Trondheim, Høgskoleringen 9, 7034, Norway.
- NORCE Norwegian Research Centre Laboratory for Freshwater Ecology and Inland Fisheries, Nygaardsgaten 112, 5008, Bergen, Norway.
- Ocean Tracking Network, Dalhousie University, 1335 Oxford St, B3H 3Z1, Halifax, Canada.
| | - Sindre H Eldøy
- NTNU Vitenskapsmuseet, Erling Skakkes gate 47B, 7012, Trondheim, Norway
| | - Lotte S Dahlmo
- NORCE Norwegian Research Centre Laboratory for Freshwater Ecology and Inland Fisheries, Nygaardsgaten 112, 5008, Bergen, Norway
| | - Jordan K Matley
- College of Science and Engineering, Flinders University, Adelaide, SA, 5042, Australia
| | - Knut Wiik Vollset
- NORCE Norwegian Research Centre Laboratory for Freshwater Ecology and Inland Fisheries, Nygaardsgaten 112, 5008, Bergen, Norway
| |
Collapse
|
9
|
Berkhout BW, Budria A, Thieltges DW, Slabbekoorn H. Anthropogenic noise pollution and wildlife diseases. Trends Parasitol 2023; 39:181-190. [PMID: 36658057 DOI: 10.1016/j.pt.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 01/20/2023]
Abstract
There is a global rise in anthropogenic noise and a growing awareness of its negative effects on wildlife, but to date the consequences for wildlife diseases have received little attention. In this paper, we discuss how anthropogenic noise can affect the occurrence and severity of infectious wildlife diseases. We argue that there is potential for noise impacts at three main stages of pathogen transmission and disease development: (i) the probability of preinfection exposure, (ii) infection upon exposure, and (iii) severity of postinfection consequences. We identify potential repercussions of noise pollution effects for wildlife populations and call for intensifying research efforts. We provide an overview of knowledge gaps and outline avenues for future studies into noise impacts on wildlife diseases.
Collapse
Affiliation(s)
| | - Alexandre Budria
- Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands; Office Français de la Biodiversité, Direction générale déléguée 'Police, Connaissance, Expertise', rue du Bouchet, 45370 DRY, France
| | - David W Thieltges
- Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands; Groningen Institute for Evolutionary Life-Sciences, GELIFES, Nijenborgh 7, 9747 AG Groningen, University of Groningen, The Netherlands
| | | |
Collapse
|
10
|
Employing a novel hybrid of GA-ANFIS model to predict distribution of whiting fish larvae and juveniles from tropical estuaries in the context of climate change. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Alós J, Aarestrup K, Abecasis D, Afonso P, Alonso-Fernandez A, Aspillaga E, Barcelo-Serra M, Bolland J, Cabanellas-Reboredo M, Lennox R, McGill R, Özgül A, Reubens J, Villegas-Ríos D. Toward a decade of ocean science for sustainable development through acoustic animal tracking. GLOBAL CHANGE BIOLOGY 2022; 28:5630-5653. [PMID: 35929978 PMCID: PMC9541420 DOI: 10.1111/gcb.16343] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/10/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
The ocean is a key component of the Earth's dynamics, providing a great variety of ecosystem services to humans. Yet, human activities are globally changing its structure and major components, including marine biodiversity. In this context, the United Nations has proclaimed a Decade of Ocean Science for Sustainable Development to tackle the scientific challenges necessary for a sustainable use of the ocean by means of the Sustainable Development Goal 14 (SDG14). Here, we review how Acoustic animal Tracking, a widely distributed methodology of tracking marine biodiversity with electronic devices, can provide a roadmap for implementing the major Actions to achieve the SDG14. We show that acoustic tracking can be used to reduce and monitor the effects of marine pollution including noise, light, and plastic pollution. Acoustic tracking can be effectively used to monitor the responses of marine biodiversity to human-made infrastructures and habitat restoration, as well as to determine the effects of hypoxia, ocean warming, and acidification. Acoustic tracking has been historically used to inform fisheries management, the design of marine protected areas, and the detection of essential habitats, rendering this technique particularly attractive to achieve the sustainable fishing and spatial protection target goals of the SDG14. Finally, acoustic tracking can contribute to end illegal, unreported, and unregulated fishing by providing tools to monitor marine biodiversity against poachers and promote the development of Small Islands Developing States and developing countries. To fully benefit from acoustic tracking supporting the SDG14 Targets, trans-boundary collaborative efforts through tracking networks are required to promote ocean information sharing and ocean literacy. We therefore propose acoustic tracking and tracking networks as relevant contributors to tackle the scientific challenges that are necessary for a sustainable use of the ocean promoted by the United Nations.
Collapse
Affiliation(s)
- Josep Alós
- Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC-UIB), Esporles, Spain
| | - Kim Aarestrup
- Section for Freshwater Fisheries and Ecology, National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - David Abecasis
- Center of Marine Sciences, Universidade do Algarve (CCMAR), Faro, Portugal
| | - Pedro Afonso
- Institute of Marine Research (IMAR/Okeanos), University of the Azores, Horta, Portugal
| | | | - Eneko Aspillaga
- Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC-UIB), Esporles, Spain
| | | | - Jonathan Bolland
- Hull International Fisheries Institute, University of Hull, Hull, UK
| | | | - Robert Lennox
- NORCE Norwegian Research Center AS, Bergen, Norway
- Norwegian Institute for Nature Research, Trondheim, Norway
| | | | - Aytaç Özgül
- Ege University, Faculty of Fisheries, Izmir, Turkey
| | | | - David Villegas-Ríos
- Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC-UIB), Esporles, Spain
- Instituto de Investigaciones Marinas (IIM), CSIC, Vigo, Spain
| |
Collapse
|
12
|
van der Knaap I, Ashe E, Hannay D, Bergman AG, Nielsen KA, Lo CF, Williams R. Behavioural responses of wild Pacific salmon and herring to boat noise. MARINE POLLUTION BULLETIN 2022; 174:113257. [PMID: 34933218 DOI: 10.1016/j.marpolbul.2021.113257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
There is growing concern about impacts of ship and small boat noise on marine wildlife. Few studies have quantified impacts of anthropogenic noise on ecologically, economically, and culturally important fish. We conducted open net pen experiments to measure Pacific herring (Clupea pallasii) and juvenile salmon (pink, Oncorhynchus gorbuscha, and chum, Oncorhynchus keta) behavioural response to noise generated by three boats travelling at different speeds. Dose-response curves for herring and salmon estimated 50% probability of eliciting a response at broadband received levels of 123 and 140 dB (re 1 μPa), respectively. Composite responses (yes/no behaviour change) were evaluated. Both genera spent more time exhibiting behaviours consistent with anti-predator response during boat passings. Repeated elicitation of vigilance or anti-predatory responses could result in increased energy expenditure or decreased foraging. These experiments form an important step toward assessing population-level consequences of noise, and its ecological costs and benefits to predators and prey.
Collapse
Affiliation(s)
- Inge van der Knaap
- Leiden University, Institute of Biology, Sylvius, Sylviusweg 72, 2333 BE Leiden, Netherlands
| | - Erin Ashe
- Oceans Initiative, 117 E Louisa St #135, Seattle, WA 98102, USA.
| | - Dave Hannay
- JASCO Applied Sciences, 2305-4464 Markham Street, Victoria, BC V8Z 7X8, Canada.
| | | | | | - Catherine F Lo
- Oceans Initiative, 117 E Louisa St #135, Seattle, WA 98102, USA.
| | - Rob Williams
- Oceans Initiative, 117 E Louisa St #135, Seattle, WA 98102, USA.
| |
Collapse
|
13
|
Kok ACM, Bruil L, Berges B, Sakinan S, Debusschere E, Reubens J, de Haan D, Norro A, Slabbekoorn H. An echosounder view on the potential effects of impulsive noise pollution on pelagic fish around windfarms in the North Sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118063. [PMID: 34482245 DOI: 10.1016/j.envpol.2021.118063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Anthropogenic noise in the oceans is disturbing marine life. Among other groups, pelagic fish are likely to be affected by sound from human activities, but so far have received relatively little attention. Offshore wind farms have become numerous and will become even more abundant in the next decades. Wind farms can be interesting to pelagic fish due to food abundance or fisheries restrictions. At the same time, construction of wind farms involves high levels of anthropogenic noise, likely disturbing and/or deterring pelagic fish. Here, we investigated whether bottom-moored echosounders are a suitable tool for studying the effects of impulsive - intermittent, high-intensity - anthropogenic noise on pelagic fish around wind farms and we explored the possible nature of their responses. Three different wind farms along the Dutch and Belgian coast were examined, one with exposure to the passing by of an experimental seismic survey with a full-scale airgun array, one with pile driving activity in an adjacent wind farm construction site and one control site without exposure. Two bottom-moored echosounders were placed in each wind farm and recorded fish presence and behaviour before, during and after the exposures. The echosounders were successful in detecting variation in the number of fish schools and their behaviour. During the seismic survey exposure there were significantly fewer, but more cohesive, schools than before, whereas during pile driving fish swam shallower with more cohesive schools. However, the types and magnitudes of response patterns were also observed at the control site with no impulsive sound exposure. We therefore stress the need for thorough replication beyond single case studies, before we can conclude that impulsive sounds, from either seismic surveys or pile driving, are a disturbing factor for pelagic fish in otherwise attractive habitat around wind farms.
Collapse
Affiliation(s)
| | - Lisa Bruil
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Benoit Berges
- Wageningen Marine Research, Wageningen University & Research, IJmuiden, the Netherlands
| | - Serdar Sakinan
- Wageningen Marine Research, Wageningen University & Research, IJmuiden, the Netherlands
| | | | | | - Dick de Haan
- Wageningen Marine Research, Wageningen University & Research, IJmuiden, the Netherlands
| | - Alain Norro
- Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Hans Slabbekoorn
- Institute of Biology, Leiden University, Leiden, the Netherlands
| |
Collapse
|
14
|
Rogers P, Debusschere E, Haan DD, Martin B, Slabbekoorn H. North Sea soundscapes from a fish perspective: Directional patterns in particle motion and masking potential from anthropogenic noise. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 150:2174. [PMID: 34598635 DOI: 10.1121/10.0006412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
The aquatic world of animals is an acoustic world as sound is the most prominent sensory capacity to extract information about the environment for many aquatic species. Fish can hear particle motion, and a swim bladder potentially adds the additional capacity to sense sound pressure. Combining these capacities allows them to sense direction, distance, spectral content, and detailed temporal patterns. Both sound pressure and particle motion were recorded in a shallow part of the North Sea before and during exposure to a full-scale airgun array from an experimental seismic survey. Distinct amplitude fluctuations and directional patterns in the ambient noise were found to be fluctuating in phase with the tidal cycles and coming from distinct directions. It was speculated that the patterns may be determined by distant sources associated with large rivers and nearby beaches. Sounds of the experimental seismic survey were above the ambient conditions for particle acceleration up to 10 km from the source, at least as detectable for the measurement device, and up to 31 km for the sound pressure. These results and discussion provide a fresh perspective on the auditory world of fishes and a shift in the understanding about potential ranges over which they may have access to biologically relevant cues and be masked by anthropogenic noise.
Collapse
Affiliation(s)
- Peter Rogers
- Georgia Institute of Technology, North Avenue, Atlanta, Georgia 30332, USA
| | | | - Dick de Haan
- Wageningen Marine Research, Haringkade 1, IJmuiden, 1976 CP, The Netherlands
| | - Bruce Martin
- JASCO Applied Sciences, Dartmouth, Nova Scotia, Canada
| | - Hans Slabbekoorn
- Institute of Biology, Leiden University, Sylviusweg 72, Leiden, 2333BE, The Netherlands
| |
Collapse
|
15
|
Mortensen LO, Chudzinska ME, Slabbekoorn H, Thomsen F. Agent‐based models to investigate sound impact on marine animals: bridging the gap between effects on individual behaviour and population level consequences. OIKOS 2021. [DOI: 10.1111/oik.08078] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | | | - Hans Slabbekoorn
- Inst. of Biology Leiden, Leiden Univ. Leiden Zuid‐Holland the Netherlands
| | | |
Collapse
|