1
|
Leclercq J, Torres-Paz J, Policarpo M, Agnès F, Rétaux S. Evolution of the regulation of developmental gene expression in blind Mexican cavefish. Development 2024; 151:dev202610. [PMID: 39007346 DOI: 10.1242/dev.202610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
Developmental evolution and diversification of morphology can arise through changes in the regulation of gene expression or protein-coding sequence. To unravel mechanisms underlying early developmental evolution in cavefish of the species Astyanax mexicanus, we compared transcriptomes of surface-dwelling and blind cave-adapted morphs at the end of gastrulation. Twenty percent of the transcriptome was differentially expressed. Allelic expression ratios in cave X surface hybrids showed that cis-regulatory changes are the quasi-exclusive contributors to inter-morph variations in gene expression. Among a list of 108 genes with change at the cis-regulatory level, we explored the control of expression of rx3, which is a master eye gene. We discovered that cellular rx3 levels are cis-regulated in a cell-autonomous manner, whereas rx3 domain size depends on non-autonomous Wnt and Bmp signalling. These results highlight how uncoupled mechanisms and regulatory modules control developmental gene expression and shape morphological changes. Finally, a transcriptome-wide search for fixed coding mutations and differential exon use suggested that variations in coding sequence have a minor contribution. Thus, during early embryogenesis, changes in gene expression regulation are the main drivers of cavefish developmental evolution.
Collapse
Affiliation(s)
- Julien Leclercq
- Paris-Saclay Institute of Neuroscience, CNRS and University Paris-Saclay, 91400 Saclay, France
| | - Jorge Torres-Paz
- Paris-Saclay Institute of Neuroscience, CNRS and University Paris-Saclay, 91400 Saclay, France
| | - Maxime Policarpo
- Paris-Saclay Institute of Neuroscience, CNRS and University Paris-Saclay, 91400 Saclay, France
| | - François Agnès
- Paris-Saclay Institute of Neuroscience, CNRS and University Paris-Saclay, 91400 Saclay, France
| | - Sylvie Rétaux
- Paris-Saclay Institute of Neuroscience, CNRS and University Paris-Saclay, 91400 Saclay, France
| |
Collapse
|
2
|
Vidal MR, Lasmar LF, Nadai PCF, Oliveira C, Silva DMZA, Foresti F. Selecting reference genes for RT-qPCR studies involving the presence of B chromosomes in Psalidodon (Characiformes, Characidae). Mol Biol Rep 2024; 51:977. [PMID: 39259380 DOI: 10.1007/s11033-024-09911-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND B chromosomes are extra non-essential elements present in several eukaryotes. Unlike A chromosomes which are essential and present in all individuals of a species, B chromosomes are not necessary for normal functioning of an organism. Formerly regarded as genetically inactive, B chromosomes have been discovered to not only express their own genes, but also to exert influence on gene expression in A chromosomes. Recent studies have shown that, in some Psalidodon (Characiformes, Characidae) species, B chromosomes might be associated with phenotypic effects, such as changes in the reproductive cycle and gene expression. METHODS AND RESULTS In this study, we aimed to establish stable reference genes for RT-qPCR experiments conducted on gonads of three fish species within Psalidodon genus, both in the presence and absence of B chromosomes. The stability of five selected reference genes was assessed using NormFinder, geNorm, BestKeeper, and RefFinder algorithms. We determined ppiaa and pgk1 as the most stable genes in P. fasciatus, whereas ppiaa and hmbsa showed the highest stability in P. bockmanni. For P. paranae, tbp and hprt1 were the most stable genes in females, and ppiaa and hprt1 were the most stable in males. CONCLUSIONS We determined the most stable reference genes in gonads of three Psalidodon species considering the presence of B chromosomes. This is the first report of reference gene stability in the genus and provides valuable tools to better understand the effects of B chromosomes at gene expression level.
Collapse
Affiliation(s)
- Mateus Rossetto Vidal
- Laboratory of Biology and Genetics of Fishes, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, 18618-970, Brazil.
| | - Lucas F Lasmar
- Laboratory of Biology and Genetics of Fishes, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, 18618-970, Brazil
| | - Pamela C F Nadai
- Laboratory of Biology and Genetics of Fishes, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, 18618-970, Brazil
| | - Claudio Oliveira
- Laboratory of Biology and Genetics of Fishes, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, 18618-970, Brazil
| | - Duilio M Z A Silva
- Laboratory of Biology and Genetics of Fishes, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, 18618-970, Brazil
| | - Fausto Foresti
- Laboratory of Biology and Genetics of Fishes, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu, SP, 18618-970, Brazil
| |
Collapse
|
3
|
Warren WC, Rice ES, X M, Roback E, Keene A, Martin F, Ogeh D, Haggerty L, Carroll RA, McGaugh S, Rohner N. Astyanax mexicanus surface and cavefish chromosome-scale assemblies for trait variation discovery. G3 (BETHESDA, MD.) 2024; 14:jkae103. [PMID: 38771704 PMCID: PMC11304944 DOI: 10.1093/g3journal/jkae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/23/2024]
Abstract
The ability of organisms to adapt to sudden extreme environmental changes produces some of the most drastic examples of rapid phenotypic evolution. The Mexican Tetra, Astyanax mexicanus, is abundant in the surface waters of northeastern Mexico, but repeated colonizations of cave environments have resulted in the independent evolution of troglomorphic phenotypes in several populations. Here, we present three chromosome-scale assemblies of this species, for one surface and two cave populations, enabling the first whole-genome comparisons between independently evolved cave populations to evaluate the genetic basis for the evolution of adaptation to the cave environment. Our assemblies represent the highest quality of sequence completeness with predicted protein-coding and noncoding gene metrics far surpassing prior resources and, to our knowledge, all long-read assembled teleost genomes, including zebrafish. Whole-genome synteny alignments show highly conserved gene order among cave forms in contrast to a higher number of chromosomal rearrangements when compared with other phylogenetically close or distant teleost species. By phylogenetically assessing gene orthology across distant branches of amniotes, we discover gene orthogroups unique to A. mexicanus. When compared with a representative surface fish genome, we find a rich amount of structural sequence diversity, defined here as the number and size of insertions and deletions as well as expanding and contracting repeats across cave forms. These new more complete genomic resources ensure higher trait resolution for comparative, functional, developmental, and genetic studies of drastic trait differences within a species.
Collapse
Affiliation(s)
- Wesley C Warren
- Department of Animal Sciences, University of Missouri, Bond Life Sciences Center, Columbia, MO 65211, USA
- Department of Surgery, University of Missouri, Bond Life Sciences Center, Columbia, MO 65211, USA
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
| | - Edward S Rice
- Department of Animal Sciences, University of Missouri, Bond Life Sciences Center, Columbia, MO 65211, USA
- Department of Surgery, University of Missouri, Bond Life Sciences Center, Columbia, MO 65211, USA
| | - Maggs X
- Department of Animal Sciences, University of Missouri, Bond Life Sciences Center, Columbia, MO 65211, USA
- Department of Surgery, University of Missouri, Bond Life Sciences Center, Columbia, MO 65211, USA
| | - Emma Roback
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN 55108, USA
| | - Alex Keene
- Department of Biology, Texas A&M University, College Station, TX 77843, USA
| | - Fergal Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Denye Ogeh
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Leanne Haggerty
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Rachel A Carroll
- Department of Animal Sciences, University of Missouri, Bond Life Sciences Center, Columbia, MO 65211, USA
- Department of Surgery, University of Missouri, Bond Life Sciences Center, Columbia, MO 65211, USA
| | - Suzanne McGaugh
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN 55108, USA
| | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Department of Molecular and Integrative Physiology, KU Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
4
|
Wang T, Gong G, Li Z, Niu JS, Du WX, Wang ZW, Wang Y, Zhou L, Zhang XJ, Lian ZQ, Mei J, Gui JF, Li XY. Genomic Anatomy of Homozygous XX Females and YY Males Reveals Early Evolutionary Trajectory of Sex-determining Gene and Sex Chromosomes in Silurus Fishes. Mol Biol Evol 2024; 41:msae169. [PMID: 39136558 DOI: 10.1093/molbev/msae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/04/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Sex chromosomes display remarkable diversity and variability among vertebrates. Compared with research on the X/Y and Z/W chromosomes, which have long evolutionary histories in mammals and birds, studies on the sex chromosomes at early evolutionary stages are limited. Here, we precisely assembled the genomes of homozygous XX female and YY male Lanzhou catfish (Silurus lanzhouensis) derived from an artificial gynogenetic family and a self-fertilized family, respectively. Chromosome 24 (Chr24) was identified as the sex chromosome based on resequencing data. Comparative analysis of the X and Y chromosomes showed an approximate 320 kb Y-specific region with a Y-specific duplicate of anti-Mullerian hormone type II receptor (amhr2y), which is consistent with findings in 2 other Silurus species but on different chromosomes (Chr24 of Silurus meridionalis and Chr5 of Silurus asotus). Deficiency of amhr2y resulted in male-to-female sex reversal, indicating that amhr2y plays a male-determining role in S. lanzhouensis. Phylogenetic analysis and comparative genomics revealed that the common sex-determining gene amhr2y was initially translocated to Chr24 of the Silurus ancestor along with the expansion of transposable elements. Chr24 was maintained as the sex chromosome in S. meridionalis and S. lanzhouensis, whereas a sex-determining region transition triggered sex chromosome turnover from Chr24 to Chr5 in S. asotus. Additionally, gene duplication, translocation, and degeneration were observed in the Y-specific regions of Silurus species. These findings present a clear case for the early evolutionary trajectory of sex chromosomes, including sex-determining gene origin, repeat sequence expansion, gene gathering and degeneration in sex-determining region, and sex chromosome turnover.
Collapse
Affiliation(s)
- Tao Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gaorui Gong
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun-Sheng Niu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wen-Xuan Du
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong-Wei Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Zhou
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Juan Zhang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zong-Qiang Lian
- Department of Fish Genetic Breeding, Ningxia Fisheries Research Institute, Yinchuan 750001, China
| | - Jie Mei
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian-Fang Gui
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi-Yin Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Ferree PM, Blagojević J, Houben A, Martins C, Trifonov VA, Vujošević M. What is a B chromosome? Early definitions revisited. G3 (BETHESDA, MD.) 2024; 14:jkae068. [PMID: 38626314 DOI: 10.1093/g3journal/jkae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/19/2024] [Indexed: 04/18/2024]
Abstract
Since the discovery of B chromosomes, multiple different definitions of these selfish genetic elements have been put forth. We reconsidered early definitions in light of recently published studies. While there are many characteristics that vary among different B chromosomes, such as their evolutionary origins, size, segregation behaviors, gene content, and function, there is one defining trait of all B chromosomes: they are nonessential for the organism. The points raised here may be useful for framing future B chromosome studies and help guide the categorization of new chromosomal elements that are uncovered in genomic studies.
Collapse
Affiliation(s)
- Patrick M Ferree
- Department of Natural Sciences, Pitzer College, Scripps College, Claremont, CA 91711, USA
| | - Jelena Blagojević
- Institute for Biological Research "Siniša Stanković" - National Institute for the Republic of Serbia, University of Belgrade, Belgrade 11060, Serbia
| | - Andreas Houben
- Department of Cytogenetics and Genome Analysis, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland 06466, Germany
| | - Cesar Martins
- Institute of Bioscience at Botucatu, São Paulo State University (UNESP), Botucatu, SP 18618-689, Brazil
| | - Vladimir A Trifonov
- Research Institute for Limnology, University of Innsbruck, Mondsee A-5310, Austria
| | - Mladen Vujošević
- Institute for Biological Research "Siniša Stanković" - National Institute for the Republic of Serbia, University of Belgrade, Belgrade 11060, Serbia
| |
Collapse
|
6
|
Oliveira JIN, Cabral-de-Mello DC, Valente GT, Martins C. Transcribing the enigma: the B chromosome as a territory of uncharted RNAs. Genetics 2024; 227:iyae026. [PMID: 38513121 DOI: 10.1093/genetics/iyae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/10/2024] [Indexed: 03/23/2024] Open
Abstract
B chromosomes are supernumerary elements found in several groups of eukaryotes, including fungi, plants, and animals. Typically, these chromosomes either originate from their hosts through errors in meiosis or interspecifically through horizontal transfer. While many B chromosomes are primarily heterochromatic and possess a low number of coding genes, these additional elements are still capable of transcribing sequences and exerting influence on the expression of host genes. How B chromosomes escape elimination and which impacts can be promoted in the cell always intrigued the cytogeneticists. In pursuit of understanding the behavior and functional impacts of these extra elements, cytogenetic studies meet the advances of molecular biology, incorporating various techniques into investigating B chromosomes from a functional perspective. In this review, we present a timeline of studies investigating B chromosomes and RNAs, highlighting the advances and key findings throughout their history. Additionally, we identified which RNA classes are reported in the B chromosomes and emphasized the necessity for further investigation into new perspectives on the B chromosome functions. In this context, we present a phylogenetic tree that illustrates which branches either report B chromosome presence or have functional RNA studies related to B chromosomes. We propose investigating other unexplored RNA classes and conducting functional analysis in conjunction with cytogenetic studies to enhance our understanding of the B chromosome from an RNA perspective.
Collapse
Affiliation(s)
| | - Diogo C Cabral-de-Mello
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Rio Claro 13506-900, Brazil
| | - Guilherme T Valente
- Applied Biotechnology Laboratory, Clinical Hospital of Botucatu Medical School, Botucatu 18618-687, Brazil
| | - Cesar Martins
- Department of Structural and Functional Biology, Institute of Biosciences at Botucatu, São Paulo State University (UNESP), Botucatu 18618-689, Brazil
| |
Collapse
|
7
|
Lisachov A, Dedukh D, Simanovsky S, Panthum T, Singchat W, Srikulnath K. Spaghetti Connections: Synaptonemal Complexes as a Tool to Explore Chromosome Structure, Evolution, and Meiotic Behavior in Fish. Cytogenet Genome Res 2024; 164:1-15. [PMID: 38452741 DOI: 10.1159/000538238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/05/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND The synaptonemal complex (SC) is a protein axis formed along chromosomes during meiotic prophase to ensure proper pairing and crossing over. SC analysis has been widely used to study the chromosomes of mammals and less frequently of birds, reptiles, and fish. It is a promising method to investigate the evolution of fish genomes and chromosomes as a part of complex approach. SUMMARY Compared with conventional metaphase chromosomes, pachytene chromosomes are less condensed and exhibit pairing between homologous chromosomes. These features of SCs facilitate the study of the small chromosomes that are typical in fish. Moreover, it allows the study of heteromorphisms in sex chromosomes and supernumerary chromosomes. In addition, it enables the investigation of the pairing between orthologous chromosomes in hybrids, which is crucial for uncovering the causes of hybrid sterility and asexual reproduction, such as gynogenesis or hybridogenesis. However, the application of SC analysis to fish chromosomes is limited by the associated complications. First, in most fish, meiosis does not occur during every season and life stage. Second, different SC preparation methods are optimal for different fish species. Third, commercial antibodies targeting meiotic proteins have been primarily developed against mammalian antigens, and not all of them are suitable for fish chromosomes. KEY MESSAGES In the present review, we provide an overview of the methods for preparing fish SCs and highlight important studies using SC analysis in fish. This study will be valuable for planning and designing research that applies SC analysis to fish cytogenetics and genomics.
Collapse
Affiliation(s)
- Artem Lisachov
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok, Thailand
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, Novosibirsk, Russian Federation
| | - Dmitrij Dedukh
- Laboratory of Non-Mendelian Evolution, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czechia
| | - Sergey Simanovsky
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russian Federation
| | - Thitipong Panthum
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Worapong Singchat
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Kornsorn Srikulnath
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
8
|
Kitano J, Ansai S, Takehana Y, Yamamoto Y. Diversity and Convergence of Sex-Determination Mechanisms in Teleost Fish. Annu Rev Anim Biosci 2024; 12:233-259. [PMID: 37863090 DOI: 10.1146/annurev-animal-021122-113935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Sexual reproduction is prevalent across diverse taxa. However, sex-determination mechanisms are so diverse that even closely related species often differ in sex-determination systems. Teleost fish is a taxonomic group with frequent turnovers of sex-determining mechanisms and thus provides us with great opportunities to investigate the molecular and evolutionary mechanisms underlying the turnover of sex-determining systems. Here, we compile recent studies on the diversity of sex-determination mechanisms in fish. We demonstrate that genes in the TGF-β signaling pathway are frequently used for master sex-determining (MSD) genes. MSD genes arise via two main mechanisms, duplication-and-transposition and allelic mutations, with a few exceptions. We also demonstrate that temperature influences sex determination in many fish species, even those with sex chromosomes, with higher temperatures inducing differentiation into males in most cases. Finally, we review theoretical models for the turnover of sex-determining mechanisms and discuss what questions remain elusive.
Collapse
Affiliation(s)
- Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan;
| | - Satoshi Ansai
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan;
| | - Yusuke Takehana
- Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan;
| | - Yoji Yamamoto
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan;
| |
Collapse
|
9
|
Swaminathan A, Xia F, Rohner N. From darkness to discovery: evolutionary, adaptive, and translational genetic insights from cavefish. Trends Genet 2024; 40:24-38. [PMID: 38707509 PMCID: PMC11068324 DOI: 10.1016/j.tig.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 05/07/2024]
Abstract
How genotype determines phenotype is a well-explored question, but genotype-environment interactions and their heritable impact on phenotype over the course of evolution are not as thoroughly investigated. The fish Astyanax mexicanus, consisting of surface and cave ecotypes, is an ideal emerging model to study the genetic basis of adaptation to new environments. This model has permitted quantitative trait locus mapping and whole-genome comparisons to identify the genetic bases of traits such as albinism and insulin resistance and has helped to better understand fundamental evolutionary mechanisms. In this review, we summarize recent advances in A. mexicanus genetics and discuss their broader impact on the fields of adaptation and evolutionary genetics.
Collapse
Affiliation(s)
| | - Fanning Xia
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
10
|
Ruiz-Ruano FJ, Camacho JPM. Irreproducible results and unsupported conclusions in Ahmad et al. [BMC genomics (2020) 21:656]. BMC Genomics 2023; 24:778. [PMID: 38105238 PMCID: PMC10726643 DOI: 10.1186/s12864-023-09883-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 12/07/2023] [Indexed: 12/19/2023] Open
Affiliation(s)
- Francisco J Ruiz-Ruano
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TU, UK
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, SE-752 36, Sweden
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Adenauerallee 127, 53113, Bonn, Germany
| | | |
Collapse
|
11
|
Dong M, Tang M, Li W, Li S, Yi M, Liu W. Morphological and transcriptional analysis of sexual differentiation and gonadal development in a burrowing fish, the four-eyed sleeper (Bostrychus sinensis). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 48:101148. [PMID: 37865042 DOI: 10.1016/j.cbd.2023.101148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/23/2023]
Abstract
Four-eyed sleeper (Bostrychus sinensis) is a commercially important sea water fish, and the male individuals exhibit significant advantages in somatic growth and stress resistance, so developing sex control strategy to create all-male progeny will produce higher economic value. However, little is known about the genetic background associated with sex differentiation in this species. In this study, we investigated gonadal development and uncovered critical window stages of sexual differentiation (about 2 mph), transition from proliferation to differentiation in female germ stem cells (GSCs) (2-3 mph) and male GSCs (3-4 mph). De novo transcriptome analysis revealed candidate genes and signaling pathways associated with sexual differentiation and gonadal development in four-eyed sleeper. The results showed that sox9 and zglp1 were the earliest sex-biased transcription factors during sex differentiation. Down-regulation of chemokine, cytokines-cytokine receptors and up-regulation of cellular senescence pathway might be involved in GSC differentiation. Weighted gene correlation network analysis showed that metabolic pathway and occludin were the hub signaling and gene in ovarian development, meanwhile the MAPK signaling pathways, cellular senescence pathway and ash1l (histone H3-lysine4 N-trimethyltransferase) were the hub pathways and gene in testicular development. The present work elucidated the developmental processes of sexual differentiation and gonadal development and revealed their associated revealed genes and signaling pathways in four-eyed sleeper, providing theoretical basis for developing sex-control techniques.
Collapse
Affiliation(s)
- Mengdan Dong
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China
| | - Mingyue Tang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China
| | - Wenjing Li
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China
| | - Shizhu Li
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China
| | - Meisheng Yi
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China
| | - Wei Liu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China.
| |
Collapse
|
12
|
Warren WC, Rice ES, Maggs X, Roback E, Keene A, Martin F, Ogeh D, Haggerty L, Carroll RA, McGaugh S, Rohner N. Astyanax mexicanus surface and cavefish chromosome-scale assemblies for trait variation discovery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.16.567450. [PMID: 38014157 PMCID: PMC10680795 DOI: 10.1101/2023.11.16.567450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The ability of organisms to adapt to sudden extreme environmental changes produces some of the most drastic examples of rapid phenotypic evolution. The Mexican Tetra, Astyanax mexicanus, is abundant in the surface waters of northeastern Mexico, but repeated colonizations of cave environments have resulted in the independent evolution of troglomorphic phenotypes in several populations. Here, we present three chromosome-scale assemblies of this species, for one surface and two cave populations, enabling the first whole-genome comparisons between independently evolved cave populations to evaluate the genetic basis for the evolution of adaptation to the cave environment. Our assemblies represent the highest quality of sequence completeness with predicted protein-coding and non-coding gene metrics far surpassing prior resources and, to our knowledge, all long-read assembled teleost genomes, including zebrafish. Whole genome synteny alignments show highly conserved gene order among cave forms in contrast to a higher number of chromosomal rearrangements when compared to other phylogenetically close or distant teleost species. By phylogenetically assessing gene orthology across distant branches of amniotes, we discover gene orthogroups unique to A. mexicanus. When compared to a representative surface fish genome, we find a rich amount of structural sequence diversity, defined here as the number and size of insertions and deletions as well as expanding and contracting repeats across cave forms. These new more complete genomic resources ensure higher trait resolution for comparative, functional, developmental, and genetic studies of drastic trait differences within a species.
Collapse
Affiliation(s)
- Wesley C. Warren
- Department of Animal Sciences, Department of Surgery, University of Missouri, Bond Life Sciences Center, Columbia, MO
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO
| | - Edward S. Rice
- Department of Animal Sciences, Department of Surgery, University of Missouri, Bond Life Sciences Center, Columbia, MO
| | - X Maggs
- Department of Animal Sciences, Department of Surgery, University of Missouri, Bond Life Sciences Center, Columbia, MO
| | - Emma Roback
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN
| | - Alex Keene
- Department of Biology, Texas AM University, College Station, TX
| | - Fergal Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Denye Ogeh
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Leanne Haggerty
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Rachel A. Carroll
- Department of Animal Sciences, Department of Surgery, University of Missouri, Bond Life Sciences Center, Columbia, MO
| | - Suzanne McGaugh
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN
| | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, MO
- Department of Molecular and Integrative Physiology, KU Medical Center, Kansas City, KS
| |
Collapse
|
13
|
Kuhl H, Euclide PT, Klopp C, Cabau C, Zahm M, Roques C, Iampietro C, Kuchly C, Donnadieu C, Feron R, Parrinello H, Poncet C, Jaffrelo L, Confolent C, Wen M, Herpin A, Jouanno E, Bestin A, Haffray P, Morvezen R, de Almeida TR, Lecocq T, Schaerlinger B, Chardard D, Żarski D, Larson W, Postlethwait JH, Timirkhanov S, Kloas W, Wuertz S, Stöck M, Guiguen Y. Multi-genome comparisons reveal gain-and-loss evolution of the anti-Mullerian hormone receptor type 2 gene, an old master sex determining gene, in Percidae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.13.566804. [PMID: 38014084 PMCID: PMC10680665 DOI: 10.1101/2023.11.13.566804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The Percidae family comprises many fish species of major importance for aquaculture and fisheries. Based on three new chromosome-scale assemblies in Perca fluviatilis, Perca schrenkii and Sander vitreus along with additional percid fish reference genomes, we provide an evolutionary and comparative genomic analysis of their sex-determination systems. We explored the fate of a duplicated anti-Mullerian hormone receptor type-2 gene (amhr2bY), previously suggested to be the master sex determining (MSD) gene in P. flavescens. Phylogenetically related and structurally similar amhr2 duplications (amhr2b) were found in P. schrenkii and Sander lucioperca, potentially dating this duplication event to their last common ancestor around 19-27 Mya. In P. fluviatilis and S. vitreus, this amhr2b duplicate has been lost while it was subject to amplification in S. lucioperca. Analyses of the amhr2b locus in P. schrenkii suggest that this duplication could be also male-specific as it is in P. flavescens. In P. fluviatilis, a relatively small (100 kb) non-recombinant sex-determining region (SDR) was characterized on chromosome-18 using population-genomics approaches. This SDR is characterized by many male-specific single-nucleotide variants (SNVs) and no large duplication/insertion event, suggesting that P. fluviatilis has a male heterogametic sex determination system (XX/XY), generated by allelic diversification. This SDR contains six annotated genes, including three (c18h1orf198, hsdl1, tbc1d32) with higher expression in testis than ovary. Together, our results provide a new example of the highly dynamic sex chromosome turnover in teleosts and provide new genomic resources for Percidae, including sex-genotyping tools for all three known Perca species.
Collapse
Affiliation(s)
- Heiner Kuhl
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries – IGB (Forschungsverbund Berlin), Müggelseedamm 301/310, D-12587 Berlin, Germany
| | - Peter T Euclide
- Department of Forestry and Natural Resources | Illinois-Indiana Sea Grant, Purdue University, West Lafayette, Indiana, USA
| | - Christophe Klopp
- Sigenae, Plateforme Bioinformatique, Genotoul, BioinfoMics, UR875 Biométrie et Intelligence Artificielle, INRAE, Castanet-Tolosan, France
| | - Cedric Cabau
- Sigenae, GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | - Margot Zahm
- Sigenae, Plateforme Bioinformatique, Genotoul, BioinfoMics, UR875 Biométrie et Intelligence Artificielle, INRAE, Castanet-Tolosan, France
| | - Céline Roques
- INRAE, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | | | - Claire Kuchly
- INRAE, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | | | - Romain Feron
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Hugues Parrinello
- Montpellier GenomiX (MGX), c/o Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094, Montpellier Cedex 05, France
| | - Charles Poncet
- GDEC Gentyane, INRAE, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Lydia Jaffrelo
- GDEC Gentyane, INRAE, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Carole Confolent
- GDEC Gentyane, INRAE, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Ming Wen
- INRAE, LPGP, 35000, Rennes, France
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | | | | | - Anastasia Bestin
- SYSAAF, Station INRAE-LPGP, Campus de Beaulieu, 35042, Rennes cedex, France
| | - Pierrick Haffray
- SYSAAF, Station INRAE-LPGP, Campus de Beaulieu, 35042, Rennes cedex, France
| | - Romain Morvezen
- SYSAAF, Station INRAE-LPGP, Campus de Beaulieu, 35042, Rennes cedex, France
| | | | - Thomas Lecocq
- University of Lorraine, INRAE, UR AFPA, Nancy, France
| | | | | | - Daniel Żarski
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, ul. Tuwima 10, 10-748, Olsztyn, Poland
| | - Wes Larson
- National Oceanographic and Atmospheric Administration, National Marine Fisheries Service, Alaska Fisheries Science Center, Auke Bay Laboratories, 17109 Point Lena Loop Road, Juneau, AK, 99801, USA
| | | | | | - Werner Kloas
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries – IGB (Forschungsverbund Berlin), Müggelseedamm 301/310, D-12587 Berlin, Germany
| | - Sven Wuertz
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries – IGB (Forschungsverbund Berlin), Müggelseedamm 301/310, D-12587 Berlin, Germany
| | - Matthias Stöck
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries – IGB (Forschungsverbund Berlin), Müggelseedamm 301/310, D-12587 Berlin, Germany
| | | |
Collapse
|
14
|
Ponnimbaduge Perera P, Perez Guerra D, Riddle MR. The Mexican Tetra, Astyanax mexicanus, as a Model System in Cell and Developmental Biology. Annu Rev Cell Dev Biol 2023; 39:23-44. [PMID: 37437210 DOI: 10.1146/annurev-cellbio-012023-014003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Our understanding of cell and developmental biology has been greatly aided by a focus on a small number of model organisms. However, we are now in an era where techniques to investigate gene function can be applied across phyla, allowing scientists to explore the diversity and flexibility of developmental mechanisms and gain a deeper understanding of life. Researchers comparing the eyeless cave-adapted Mexican tetra, Astyanax mexicanus, with its river-dwelling counterpart are revealing how the development of the eyes, pigment, brain, cranium, blood, and digestive system evolves as animals adapt to new environments. Breakthroughs in our understanding of the genetic and developmental basis of regressive and constructive trait evolution have come from A. mexicanus research. They include understanding the types of mutations that alter traits, which cellular and developmental processes they affect, and how they lead to pleiotropy. We review recent progress in the field and highlight areas for future investigations that include evolution of sex differentiation, neural crest development, and metabolic regulation of embryogenesis.
Collapse
Affiliation(s)
| | | | - Misty R Riddle
- Department of Biology, University of Nevada, Reno, Nevada, USA;
| |
Collapse
|
15
|
Hyacinthe C, Attia J, Schutz E, Lego L, Casane D, Rétaux S. Acoustic signatures in Mexican cavefish populations inhabiting different caves. PLoS One 2023; 18:e0289574. [PMID: 37535576 PMCID: PMC10399770 DOI: 10.1371/journal.pone.0289574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/21/2023] [Indexed: 08/05/2023] Open
Abstract
Complex patterns of acoustic communication exist throughout the animal kingdom, including underwater. The river-dwelling and the Pachón cave-adapted morphotypes of the fish Astyanax mexicanus are soniferous and share a repertoire of sounds. Their function and significance is mostly unknown. Here, we explored whether and how sounds produced by blind cavefishes inhabiting different Mexican caves may vary. We compared "Clicks" and "Serial Clicks" produced by cavefish in six different caves distributed in three mountain ranges in Mexico. We also sampled laboratory-bred cavefish lines originating from four of these caves. Sounds were extracted and analyzed using both a manual method and a machine learning-based automation tool developed in-house. Multi-parametric analyses suggest wild cave-specific acoustic signatures, or "accents". An acoustic code also existed in laboratory cavefish lines, suggesting a genetic basis for the evolution of this trait. The variations in acoustic parameters between caves of origin did not seem related to fish phenotypes, phylogeography or ecological conditions. We propose that the evolution of such acoustic signatures would progressively lead to the differentiation of local accents that may prevent interbreeding and thus contribute to speciation.
Collapse
Affiliation(s)
- Carole Hyacinthe
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, 91400, Saclay, France
- Department of Genetics, Harvard Medical School, Blavatnik Institute, Boston, MA, United States of America
| | - Joël Attia
- Equipe de Neuro-Ethologie Sensorielle, CRNL, CNRS and Université de St Etienne, Saint-Étienne, France
| | - Elisa Schutz
- Equipe de Neuro-Ethologie Sensorielle, CRNL, CNRS and Université de St Etienne, Saint-Étienne, France
| | - Lény Lego
- Equipe de Neuro-Ethologie Sensorielle, CRNL, CNRS and Université de St Etienne, Saint-Étienne, France
| | - Didier Casane
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91190, Gif-sur-Yvette, France
- Université Paris Cité, UFR Sciences du Vivant, 75013, Paris, France
| | - Sylvie Rétaux
- Paris-Saclay Institute of Neuroscience, CNRS, Université Paris-Saclay, 91400, Saclay, France
| |
Collapse
|
16
|
Batista da Silva I, Aciole Barbosa D, Kavalco KF, Nunes LR, Pasa R, Menegidio FB. Discovery of putative long non-coding RNAs expressed in the eyes of Astyanax mexicanus (Actinopterygii: Characidae). Sci Rep 2023; 13:12051. [PMID: 37491348 PMCID: PMC10368750 DOI: 10.1038/s41598-023-34198-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/25/2023] [Indexed: 07/27/2023] Open
Abstract
Astyanax mexicanus is a well-known model species, that has two morphotypes, cavefish, from subterranean rivers and surface fish, from surface rivers. They are morphologically distinct due to many troglomorphic traits in the cavefish, such as the absence of eyes. Most studies on A. mexicanus are focused on eye development and protein-coding genes involved in the process. However, lncRNAs did not get the same attention and very little is known about them. This study aimed to fill this knowledge gap, identifying, describing, classifying, and annotating lncRNAs expressed in the embryo's eye tissue of cavefish and surface fish. To do so, we constructed a concise workflow to assemble and evaluate transcriptomes, annotate protein-coding genes, ncRNAs families, predict the coding potential, identify putative lncRNAs, map them and predict interactions. This approach resulted in the identification of 33,069 and 19,493 putative lncRNAs respectively mapped in cavefish and surface fish. Thousands of these lncRNAs were annotated and identified as conserved in human and several species of fish. Hundreds of them were validated in silico, through ESTs. We identified lncRNAs associated with genes related to eye development. This is the case of a few lncRNAs associated with sox2, which we suggest being isomorphs of the SOX2-OT, a lncRNA that can regulate the expression of sox2. This work is one of the first studies to focus on the description of lncRNAs in A. mexicanus, highlighting several lncRNA targets and opening an important precedent for future studies focusing on lncRNAs expressed in A. mexicanus.
Collapse
Affiliation(s)
- Iuri Batista da Silva
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
- Laboratory of Ecological and Evolutionary Genetics, Institute of Biological and Health Sciences, Federal University of Viçosa Campus Rio Paranaíba, Rio Paranaíba, MG, 38810-000, Brazil
| | - David Aciole Barbosa
- Integrated Biotechnology Center, University of Mogi das Cruzes (UMC), Av. Dr. Cândido X. de Almeida and Souza, 200 - Centro Cívico, Mogi das Cruzes, SP, 08780-911, Brazil
| | - Karine Frehner Kavalco
- Laboratory of Ecological and Evolutionary Genetics, Institute of Biological and Health Sciences, Federal University of Viçosa Campus Rio Paranaíba, Rio Paranaíba, MG, 38810-000, Brazil
| | - Luiz R Nunes
- Center for Natural and Human Sciences, Federal University of ABC, São Bernardo do Campo, SP, 09606-045, Brazil
| | - Rubens Pasa
- Laboratory of Ecological and Evolutionary Genetics, Institute of Biological and Health Sciences, Federal University of Viçosa Campus Rio Paranaíba, Rio Paranaíba, MG, 38810-000, Brazil.
| | - Fabiano B Menegidio
- Integrated Biotechnology Center, University of Mogi das Cruzes (UMC), Av. Dr. Cândido X. de Almeida and Souza, 200 - Centro Cívico, Mogi das Cruzes, SP, 08780-911, Brazil.
| |
Collapse
|
17
|
Rohner N. The cavefish Astyanax mexicanus. Nat Methods 2023; 20:948-950. [PMID: 37434002 DOI: 10.1038/s41592-023-01916-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Affiliation(s)
- Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, MO, USA.
| |
Collapse
|
18
|
Espinasa L, Pavie M, Rétaux S. Protocol for lens removal in embryonic fish and its application on the developmental effects of eye regression. SUBTERRANEAN BIOLOGY 2023. [DOI: 10.3897/subtbiol.45.96963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The lens plays a central role in the development of the optic cup. In fish, regression of the eye early in development affects the development of the craniofacial skeleton, the size of the olfactory pits, the optic nerve, and the tectum. Lens removal further affects olfaction, prey capture, and aggression. The similarity of the fish eye to other vertebrates is the basis for its use as an excellent animal model of human defects. Questions regarding the effects of eye regression are specifically well-suited to be addressed by using fish from the genus Astyanax. The species has two morphs; an eyeless cave morph and an eyed, surface morph. In the cavefish, a lens initially develops in embryos, but then degenerates by apoptosis. The cavefish retina is subsequently disorganized, degenerates, and retinal growth is arrested. The same effect is observed in surface fish when the lens is removed or exchanged for a cavefish lens. While studies can greatly benefit from a control group of surface fish with regressed eyes brought through lensectomies, few studies include them because of technical difficulties and the low survivorship of embryos that undergo this procedure. Here we describe a technique with significant modification for improvement for conducting lensectomy in one-day-old Astyanax and other fish, including zebrafish. Yields of up to 30 live embryos were obtained using this technique from a single spawn, thus enabling studies that require large sample sizes.
Collapse
|
19
|
Master-Key Regulators of Sex Determination in Fish and Other Vertebrates-A Review. Int J Mol Sci 2023; 24:ijms24032468. [PMID: 36768795 PMCID: PMC9917144 DOI: 10.3390/ijms24032468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
In vertebrates, mainly single genes with an allele ratio of 1:1 trigger sex-determination (SD), leading to initial equal sex-ratios. Such genes are designated master-key regulators (MKRs) and are frequently associated with DNA structural variations, such as copy-number variation and null-alleles. Most MKR knowledge comes from fish, especially cichlids, which serve as a genetic model for SD. We list 14 MKRs, of which dmrt1 has been identified in taxonomically distant species such as birds and fish. The identification of MKRs with known involvement in SD, such as amh and fshr, indicates that a common network drives SD. We illustrate a network that affects estrogen/androgen equilibrium, suggesting that structural variation may exert over-expression of the gene and thus form an MKR. However, the reason why certain factors constitute MKRs, whereas others do not is unclear. The limited number of conserved MKRs suggests that their heterologous sequences could be used as targets in future searches for MKRs of additional species. Sex-specific mortality, sex reversal, the role of temperature in SD, and multigenic SD are examined, claiming that these phenomena are often consequences of artificial hybridization. We discuss the essentiality of taxonomic authentication of species to validate purebred origin before MKR searches.
Collapse
|
20
|
Rajpal VR, Sharma S, Sehgal D, Sharma P, Wadhwa N, Dhakate P, Chandra A, Thakur RK, Deb S, Rama Rao S, Mir BA, Raina SN. Comprehending the dynamism of B chromosomes in their journey towards becoming unselfish. Front Cell Dev Biol 2023; 10:1072716. [PMID: 36684438 PMCID: PMC9846793 DOI: 10.3389/fcell.2022.1072716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Investigated for more than a century now, B chromosomes (Bs) research has come a long way from Bs being considered parasitic or neutral to becoming unselfish and bringing benefits to their hosts. B chromosomes exist as accessory chromosomes along with the standard A chromosomes (As) across eukaryotic taxa. Represented singly or in multiple copies, B chromosomes are largely heterochromatic but also contain euchromatic and organellar segments. Although B chromosomes are derived entities, they follow their species-specific evolutionary pattern. B chromosomes fail to pair with the standard chromosomes during meiosis and vary in their number, size, composition and structure across taxa and ensure their successful transmission through non-mendelian mechanisms like mitotic, pre-meiotic, meiotic or post-meiotic drives, unique non-disjunction, self-pairing or even imparting benefits to the host when they lack drive. B chromosomes have been associated with cellular processes like sex determination, pathogenicity, resistance to pathogens, phenotypic effects, and differential gene expression. With the advancements in B-omics research, novel insights have been gleaned on their functions, some of which have been associated with the regulation of gene expression of A chromosomes through increased expression of miRNAs or differential expression of transposable elements located on them. The next-generation sequencing and emerging technologies will further likely unravel the cellular, molecular and functional behaviour of these enigmatic entities. Amidst the extensive fluidity shown by B chromosomes in their structural and functional attributes, we perceive that the existence and survival of B chromosomes in the populations most likely seem to be a trade-off between the drive efficiency and adaptive significance versus their adverse effects on reproduction.
Collapse
Affiliation(s)
- Vijay Rani Rajpal
- Department of Botany, Hansraj College, University of Delhi, Delhi, India,*Correspondence: Vijay Rani Rajpal, , ; Soom Nath Raina,
| | - Suman Sharma
- Department of Botany, Ramjas College, University of Delhi, Delhi, India
| | - Deepmala Sehgal
- Syngenta, International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Prashansa Sharma
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| | - Nikita Wadhwa
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | | | - Atika Chandra
- Department of Botany, Maitreyi College, University of Delhi, New Delhi, India
| | - Rakesh Kr. Thakur
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Sohini Deb
- Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong, Meghalaya, India
| | - Satyawada Rama Rao
- Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong, Meghalaya, India
| | - Bilal Ahmad Mir
- Department of Botany, University of Kashmir, Srinagar, India
| | - Soom Nath Raina
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India,*Correspondence: Vijay Rani Rajpal, , ; Soom Nath Raina,
| |
Collapse
|
21
|
Silva DMZA, Castro JP, Goes CAG, Utsunomia R, Vidal MR, Nascimento CN, Lasmar LF, Paim FG, Soares LB, Oliveira C, Porto-Foresti F, Artoni RF, Foresti F. B Chromosomes in Psalidodon scabripinnis (Characiformes, Characidae) Species Complex. Animals (Basel) 2022; 12:2174. [PMID: 36077895 PMCID: PMC9454733 DOI: 10.3390/ani12172174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
Abstract
B chromosomes are extra-genomic components of cells found in individuals and in populations of some eukaryotic organisms. They have been described since the first observations of chromosomes, but several aspects of their biology remain enigmatic. Despite being present in hundreds of fungi, plants, and animal species, only a small number of B chromosomes have been investigated through high-throughput analyses, revealing the remarkable mechanisms employed by these elements to ensure their maintenance. Populations of the Psalidodon scabripinnis species complex exhibit great B chromosome diversity, making them a useful material for various analyses. In recent years, important aspects of their biology have been revealed. Here, we review these studies presenting a comprehensive view of the B chromosomes in the P. scabripinnis complex and a new hypothesis regarding the role of the B chromosome in the speciation process.
Collapse
Affiliation(s)
- Duílio M. Z. A. Silva
- Laboratory of Biology and Genetics of Fishes, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu 18618-970, SP, Brazil
| | - Jonathan P. Castro
- Post-Graduate Program in Evolutionary Genetics and Molecular Biology, Department of Genetics and Evolution, Federal University of Sao Carlos, Sao Carlos 13565-905, SP, Brazil
- Laboratory of Evolutionary Genetics, Department of Structural, Molecular and Genetic Biology, State University of Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil
| | - Caio A. G. Goes
- Laboratory of Fish Genetics, Department of Biological Sciences, Faculty of Sciences, São Paulo State University, Bauru 17033-360, SP, Brazil
| | - Ricardo Utsunomia
- Laboratory of Fish Genetics, Department of Biological Sciences, Faculty of Sciences, São Paulo State University, Bauru 17033-360, SP, Brazil
- Laboratory of Fish Genetics, Department of Genetics, Institute of Biological Sciences and Health, Federal Rural University of Rio de Janeiro, Seropedica 23890-000, RJ, Brazil
| | - Mateus R. Vidal
- Laboratory of Biology and Genetics of Fishes, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu 18618-970, SP, Brazil
| | - Cristiano N. Nascimento
- Laboratory of Biology and Genetics of Fishes, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu 18618-970, SP, Brazil
| | - Lucas F. Lasmar
- Laboratory of Biology and Genetics of Fishes, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu 18618-970, SP, Brazil
| | - Fabilene G. Paim
- Laboratory of Biology and Genetics of Fishes, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu 18618-970, SP, Brazil
| | - Letícia B. Soares
- Laboratory of Biology and Genetics of Fishes, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu 18618-970, SP, Brazil
| | - Claudio Oliveira
- Laboratory of Biology and Genetics of Fishes, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu 18618-970, SP, Brazil
| | - Fábio Porto-Foresti
- Laboratory of Fish Genetics, Department of Biological Sciences, Faculty of Sciences, São Paulo State University, Bauru 17033-360, SP, Brazil
| | - Roberto F. Artoni
- Post-Graduate Program in Evolutionary Genetics and Molecular Biology, Department of Genetics and Evolution, Federal University of Sao Carlos, Sao Carlos 13565-905, SP, Brazil
- Laboratory of Evolutionary Genetics, Department of Structural, Molecular and Genetic Biology, State University of Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil
| | - Fausto Foresti
- Laboratory of Biology and Genetics of Fishes, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu 18618-970, SP, Brazil
| |
Collapse
|
22
|
Jonika MM, Alfieri JM, Sylvester T, Buhrow AR, Blackmon H. Why not Y naught. Heredity (Edinb) 2022; 129:75-78. [PMID: 35581478 PMCID: PMC9338309 DOI: 10.1038/s41437-022-00543-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- Michelle M Jonika
- Department of Biology, Texas A&M University, College Station, TX, USA
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, USA
| | - James M Alfieri
- Department of Biology, Texas A&M University, College Station, TX, USA
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, TX, USA
| | | | | | - Heath Blackmon
- Department of Biology, Texas A&M University, College Station, TX, USA.
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, USA.
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
23
|
Krishnan J, Wang Y, Kenzior O, Hassan H, Olsen L, Tsuchiya D, Kenzior A, Peuß R, Xiong S, Wang Y, Zhao C, Rohner N. Liver-derived cell lines from cavefish Astyanax mexicanus as an in vitro model for studying metabolic adaptation. Sci Rep 2022; 12:10115. [PMID: 35710938 PMCID: PMC9203785 DOI: 10.1038/s41598-022-14507-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/08/2022] [Indexed: 12/02/2022] Open
Abstract
Cell lines have become an integral resource and tool for conducting biological experiments ever since the Hela cell line was first developed (Scherer et al. in J Exp Med 97:695–710, 1953). They not only allow detailed investigation of molecular pathways but are faster and more cost-effective than most in vivo approaches. The last decade saw many emerging model systems strengthening basic science research. However, lack of genetic and molecular tools in these newer systems pose many obstacles. Astyanax mexicanus is proving to be an interesting new model system for understanding metabolic adaptation. To further enhance the utility of this system, we developed liver-derived cell lines from both surface-dwelling and cave-dwelling morphotypes. In this study, we provide detailed methodology of the derivation process along with comprehensive biochemical and molecular characterization of the cell lines, which reflect key metabolic traits of cavefish adaptation. We anticipate these cell lines to become a useful resource for the Astyanax community as well as researchers investigating fish biology, comparative physiology, and metabolism.
Collapse
Affiliation(s)
- Jaya Krishnan
- Stowers Institute for Medical Research, Kansas City, MO, USA.
| | - Yan Wang
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Olga Kenzior
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Huzaifa Hassan
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Luke Olsen
- Stowers Institute for Medical Research, Kansas City, MO, USA.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Dai Tsuchiya
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Robert Peuß
- Stowers Institute for Medical Research, Kansas City, MO, USA.,Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Shaolei Xiong
- Stowers Institute for Medical Research, Kansas City, MO, USA.,Department of Genetics, Perelman School of Medicine, Philadelphia, PA, USA
| | - Yongfu Wang
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Chongbei Zhao
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, MO, USA. .,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
24
|
Non-Mendelian segregation and transmission drive of B chromosomes. Chromosome Res 2022; 30:217-228. [DOI: 10.1007/s10577-022-09692-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/11/2022] [Accepted: 04/11/2022] [Indexed: 11/03/2022]
|
25
|
Li XY, Mei J, Ge CT, Liu XL, Gui JF. Sex determination mechanisms and sex control approaches in aquaculture animals. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1091-1122. [PMID: 35583710 DOI: 10.1007/s11427-021-2075-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/14/2022] [Indexed: 01/21/2023]
Abstract
Aquaculture is one of the most efficient modes of animal protein production and plays an important role in global food security. Aquaculture animals exhibit extraordinarily diverse sexual phenotypes and underlying mechanisms, providing an ideal system to perform sex determination research, one of the important areas in life science. Moreover, sex is also one of the most valuable traits because sexual dimorphism in growth, size, and other economic characteristics commonly exist in aquaculture animals. Here, we synthesize current knowledge of sex determination mechanisms, sex chromosome evolution, reproduction strategies, and sexual dimorphism, and also review several approaches for sex control in aquaculture animals, including artificial gynogenesis, application of sex-specific or sex chromosome-linked markers, artificial sex reversal, as well as gene editing. We anticipate that better understanding of sex determination mechanisms and innovation of sex control approaches will facilitate sustainable development of aquaculture.
Collapse
Affiliation(s)
- Xi-Yin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jie Mei
- College of Fisheries, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chu-Tian Ge
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Xiao-Li Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovative Academy of Seed Design, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
26
|
Jasonowicz AJ, Simeon A, Zahm M, Cabau C, Klopp C, Roques C, Iampietro C, Lluch J, Donnadieu C, Parrinello H, Drinan DP, Hauser L, Guiguen Y, Planas JV. Generation of a chromosome‐level genome assembly for Pacific halibut (
Hippoglossus stenolepis
) and characterization of its sex‐determining genomic region. Mol Ecol Resour 2022; 22:2685-2700. [PMID: 35569134 PMCID: PMC9541706 DOI: 10.1111/1755-0998.13641] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/22/2022] [Accepted: 05/11/2022] [Indexed: 12/01/2022]
Abstract
The Pacific halibut (Hippoglossus stenolepis) is a key species in the North Pacific Ocean and Bering Sea ecosystems, where it also supports important fisheries. However, the lack of genomic resources limits our understanding of evolutionary, environmental and anthropogenic forces affecting key life history characteristics of Pacific halibut and prevents the application of genomic tools in fisheries management and conservation efforts. In the present study, we report on the first generation of a high‐quality chromosome‐level assembly of the Pacific halibut genome, with an estimated size of 602 Mb, 24 chromosome‐length scaffolds that contain 99.8% of the assembly and a N50 scaffold length of 27.3 Mb. In the first application of this important resource, we conducted genome‐wide analyses of sex‐specific genetic variation by pool sequencing and characterized a potential sex‐determining region in chromosome 9 with a high density of female‐specific SNPs. Within this region, we identified the bmpr1ba gene as a potential candidate for master sex‐determining (MSD) gene. bmpr1ba is a member of the TGF‐β family that in teleosts has provided the largest number of MSD genes, including a paralogue of this gene in Atlantic herring. The genome assembly constitutes an essential resource for future studies on Pacific halibut population structure and dynamics, evolutionary history and responses to environmental and anthropogenic influences. Furthermore, the genomic location of the sex‐determining region in Pacific halibut has been identified and a putative candidate MSD gene has been proposed, providing further support for the rapid evolution of sex‐determining mechanisms in teleost fish.
Collapse
Affiliation(s)
| | - Anna Simeon
- International Pacific Halibut Commission Seattle, WA 98199 USA
- Present address: School of Aquatic and Fishery Science University of Washington Seattle WA
| | - Margot Zahm
- SIGENAE, Bioinfo Genotoul, UMIAT, INRAE Castanet‐Tolosan France
| | - Cédric Cabau
- SIGENAE, GenPhySE Université de Toulouse INRAE, ENVT, 31326 Castanet‐Tolosan France
| | | | - Céline Roques
- INRAE, GeT‐PlaGe, Genotoul, 31326 Castanet‐Tolosan France
| | | | - Jérôme Lluch
- INRAE, GeT‐PlaGe, Genotoul, 31326 Castanet‐Tolosan France
| | | | - Hugues Parrinello
- MGX‐Montpellier GenomiX, Univ. Montpellier, CNRS, INSERM Montpellier France
| | - Daniel P. Drinan
- School of Aquatic and Fishery Science University of Washington Seattle, WA 98105 USA
| | - Lorenz Hauser
- School of Aquatic and Fishery Science University of Washington Seattle, WA 98105 USA
| | | | - Josep V. Planas
- International Pacific Halibut Commission Seattle, WA 98199 USA
| |
Collapse
|
27
|
Borodin P, Chen A, Forstmeier W, Fouché S, Malinovskaya L, Pei Y, Reifová R, Ruiz-Ruano FJ, Schlebusch SA, Sotelo-Muñoz M, Torgasheva A, Vontzou N, Suh A. Mendelian nightmares: the germline-restricted chromosome of songbirds. Chromosome Res 2022; 30:255-272. [PMID: 35416568 PMCID: PMC9508068 DOI: 10.1007/s10577-022-09688-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/07/2022] [Accepted: 03/16/2022] [Indexed: 11/03/2022]
Abstract
Germline-restricted chromosomes (GRCs) are accessory chromosomes that occur only in germ cells. They are eliminated from somatic cells through programmed DNA elimination during embryo development. GRCs have been observed in several unrelated animal taxa and show peculiar modes of non-Mendelian inheritance and within-individual elimination. Recent cytogenetic and phylogenomic evidence suggests that a GRC is present across the species-rich songbirds, but absent in non-passerine birds, implying that over half of all 10,500 bird species have extensive germline/soma genome differences. Here, we review recent insights gained from genomic, transcriptomic, and cytogenetic approaches with regard to the genetic content, phylogenetic distribution, and inheritance of the songbird GRC. While many questions remain unsolved in terms of GRC inheritance, elimination, and function, we discuss plausible scenarios and future directions for understanding this widespread form of programmed DNA elimination.
Collapse
Affiliation(s)
- Pavel Borodin
- Siberian Department, Russian Academy of Sciences, Institute of Cytology and Genetics, Prospekt Akademika Lavrent'yeva 10, 630090, Novosibirsk, Russia
| | - Augustin Chen
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Uppsala University, Science for Life Laboratory, 752 36, Uppsala, Sweden
| | - Wolfgang Forstmeier
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Eberhard-Gwinner-Straße, 82319, Seewiesen, Germany.
| | - Simone Fouché
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Uppsala University, Science for Life Laboratory, 752 36, Uppsala, Sweden.,School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TU, UK
| | - Lyubov Malinovskaya
- Siberian Department, Russian Academy of Sciences, Institute of Cytology and Genetics, Prospekt Akademika Lavrent'yeva 10, 630090, Novosibirsk, Russia
| | - Yifan Pei
- Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Eberhard-Gwinner-Straße, 82319, Seewiesen, Germany
| | - Radka Reifová
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czech Republic.
| | - Francisco J Ruiz-Ruano
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Uppsala University, Science for Life Laboratory, 752 36, Uppsala, Sweden.,School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TU, UK
| | - Stephen A Schlebusch
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czech Republic
| | - Manuelita Sotelo-Muñoz
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague, Czech Republic
| | - Anna Torgasheva
- Siberian Department, Russian Academy of Sciences, Institute of Cytology and Genetics, Prospekt Akademika Lavrent'yeva 10, 630090, Novosibirsk, Russia.
| | - Niki Vontzou
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TU, UK
| | - Alexander Suh
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Uppsala University, Science for Life Laboratory, 752 36, Uppsala, Sweden. .,School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TU, UK.
| |
Collapse
|
28
|
Discordant Genome Assemblies Drastically Alter the Interpretation of Single-Cell RNA Sequencing Data Which Can Be Mitigated by a Novel Integration Method. Cells 2022; 11:cells11040608. [PMID: 35203259 PMCID: PMC8870202 DOI: 10.3390/cells11040608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/27/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
Advances in sequencing and assembly technology have led to the creation of genome assemblies for a wide variety of non-model organisms. The rapid production and proliferation of updated, novel assembly versions can create vexing problems for researchers when multiple-genome assembly versions are available at once, requiring researchers to work with more than one reference genome. Multiple-genome assemblies are especially problematic for researchers studying the genetic makeup of individual cells, as single-cell RNA sequencing (scRNAseq) requires sequenced reads to be mapped and aligned to a single reference genome. Using the Astyanax mexicanus, this study highlights how the interpretation of a single-cell dataset from the same sample changes when aligned to its two different available genome assemblies. We found that the number of cells and expressed genes detected were drastically different when aligning to the different assemblies. When the genome assemblies were used in isolation with their respective annotations, cell-type identification was confounded, as some classic cell-type markers were assembly-specific, whilst other genes showed differential patterns of expression between the two assemblies. To overcome the problems posed by multiple-genome assemblies, we propose that researchers align to each available assembly and then integrate the resultant datasets to produce a final dataset in which all genome alignments can be used simultaneously. We found that this approach increased the accuracy of cell-type identification and maximised the amount of data that could be extracted from our single-cell sample by capturing all possible cells and transcripts. As scRNAseq becomes more widely available, it is imperative that the single-cell community is aware of how genome assembly alignment can alter single-cell data and their interpretation, especially when reviewing studies on non-model organisms.
Collapse
|
29
|
Johnson Pokorná M, Reifová R. Evolution of B Chromosomes: From Dispensable Parasitic Chromosomes to Essential Genomic Players. Front Genet 2021; 12:727570. [PMID: 34956308 PMCID: PMC8695967 DOI: 10.3389/fgene.2021.727570] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
B chromosomes represent additional chromosomes found in many eukaryotic organisms. Their origin is not completely understood but recent genomic studies suggest that they mostly arise through rearrangements and duplications from standard chromosomes. They can occur in single or multiple copies in a cell and are usually present only in a subset of individuals in the population. Because B chromosomes frequently show unstable inheritance, their maintenance in a population is often associated with meiotic drive or other mechanisms that increase the probability of their transmission to the next generation. For all these reasons, B chromosomes have been commonly considered to be nonessential, selfish, parasitic elements. Although it was originally believed that B chromosomes had little or no effect on an organism's biology and fitness, a growing number of studies have shown that B chromosomes can play a significant role in processes such as sex determination, pathogenicity and resistance to pathogens. In some cases, B chromosomes became an essential part of the genome, turning into new sex chromosomes or germline-restricted chromosomes with important roles in the organism's fertility. Here, we review such cases of "cellular domestication" of B chromosomes and show that B chromosomes can be important genomic players with significant evolutionary impact.
Collapse
Affiliation(s)
- Martina Johnson Pokorná
- Department of Zoology, Charles University, Prague, Czech Republic.,Department of Ecology, Charles University, Prague, Czech Republic.,Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | - Radka Reifová
- Department of Zoology, Charles University, Prague, Czech Republic
| |
Collapse
|
30
|
Sex Chromosomes and Master Sex-Determining Genes in Turtles and Other Reptiles. Genes (Basel) 2021; 12:genes12111822. [PMID: 34828428 PMCID: PMC8622242 DOI: 10.3390/genes12111822] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 11/24/2022] Open
Abstract
Among tetrapods, the well differentiated heteromorphic sex chromosomes of birds and mammals have been highly investigated and their master sex-determining (MSD) gene, Dmrt1 and SRY, respectively, have been identified. The homomorphic sex chromosomes of reptiles have been the least studied, but the gap with birds and mammals has begun to fill. This review describes our current knowledge of reptilian sex chromosomes at the cytogenetic and molecular level. Most of it arose recently from various studies comparing male to female gene content. This includes restriction site-associated DNA sequencing (RAD-Seq) experiments in several male and female samples, RNA sequencing and identification of Z- or X-linked genes by male/female comparative transcriptome coverage, and male/female transcriptomic or transcriptome/genome substraction approaches allowing the identification of Y- or W-linked transcripts. A few putative master sex-determining (MSD) genes have been proposed, but none has been demonstrated yet. Lastly, future directions in the field of reptilian sex chromosomes and their MSD gene studies are considered.
Collapse
|