1
|
Carlino N, Blanco-Míguez A, Punčochář M, Mengoni C, Pinto F, Tatti A, Manghi P, Armanini F, Avagliano M, Barcenilla C, Breselge S, Cabrera-Rubio R, Calvete-Torre I, Coakley M, Cobo-Díaz JF, De Filippis F, Dey H, Leech J, Klaassens ES, Knobloch S, O'Neil D, Quijada NM, Sabater C, Skírnisdóttir S, Valentino V, Walsh L, Alvarez-Ordóñez A, Asnicar F, Fackelmann G, Heidrich V, Margolles A, Marteinsson VT, Rota Stabelli O, Wagner M, Ercolini D, Cotter PD, Segata N, Pasolli E. Unexplored microbial diversity from 2,500 food metagenomes and links with the human microbiome. Cell 2024; 187:5775-5795.e15. [PMID: 39214080 DOI: 10.1016/j.cell.2024.07.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/17/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Complex microbiomes are part of the food we eat and influence our own microbiome, but their diversity remains largely unexplored. Here, we generated the open access curatedFoodMetagenomicData (cFMD) resource by integrating 1,950 newly sequenced and 583 public food metagenomes. We produced 10,899 metagenome-assembled genomes spanning 1,036 prokaryotic and 108 eukaryotic species-level genome bins (SGBs), including 320 previously undescribed taxa. Food SGBs displayed significant microbial diversity within and between food categories. Extension to >20,000 human metagenomes revealed that food SGBs accounted on average for 3% of the adult gut microbiome. Strain-level analysis highlighted potential instances of food-to-gut transmission and intestinal colonization (e.g., Lacticaseibacillus paracasei) as well as SGBs with divergent genomic structures in food and humans (e.g., Streptococcus gallolyticus and Limosilactobabillus mucosae). The cFMD expands our knowledge on food microbiomes, their role in shaping the human microbiome, and supports future uses of metagenomics for food quality, safety, and authentication.
Collapse
Affiliation(s)
- Niccolò Carlino
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Aitor Blanco-Míguez
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Michal Punčochář
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Claudia Mengoni
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Federica Pinto
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Alessia Tatti
- Scuola Universitaria Superiore IUSS Pavia, Pavia, Italy; Centre for Agriculture Food Environment, University of Trento, Trento, Italy; Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, Italy
| | - Paolo Manghi
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Federica Armanini
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Michele Avagliano
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, Portici, Italy
| | - Coral Barcenilla
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
| | - Samuel Breselge
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Raul Cabrera-Rubio
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland; Department of Biotechnology, Institute of Agrochemistry and Food Technology - National Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - Inés Calvete-Torre
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain; Microhealth Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Mairéad Coakley
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - José F Cobo-Díaz
- Department of Food Hygiene and Technology, Universidad de León, León, Spain
| | - Francesca De Filippis
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, Portici, Italy; Task Force on Microbiome Studies, University of Naples Federico II, Portici, Italy
| | - Hrituraj Dey
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - John Leech
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | | | | | | | - Narciso M Quijada
- Austrian Competence Centre for Feed and Food Quality, Safety, and Innovation, FFoQSI GmbH, Tulln an der Donau, Austria; Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria; Institute for Agribiotechnology Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, Salamanca, Spain
| | - Carlos Sabater
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain; Microhealth Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | | | - Vincenzo Valentino
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, Portici, Italy
| | - Liam Walsh
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland; School of Microbiology, University College Cork, Cork, Ireland
| | | | - Francesco Asnicar
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Gloria Fackelmann
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Vitor Heidrich
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain; Microhealth Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Viggó Thór Marteinsson
- Microbiology Research Group, Matís, Reykjavík, Iceland; University of Iceland, Faculty of Food Science and Nutrition, Reykjavík, Iceland
| | - Omar Rota Stabelli
- Centre for Agriculture Food Environment, University of Trento, Trento, Italy; Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, Italy
| | - Martin Wagner
- Austrian Competence Centre for Feed and Food Quality, Safety, and Innovation, FFoQSI GmbH, Tulln an der Donau, Austria; Unit of Food Microbiology, Institute of Food Safety, Food Technology and Veterinary Public Health, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Danilo Ercolini
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, Portici, Italy; Task Force on Microbiome Studies, University of Naples Federico II, Portici, Italy
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland; VistaMilk SFI Research Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland
| | - Nicola Segata
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy; IEO, Istituto Europeo di Oncologia IRCSS, Milan, Italy; Department of Twins Research and Genetic Epidemiology, King's College London, London, UK.
| | - Edoardo Pasolli
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, Portici, Italy; Task Force on Microbiome Studies, University of Naples Federico II, Portici, Italy
| |
Collapse
|
2
|
Piperni E, Nguyen LH, Manghi P, Kim H, Pasolli E, Andreu-Sánchez S, Arrè A, Bermingham KM, Blanco-Míguez A, Manara S, Valles-Colomer M, Bakker E, Busonero F, Davies R, Fiorillo E, Giordano F, Hadjigeorgiou G, Leeming ER, Lobina M, Masala M, Maschio A, McIver LJ, Pala M, Pitzalis M, Wolf J, Fu J, Zhernakova A, Cacciò SM, Cucca F, Berry SE, Ercolini D, Chan AT, Huttenhower C, Spector TD, Segata N, Asnicar F. Intestinal Blastocystis is linked to healthier diets and more favorable cardiometabolic outcomes in 56,989 individuals from 32 countries. Cell 2024; 187:4554-4570.e18. [PMID: 38981480 DOI: 10.1016/j.cell.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 02/23/2024] [Accepted: 06/11/2024] [Indexed: 07/11/2024]
Abstract
Diet impacts human health, influencing body adiposity and the risk of developing cardiometabolic diseases. The gut microbiome is a key player in the diet-health axis, but while its bacterial fraction is widely studied, the role of micro-eukaryotes, including Blastocystis, is underexplored. We performed a global-scale analysis on 56,989 metagenomes and showed that human Blastocystis exhibits distinct prevalence patterns linked to geography, lifestyle, and dietary habits. Blastocystis presence defined a specific bacterial signature and was positively associated with more favorable cardiometabolic profiles and negatively with obesity (p < 1e-16) and disorders linked to altered gut ecology (p < 1e-8). In a diet intervention study involving 1,124 individuals, improvements in dietary quality were linked to weight loss and increases in Blastocystis prevalence (p = 0.003) and abundance (p < 1e-7). Our findings suggest a potentially beneficial role for Blastocystis, which may help explain personalized host responses to diet and downstream disease etiopathogenesis.
Collapse
Affiliation(s)
- Elisa Piperni
- Department CIBIO, University of Trento, Trento, Italy; IEO, Istituto Europeo di Oncologia IRCSS, Milan, Italy
| | - Long H Nguyen
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, USA; Harvard Chan Microbiome in Public Health Center, Boston, MA, USA
| | - Paolo Manghi
- Department CIBIO, University of Trento, Trento, Italy
| | - Hanseul Kim
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Edoardo Pasolli
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Sergio Andreu-Sánchez
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Alberto Arrè
- Department CIBIO, University of Trento, Trento, Italy; Zoe Ltd, London, UK
| | - Kate M Bermingham
- Zoe Ltd, London, UK; Department of Nutritional Sciences, King's College London, London, UK
| | | | - Serena Manara
- Department CIBIO, University of Trento, Trento, Italy
| | | | | | - Fabio Busonero
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| | | | - Edoardo Fiorillo
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| | | | | | - Emily R Leeming
- Department of Twins Research and Genetic Epidemiology, King's College London, London, UK
| | - Monia Lobina
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| | - Marco Masala
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| | - Andrea Maschio
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| | | | - Mauro Pala
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| | - Maristella Pitzalis
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
| | | | - Jingyuan Fu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Simone M Cacciò
- Department of Infectious Diseases, Istituto Superiore Di Sanità, Rome, Italy
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy; Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, Italy
| | - Sarah E Berry
- Department of Nutritional Sciences, King's College London, London, UK
| | - Danilo Ercolini
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA, USA; Harvard Chan Microbiome in Public Health Center, Boston, MA, USA
| | - Curtis Huttenhower
- Harvard T.H. Chan School of Public Health, Boston, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Tim D Spector
- Department of Twins Research and Genetic Epidemiology, King's College London, London, UK
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy; IEO, Istituto Europeo di Oncologia IRCSS, Milan, Italy; Department of Twins Research and Genetic Epidemiology, King's College London, London, UK.
| | | |
Collapse
|
3
|
Adolph TE, Tilg H. Western diets and chronic diseases. Nat Med 2024; 30:2133-2147. [PMID: 39085420 DOI: 10.1038/s41591-024-03165-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024]
Abstract
'Westernization', which incorporates industrial, cultural and dietary trends, has paralleled the rise of noncommunicable diseases across the globe. Today, the Western-style diet emerges as a key stimulus for gut microbial vulnerability, chronic inflammation and chronic diseases, affecting mainly the cardiovascular system, systemic metabolism and the gut. Here we review the diet of modern times and evaluate the threat it poses for human health by summarizing recent epidemiological, translational and clinical studies. We discuss the links between diet and disease in the context of obesity and type 2 diabetes, cardiovascular diseases, gut and liver diseases and solid malignancies. We collectively interpret the evidence and its limitations and discuss future challenges and strategies to overcome these. We argue that healthcare professionals and societies must react today to the detrimental effects of the Western diet to bring about sustainable change and improved outcomes in the future.
Collapse
Affiliation(s)
- Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
4
|
de Jonge PA, van den Born BJH, Zwinderman AH, Nieuwdorp M, Dutilh BE, Herrema H. Phylogeny and disease associations of a widespread and ancient intestinal bacteriophage lineage. Nat Commun 2024; 15:6346. [PMID: 39068184 PMCID: PMC11283538 DOI: 10.1038/s41467-024-50777-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 07/19/2024] [Indexed: 07/30/2024] Open
Abstract
Viruses are core components of the human microbiome, impacting health through interactions with gut bacteria and the immune system. Most human microbiome viruses are bacteriophages, which exclusively infect bacteria. Until recently, most gut virome studies focused on low taxonomic resolution (e.g., viral operational taxonomic units), hampering population-level analyses. We previously identified an expansive and widespread bacteriophage lineage in inhabitants of Amsterdam, the Netherlands. Here, we study their biodiversity and evolution in various human populations. Based on a phylogeny using sequences from six viral genome databases, we propose the Candidatus order Heliusvirales. We identify heliusviruses in 82% of 5441 individuals across 39 studies, and in nine metagenomes from humans that lived in Europe and North America between 1000 and 5000 years ago. We show that a large lineage started to diversify when Homo sapiens first appeared some 300,000 years ago. Ancient peoples and modern hunter-gatherers have distinct Ca. Heliusvirales populations with lower richness than modern urbanized people. Urbanized people suffering from type 1 and type 2 diabetes, as well as inflammatory bowel disease, have higher Ca. Heliusvirales richness than healthy controls. We thus conclude that these ancient core members of the human gut virome have thrived with increasingly westernized lifestyles.
Collapse
Affiliation(s)
- Patrick A de Jonge
- Department of Internal and Experimental Vascular Medicine; Amsterdam UMC; Location AMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology & Metabolism; Endocrinology, Metabolism & Nutrition, Amsterdam UMC, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences; Diabetes & Metabolism, Amsterdam UMC, Amsterdam, the Netherlands
| | - Bert-Jan H van den Born
- Department of Internal and Experimental Vascular Medicine; Amsterdam UMC; Location AMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Gastroenterology, Endocrinology & Metabolism; Endocrinology, Metabolism & Nutrition, Amsterdam UMC, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences; Diabetes & Metabolism, Amsterdam UMC, Amsterdam, the Netherlands
| | - Aeilko H Zwinderman
- Department of Clinical Epidemiology; Biostatistics and Bioinformatics; Amsterdam UMC; Location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Max Nieuwdorp
- Department of Internal and Experimental Vascular Medicine; Amsterdam UMC; Location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Bas E Dutilh
- Theoretical Biology and Bioinformatics; Science for Life, Utrecht University, Utrecht, the Netherlands
- Institute of Biodiversity; Faculty of Biological Sciences; Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University Jena, Jena, Germany
| | - Hilde Herrema
- Department of Internal and Experimental Vascular Medicine; Amsterdam UMC; Location AMC, University of Amsterdam, Amsterdam, the Netherlands.
- Amsterdam Gastroenterology, Endocrinology & Metabolism; Endocrinology, Metabolism & Nutrition, Amsterdam UMC, Amsterdam, the Netherlands.
- Amsterdam Cardiovascular Sciences; Diabetes & Metabolism, Amsterdam UMC, Amsterdam, the Netherlands.
| |
Collapse
|
5
|
Özdoğan KT, Gelabert P, Hammers N, Altınışık NE, de Groot A, Plets G. Archaeology meets environmental genomics: implementing sedaDNA in the study of the human past. ARCHAEOLOGICAL AND ANTHROPOLOGICAL SCIENCES 2024; 16:108. [PMID: 38948161 PMCID: PMC11213777 DOI: 10.1007/s12520-024-01999-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/20/2024] [Indexed: 07/02/2024]
Abstract
Sedimentary ancient DNA (sedaDNA) has become one of the standard applications in the field of paleogenomics in recent years. It has been used for paleoenvironmental reconstructions, detecting the presence of prehistoric species in the absence of macro remains and even investigating the evolutionary history of a few species. However, its application in archaeology has been limited and primarily focused on humans. This article argues that sedaDNA holds significant potential in addressing key archaeological questions concerning the origins, lifestyles, and environments of past human populations. Our aim is to facilitate the integration of sedaDNA into the standard workflows in archaeology as a transformative tool, thereby unleashing its full potential for studying the human past. Ultimately, we not only underscore the challenges inherent in the sedaDNA field but also provide a research agenda for essential enhancements needed for implementing sedaDNA into the archaeological workflow.
Collapse
Affiliation(s)
- Kadir Toykan Özdoğan
- Department of History and Art History, Utrecht University, Drift 6, Utrecht, 3512 BS Netherlands
- Animal Ecology, Wageningen Environmental Research, P.O box 47, Wageningen, Gelderland 6700 AA The Netherlands
| | - Pere Gelabert
- Evolutionary Anthropology, University of Vienna, Djerassiplatz 1, Vienna, 1030 Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Djerassiplatz 1, Vienna, 1030 Austria
| | - Neeke Hammers
- Environmental Archaeology, ADC ArcheoProjecten, Nijverheidsweg-Noord 114, Amersfoort, Utrecht, 3812 PN Netherlands
| | - N. Ezgi Altınışık
- Human-G Laboratory, Department of Anthropology, Hacettepe University, Ankara, 06800 Türkiye
| | - Arjen de Groot
- Animal Ecology, Wageningen Environmental Research, P.O box 47, Wageningen, Gelderland 6700 AA The Netherlands
| | - Gertjan Plets
- Department of History and Art History, Utrecht University, Drift 6, Utrecht, 3512 BS Netherlands
| |
Collapse
|
6
|
Sarhan MS, Filosi M, Maixner F, Fuchsberger C. Taxonize-gb: A tool for filtering GenBank non-redundant databases based on taxonomy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586347. [PMID: 38585727 PMCID: PMC10996545 DOI: 10.1101/2024.03.22.586347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Analyzing taxonomic diversity and identification in diverse ecological samples has become a crucial routine in various research and industrial fields. While DNA barcoding marker-gene approaches were once prevalent, the decreasing costs of next-generation sequencing have made metagenomic shotgun sequencing more popular and feasible. In contrast to DNA-barcoding, metagenomic shotgun sequencing offers possibilities for in-depth characterization of structural and functional diversity. However, analysis of such data is still considered a hurdle due to absence of taxa-specific databases. Here we present taxonize-gb, a command-line software tool to extract GenBank non-redundant nucleotide and protein databases, related to one or more input taxonomy identifier. Our tool allows the creation of taxa-specific reference databases tailored to specific research questions, which reduces search times and therefore represents a practical solution for researchers analyzing large metagenomic data on regular basis. Taxonize-gb is an open-source command-line Python-based tool freely available for installation at https://pypi.org/project/taxonize-gb/ and on GitHub https://github.com/msabrysarhan/taxonize_genbank. It is released under Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
Collapse
Affiliation(s)
- Mohamed S. Sarhan
- Institute for Biomedicine, Eurac Research, Bolzano 39100, Italy (Affiliated institute with Lübeck University, Lübeck, Germany)
- Department CIBIO, University of Trento, Trento 38123, Italy
| | - Michele Filosi
- Institute for Biomedicine, Eurac Research, Bolzano 39100, Italy (Affiliated institute with Lübeck University, Lübeck, Germany)
| | - Frank Maixner
- Institute for Mummy Studies, Eurac Research, Bolzano 39100, Italy
| | - Christian Fuchsberger
- Institute for Biomedicine, Eurac Research, Bolzano 39100, Italy (Affiliated institute with Lübeck University, Lübeck, Germany)
| |
Collapse
|
7
|
Huang KD, Amend L, Gálvez EJC, Lesker TR, de Oliveira R, Bielecka A, Blanco-Míguez A, Valles-Colomer M, Ruf I, Pasolli E, Buer J, Segata N, Esser S, Strowig T, Kehrmann J. Establishment of a non-Westernized gut microbiota in men who have sex with men is associated with sexual practices. Cell Rep Med 2024; 5:101426. [PMID: 38366600 PMCID: PMC10982974 DOI: 10.1016/j.xcrm.2024.101426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/07/2023] [Accepted: 01/22/2024] [Indexed: 02/18/2024]
Abstract
The human gut microbiota is influenced by various factors, including health status and environmental conditions, yet considerable inter-individual differences remain unexplained. Previous studies identified that the gut microbiota of men who have sex with men (MSM) is distinct from that of non-MSM. Here, we reveal through species-level microbiota analysis using shotgun metagenomics that the gut microbiota of many MSM with Western origin resembles gut microbial communities of non-Westernized populations. Specifically, MSM gut microbiomes are frequently dominated by members of the Prevotellaceae family, including co-colonization of species from the Segatella copri complex and unknown Prevotellaceae members. Questionnaire-based analysis exploring inter-individual differences in MSM links specific sexual practices to microbiota composition. Moreover, machine learning identifies microbial features associated with sexual activities in MSM. Together, this study shows associations of sexual activities with gut microbiome alterations in MSM, which may have a large impact on population-based microbiota studies.
Collapse
Affiliation(s)
- Kun D Huang
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lena Amend
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Eric J C Gálvez
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany; Hannover Medical School, Hannover, Germany; Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Till-Robin Lesker
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Romulo de Oliveira
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Agata Bielecka
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Mireia Valles-Colomer
- Department CIBIO, University of Trento, Trento, Italy; Department of Medicine and Life Sciences, University Pompeu Fabra, Barcelona, Spain
| | - Isabel Ruf
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Edoardo Pasolli
- Department of Agricultural Sciences, University of Naples, Naples, Italy
| | - Jan Buer
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
| | - Stefan Esser
- Department of Dermatology and Venerology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany; Hannover Medical School, Hannover, Germany; Centre for Individualized Infection Medicine, Hannover, Germany.
| | - Jan Kehrmann
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
8
|
Rozwalak P, Barylski J, Wijesekara Y, Dutilh BE, Zielezinski A. Ultraconserved bacteriophage genome sequence identified in 1300-year-old human palaeofaeces. Nat Commun 2024; 15:495. [PMID: 38263397 PMCID: PMC10805732 DOI: 10.1038/s41467-023-44370-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 12/11/2023] [Indexed: 01/25/2024] Open
Abstract
Bacteriophages are widely recognised as rapidly evolving biological entities. However, knowledge about ancient bacteriophages is limited. Here, we analyse DNA sequence datasets previously generated from ancient palaeofaeces and human gut-content samples, and identify an ancient phage genome nearly identical to present-day Mushuvirus mushu, a virus that infects gut commensal bacteria. The DNA damage patterns of the genome are consistent with its ancient origin and, despite 1300 years of evolution, the ancient Mushuvirus genome shares 97.7% nucleotide identity with its modern counterpart, indicating a long-term relationship between the prophage and its host. In addition, we reconstruct and authenticate 297 other phage genomes from the last 5300 years, including those belonging to unknown families. Our findings demonstrate the feasibility of reconstructing ancient phage genome sequences, thus expanding the known virosphere and offering insights into phage-bacteria interactions spanning several millennia.
Collapse
Affiliation(s)
- Piotr Rozwalak
- Department of Computational Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, 61-614, Poland
| | - Jakub Barylski
- Department of Molecular Virology, Faculty of Biology, Adam Mickiewicz University, Poznan, 61-614, Poland
| | - Yasas Wijesekara
- Institute of Bioinformatics, University Medicine Greifswald, Felix-Hausdorff-Str. 8, 17475, Greifswald, Germany
| | - Bas E Dutilh
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743, Jena, Germany.
- Theoretical Biology and Bioinformatics, Science4Life, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands.
| | - Andrzej Zielezinski
- Department of Computational Biology, Faculty of Biology, Adam Mickiewicz University, Poznan, 61-614, Poland.
| |
Collapse
|
9
|
Grasso G, Bianciotto V, Marmeisse R. Paleomicrobiology: Tracking the past microbial life from single species to entire microbial communities. Microb Biotechnol 2024; 17:e14390. [PMID: 38227345 PMCID: PMC10832523 DOI: 10.1111/1751-7915.14390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/04/2023] [Accepted: 12/10/2023] [Indexed: 01/17/2024] Open
Abstract
By deciphering information encoded in degraded ancient DNA extracted from up to million-years-old samples, molecular paleomicrobiology enables to objectively retrace the temporal evolution of microbial species and communities. Assembly of full-length genomes of ancient pathogen lineages allows not only to follow historical epidemics in space and time but also to identify the acquisition of genetic features that represent landmarks in the evolution of the host-microbe interaction. Analysis of microbial community DNA extracted from essentially human paleo-artefacts (paleofeces, dental calculi) evaluates the relative contribution of diet, lifestyle and geography on the taxonomic and functional diversity of these guilds in which have been identified species that may have gone extinct in today's human microbiome. As for non-host-associated environmental samples, such as stratified sediment cores, analysis of their DNA illustrates how and at which pace microbial communities are affected by local or widespread environmental disturbance. Description of pre-disturbance microbial diversity patterns can aid in evaluating the relevance and effectiveness of remediation policies. We finally discuss how recent achievements in paleomicrobiology could contribute to microbial biotechnology in the fields of medical microbiology and food science to trace the domestication of microorganisms used in food processing or to illustrate the historic evolution of food processing microbial consortia.
Collapse
Affiliation(s)
- Gianluca Grasso
- Dipartimento di Scienze della Vita e Biologia dei SistemiUniversità degli Studi of TurinTurinItaly
- Institut Systématique Evolution, Biodiversité (ISYEB: UMR7205 CNRS‐MNHN‐Sorbonne Université‐EPHE‐UA)¸ Muséum National d'Histoire NaturelleParisFrance
- Institute for Sustainable Plant Protection (IPSP), SSNational Research Council (CNR)TurinItaly
| | - Valeria Bianciotto
- Institute for Sustainable Plant Protection (IPSP), SSNational Research Council (CNR)TurinItaly
| | - Roland Marmeisse
- Institut Systématique Evolution, Biodiversité (ISYEB: UMR7205 CNRS‐MNHN‐Sorbonne Université‐EPHE‐UA)¸ Muséum National d'Histoire NaturelleParisFrance
- Institute for Sustainable Plant Protection (IPSP), SSNational Research Council (CNR)TurinItaly
| |
Collapse
|
10
|
Blanco-Míguez A, Gálvez EJC, Pasolli E, De Filippis F, Amend L, Huang KD, Manghi P, Lesker TR, Riedel T, Cova L, Punčochář M, Thomas AM, Valles-Colomer M, Schober I, Hitch TCA, Clavel T, Berry SE, Davies R, Wolf J, Spector TD, Overmann J, Tett A, Ercolini D, Segata N, Strowig T. Extension of the Segatella copri complex to 13 species with distinct large extrachromosomal elements and associations with host conditions. Cell Host Microbe 2023; 31:1804-1819.e9. [PMID: 37883976 PMCID: PMC10635906 DOI: 10.1016/j.chom.2023.09.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/14/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023]
Abstract
The Segatella copri (formerly Prevotella copri) complex (ScC) comprises taxa that are key members of the human gut microbiome. It was previously described to contain four distinct phylogenetic clades. Combining targeted isolation with large-scale metagenomic analysis, we defined 13 distinct Segatella copri-related species, expanding the ScC complex beyond four clades. Complete genome reconstruction of thirteen strains from seven species unveiled the presence of genetically diverse large circular extrachromosomal elements. These elements are consistently present in most ScC species, contributing to intra- and inter-species diversities. The nine species-level clades present in humans display striking differences in prevalence and intra-species genetic makeup across human populations. Based on a meta-analysis, we found reproducible associations between members of ScC and the male sex and positive correlations with lower visceral fat and favorable markers of cardiometabolic health. Our work uncovers genomic diversity within ScC, facilitating a better characterization of the human microbiome.
Collapse
Affiliation(s)
| | - Eric J C Gálvez
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany; Hannover Medical School, Hannover, Germany; Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Edoardo Pasolli
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Francesca De Filippis
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Lena Amend
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Kun D Huang
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Paolo Manghi
- Department CIBIO, University of Trento, Trento, Italy
| | - Till-Robin Lesker
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Thomas Riedel
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany; German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Linda Cova
- Department CIBIO, University of Trento, Trento, Italy
| | | | | | | | - Isabel Schober
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Thomas C A Hitch
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Thomas Clavel
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Sarah E Berry
- Department of Nutritional Sciences, King's College London, London, UK
| | | | | | - Tim D Spector
- Department of Twin Research, King's College London, London, UK
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany; German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany; Technical University of Braunschweig, Braunschweig, Germany
| | - Adrian Tett
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Wien, Austria
| | - Danilo Ercolini
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy; Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany; Hannover Medical School, Hannover, Germany; German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany; Centre for Individualized Infection Medicine, Hannover, Germany.
| |
Collapse
|
11
|
Zhang Q, Xu N, Lei C, Chen B, Wang T, Ma Y, Lu T, Penuelas J, Gillings M, Zhu Y, Fu Z, Qian H. Metagenomic Insight into The Global Dissemination of The Antibiotic Resistome. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303925. [PMID: 37870180 PMCID: PMC10667823 DOI: 10.1002/advs.202303925] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/09/2023] [Indexed: 10/24/2023]
Abstract
The global crisis in antimicrobial resistance continues to grow. Estimating the risks of antibiotic resistance transmission across habitats is hindered by the lack of data on mobility and habitat-specificity. Metagenomic samples of 6092 are analyzed to delineate the unique core resistomes from human feces and seven other habitats. This is found that most resistance genes (≈85%) are transmitted between external habitats and human feces. This suggests that human feces are broadly representative of the global resistome and are potentially a hub for accumulating and disseminating resistance genes. The analysis found that resistance genes with ancient horizontal gene transfer (HGT) events have a higher efficiency of transfer across habitats, suggesting that HGT may be the main driver for forming unique but partly shared resistomes in all habitats. Importantly, the human fecal resistome is historically different and influenced by HGT and age. The most important routes of cross-transmission of resistance are from the atmosphere, buildings, and animals to humans. These habitats should receive more attention for future prevention of antimicrobial resistance. The study will disentangle transmission routes of resistance genes between humans and other habitats in a One Health framework and can identify strategies for controlling the ongoing dissemination and antibiotic resistance.
Collapse
Affiliation(s)
- Qi Zhang
- College of EnvironmentZhejiang University of TechnologyHangzhou310032P. R. China
| | - Nuohan Xu
- College of EnvironmentZhejiang University of TechnologyHangzhou310032P. R. China
| | - Chaotang Lei
- College of EnvironmentZhejiang University of TechnologyHangzhou310032P. R. China
| | - Bingfeng Chen
- College of EnvironmentZhejiang University of TechnologyHangzhou310032P. R. China
| | - Tingzhang Wang
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang ProvinceHangzhou310012P. R. China
| | - Yunting Ma
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang ProvinceHangzhou310012P. R. China
| | - Tao Lu
- College of EnvironmentZhejiang University of TechnologyHangzhou310032P. R. China
| | - Josep Penuelas
- CSICGlobal Ecology Unit CREAF‐CSIC‐UABBellaterraBarcelonaCatalonia08193Spain
- CREAFCampus Universitat Autònoma de BarcelonaCerdanyola del VallèsBarcelonaCatalonia08193Spain
| | - Michael Gillings
- ARC Centre of Excellence in Synthetic BiologySchool of Natural SciencesMacquarie UniversitySydneyNSW2109Australia
| | - Yong‐Guan Zhu
- Key Laboratory of Urban Environment and HealthInstitute of Urban EnvironmentChinese Academy of SciencesXiamen361021P. R. China
- State Key Laboratory of Urban and Regional EcologyResearch Center for Eco‐environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
| | - Zhengwei Fu
- College of EnvironmentZhejiang University of TechnologyHangzhou310032P. R. China
- College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou310032P. R. China
| | - Haifeng Qian
- College of EnvironmentZhejiang University of TechnologyHangzhou310032P. R. China
| |
Collapse
|
12
|
Barsch E, Kowarik K, Rodler K, Hörweg C, Reschreiter H, Sattmann H, Walochnik J. First molecular data on the human roundworm Ascaris lumbricoides species complex from the Bronze and Iron Age in Hallstatt, Austria. Sci Rep 2023; 13:12055. [PMID: 37491505 PMCID: PMC10368691 DOI: 10.1038/s41598-023-38989-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/18/2023] [Indexed: 07/27/2023] Open
Abstract
Palaeoparasitological studies can provide valuable information on the emergence, distribution, and elimination of parasites during a particular time in the past. In the prehistoric salt mines of Hallstatt, located in the Austrian Alps, human faeces have been conserved in salt. The aim of this study was to recover ancient DNA of intestinal parasites from these coprolites. Altogether, 35 coprolites from the Hallstatt salt mines, dating back to the Bronze Age mining phase (1158-1063 BCE) and the Iron Age mining phase (750-662 BCE), respectively, were analysed by microscopy and molecular methods. In 91% of the coprolite samples, eggs of soil-transmitted helminths (STH), namely of Trichuris and/or Ascaris were detected by light microscopy. The Ascaris eggs were exceptionally well preserved. For further analysis, DNA was extracted from the palaeofaecal samples and species-specific primers targeting different genes were designed. While amplification of Trichuris DNA remained unsuccessful, sequence data of A. lumbricoides species complex were successfully obtained from 16 coprolites from three different genes, the mitochondrial cytochrome c oxidase subunit 1 gene (cox1), the mitochondrial cytochrome B gene (cytB) and the mitochondrial NADH dehydrogenase subunit 1 gene (nadh1). Importantly, these included two Ascaris sequences from a coprolite from the Bronze Age, which to the best of our knowledge are the first molecular data of this genus from this period.
Collapse
Affiliation(s)
- Elisabeth Barsch
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Kerstin Kowarik
- Prehistoric Department, Natural History Museum Vienna, Vienna, Austria
- Austrian Archaeological Institute, Austrian Academy of Sciences, Vienna, Austria
| | - Katharina Rodler
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Christoph Hörweg
- 3rd Zoological Department, Natural History Museum Vienna, Vienna, Austria
| | - Hans Reschreiter
- Prehistoric Department, Natural History Museum Vienna, Vienna, Austria
| | - Helmut Sattmann
- 3rd Zoological Department, Natural History Museum Vienna, Vienna, Austria
| | - Julia Walochnik
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
13
|
Shanahan F, Ghosh TS, O'Toole PW. Human microbiome variance is underestimated. Curr Opin Microbiol 2023; 73:102288. [PMID: 36889023 DOI: 10.1016/j.mib.2023.102288] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 03/08/2023]
Abstract
Most of the variance in the human microbiome remains unexplained. Although an extensive list of individual lifestyles shaping the microbiome has been identified, important gaps in knowledge persist. Most human microbiome data are from individuals living in socioeconomically developed countries. This may have skewed the interpretation of microbiome variance and its relationship to health and disease. Moreover, striking under-representation of minority groups in microbiome studies is a missed opportunity to assess context, history and the changing nature of the microbiome in relation to the risk of disease. Therefore, we focus here on areas of recent progress - ageing and ethnicity - both of which contribute to microbiome variance with particular lessons for the promise of microbiome-based diagnostics and therapeutics.
Collapse
Affiliation(s)
- Fergus Shanahan
- Department of Medicine, University College Cork, National University of Ireland, Ireland; APC Microbiome Ireland, University College Cork, National University of Ireland, Ireland.
| | - Tarini S Ghosh
- APC Microbiome Ireland, University College Cork, National University of Ireland, Ireland; Department of Computational Biology, Indraprastha Institute of Information Technology Delhi (IIIT-Delhi), New Delhi, India
| | - Paul W O'Toole
- School of Microbiology, University College Cork, National University of Ireland, Ireland; APC Microbiome Ireland, University College Cork, National University of Ireland, Ireland
| |
Collapse
|
14
|
Warinner C. An Archaeology of Microbes. JOURNAL OF ANTHROPOLOGICAL RESEARCH 2022. [DOI: 10.1086/721976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Christina Warinner
- Department of Anthropology, Harvard University, Cambridge MA, USA 02138, and Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany 04103
| |
Collapse
|
15
|
The nonindustrialised microbiome in a modern world. Clin Sci (Lond) 2022; 136:1683-1690. [DOI: 10.1042/cs20220203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022]
Abstract
Abstract
The microbiome contributes to human development and maturation, and is essential for maintenance of health and prevention of disease. While the human genome encodes one’s identity, the microbiome – also individually unique – provides a window on one’s lifestyle and exposure to environmental variables. The microbiome thus serves as a biomarker of host health and a driver of certain diseases. However, current understanding of the gut microbiome is largely based on studies of industrialised peoples of North America and Europe. Gaps in knowledge of the microbiomes of other groups, particularly those in developing or nonindustrialised societies, are important, particularly in view of contrasting epidemiological risks of acquiring chronic inflammatory and metabolic disorders. Here, we explore underlying mechanisms of microbiome differences and whether the potential benefits of nonindustrialised microbiome can be realised in a modern world.
Collapse
|
16
|
Curious case of the history of fermented milk: tangible evidence. Sci Bull (Beijing) 2022; 67:1625-1627. [PMID: 36546038 DOI: 10.1016/j.scib.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
17
|
Duong VA, Park JM, Lee H. A review of suspension trapping digestion method in bottom-up proteomics. J Sep Sci 2022; 45:3150-3168. [PMID: 35770343 DOI: 10.1002/jssc.202200297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/05/2022]
Abstract
The standard bottom-up proteomic workflow is comprised of sample preparation, data acquisition, and data analysis. While the latter two parts have made considerable advances in the last decade, sample preparation has remained an important challenge within the workflow due to the multi-step nature of complex biological samples, and still requires much development. Several sample preparation methods have been developed and used in the last two decades, including in-gel, in-solution, on-bead, filter-aided sample preparation, and suspension trapping, to improve reproducibility, efficiency, scalability, and reduce handling time of this process. One of the most recent methods developed and applied in proteomics studies in recent years is suspension trapping, which combines rapid detergent removal, reactor-type protein digestion, and peptide clean-up in a tip or spin column. Suspension trapping is a simple, rapid, and reproducible digestion method that can effectively handle proteins in low microgram or sub-microgram amounts. This review discusses the benefits of the suspension trapping digestion method in relation to its development and application in bottom-up proteomics studies. We also discuss recent applications of suspension trapping digestion to different sample types and the features of the suspension trapping digestion method compared with other sample preparation methods. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Van-An Duong
- College of Pharmacy, Gachon University, Incheon, 21936, South Korea
| | - Jong-Moon Park
- College of Pharmacy, Gachon University, Incheon, 21936, South Korea
| | - Hookeun Lee
- College of Pharmacy, Gachon University, Incheon, 21936, South Korea
| |
Collapse
|
18
|
Schaschl H, Göllner T, Morris DL. Positive selection acts on regulatory genetic variants in populations of European ancestry that affect ALDH2 gene expression. Sci Rep 2022; 12:4563. [PMID: 35296751 PMCID: PMC8927298 DOI: 10.1038/s41598-022-08588-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/09/2022] [Indexed: 11/09/2022] Open
Abstract
ALDH2 is a key enzyme in alcohol metabolism that protects cells from acetaldehyde toxicity. Using iHS, iSAFE and FST statistics, we identified regulatory acting variants affecting ALDH2 gene expression under positive selection in populations of European ancestry. Several SNPs (rs3184504, rs4766578, rs10774625, rs597808, rs653178, rs847892, rs2013002) that function as eQTLs for ALDH2 in various tissues showed evidence of strong positive selection. Very large pairwise FST values indicated high genetic differentiation at these loci between populations of European ancestry and populations of other global ancestries. Estimating the timing of positive selection on the beneficial alleles suggests that these variants were recently adapted approximately 3000-3700 years ago. The derived beneficial alleles are in complete linkage disequilibrium with the derived ALDH2 promoter variant rs886205, which is associated with higher transcriptional activity. The SNPs rs4766578 and rs847892 are located in binding sequences for the transcription factor HNF4A, which is an important regulatory element of ALDH2 gene expression. In contrast to the missense variant ALDH2 rs671 (ALDH2*2), which is common only in East Asian populations and is associated with greatly reduced enzyme activity and alcohol intolerance, the beneficial alleles of the regulatory variants identified in this study are associated with increased expression of ALDH2. This suggests adaptation of Europeans to higher alcohol consumption.
Collapse
Affiliation(s)
- Helmut Schaschl
- Department of Evolutionary Anthropology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Tobias Göllner
- Department of Evolutionary Anthropology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - David L Morris
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, Great Maze Pond, London, SE1 9RT, UK
| |
Collapse
|