1
|
Veale R, Takahashi M. Pathways for Naturalistic Looking Behavior in Primate II. Superior Colliculus Integrates Parallel Top-down and Bottom-up Inputs. Neuroscience 2024; 545:86-110. [PMID: 38484836 DOI: 10.1016/j.neuroscience.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 02/15/2024] [Accepted: 03/01/2024] [Indexed: 03/24/2024]
Abstract
Volitional signals for gaze control are provided by multiple parallel pathways converging on the midbrain superior colliculus (SC), whose deeper layers output to the brainstem gaze circuits. In the first of two papers (Takahashi and Veale, 2023), we described the properties of gaze behavior of several species under both laboratory and natural conditions, as well as the current understanding of the brainstem and spinal cord circuits implementing gaze control in primate. In this paper, we review the parallel pathways by which sensory and task information reaches SC and how these sensory and task signals interact within SC's multilayered structure. This includes both bottom-up (world statistics) signals mediated by sensory cortex, association cortex, and subcortical structures, as well as top-down (goal and task) influences which arrive via either direct excitatory pathways from cerebral cortex, or via indirect basal ganglia relays resulting in inhibition or dis-inhibition as appropriate for alternative behaviors. Models of attention such as saliency maps serve as convenient frameworks to organize our understanding of both the separate computations of each neural pathway, as well as the interaction between the multiple parallel pathways influencing gaze. While the spatial interactions between gaze's neural pathways are relatively well understood, the temporal interactions between and within pathways will be an important area of future study, requiring both improved technical methods for measurement and improvement of our understanding of how temporal dynamics results in the observed spatiotemporal allocation of gaze.
Collapse
Affiliation(s)
- Richard Veale
- Department of Neurobiology, Graduate School of Medicine, Kyoto University, Japan
| | - Mayu Takahashi
- Department of Systems Neurophysiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan.
| |
Collapse
|
2
|
Fazekas P, Cleeremans A, Overgaard M. A construct-first approach to consciousness science. Neurosci Biobehav Rev 2024; 156:105480. [PMID: 38008237 DOI: 10.1016/j.neubiorev.2023.105480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/26/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
We propose a new approach to consciousness science that instead of comparing complex theoretical positions deconstructs existing theories, takes their central assumptions while disregarding their auxiliary hypotheses, and focuses its investigations on the main constructs that these central assumptions rely on (like global workspace, recurrent processing, metarepresentation). Studying how these main constructs are anchored in lower-level constructs characterizing underlying neural processing will not just offer an alternative to theory comparisons but will also take us one step closer to empirical resolutions. Moreover, exploring the compatibility and possible combinations of the lower-level constructs will allow for new theoretical syntheses. This construct-first approach will improve our ability to understand the commitments of existing theories and pave the way for moving beyond them.
Collapse
Affiliation(s)
- Peter Fazekas
- Aarhus Institute of Advanced Studies, Aarhus University, Høegh-Guldbergs Gade 6B, 8000 Aarhus, Denmark; Center of Functionally Integrative Neuroscience, Aarhus University, Universitetsbyen 3, 8000 Aarhus, Denmark.
| | - Axel Cleeremans
- Center for Research in Cognition & Neurosciences, Université Libre De Bruxelles, 50 avenue F.D. Roosevelt CP191, 1050 Bruxelles, Belgium
| | - Morten Overgaard
- Center of Functionally Integrative Neuroscience, Aarhus University, Universitetsbyen 3, 8000 Aarhus, Denmark
| |
Collapse
|
3
|
Xia M, Agca BN, Yoshida T, Choi J, Amjad U, Bose K, Keren N, Zukerman S, Cima MJ, Graybiel AM, Schwerdt HN. Scalable, flexible carbon fiber electrode thread arrays for three-dimensional probing of neurochemical activity in deep brain structures of rodents. Biosens Bioelectron 2023; 241:115625. [PMID: 37708685 PMCID: PMC10591823 DOI: 10.1016/j.bios.2023.115625] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 09/16/2023]
Abstract
We developed a flexible "electrode-thread" array for recording dopamine neurochemicals from a lateral distribution of subcortical targets (up to 16) transverse to the axis of insertion. Ultrathin (∼10 μm diameter) carbon fiber (CF) electrode-threads (CFETs) are clustered into a tight bundle to introduce them into the brain from a single-entry point. The individual CFETs splay laterally in deep brain tissue during insertion due to their innate flexibility. This spatial redistribution allows navigation of the CFETs towards deep brain targets spreading horizontally from the axis of insertion. Commercial "linear" arrays provide single-entry insertion but only allow measurements along the axis of insertion. Horizontally configured arrays inflict separate penetrations for each individual channel. We tested functional performance of our CFET arrays in vivo for recording dopamine and for providing lateral spread to multiple distributed sites in the rat striatum. Spatial spread was further characterized in agar brain phantoms as a function of insertion depth. We also developed protocols to slice the embedded CFETs within fixed brain tissue using standard histology. This method allowed extraction of the precise spatial coordinates of the implanted CFETs and their recording sites as integrated with immunohistochemical staining for surrounding anatomical, cytological, and protein expression labels. Our CFET array has the potential to unlock a wide range of applications, from uncovering the role of neuromodulators in synaptic plasticity, to addressing critical safety barriers in clinical translation towards diagnostic and adaptive treatment in Parkinson's disease and major mood disorders.
Collapse
Affiliation(s)
- Mingyi Xia
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, USA
| | - Busra Nur Agca
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, USA
| | - Tomoko Yoshida
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, USA
| | - Jiwon Choi
- Department of Bioengineering, University of Pittsburgh, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Usamma Amjad
- Department of Bioengineering, University of Pittsburgh, USA
| | - Kade Bose
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, USA
| | - Nikol Keren
- Department of Bioengineering, University of Pittsburgh, USA
| | | | - Michael J Cima
- Koch Institute for Integrative Cancer Research and Department of Materials Science, Massachusetts Institute of Technology, USA
| | - Ann M Graybiel
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, USA
| | - Helen N Schwerdt
- Department of Bioengineering, University of Pittsburgh, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
4
|
Takahashi M, Veale R. Pathways for Naturalistic Looking Behavior in Primate I: Behavioral Characteristics and Brainstem Circuits. Neuroscience 2023; 532:133-163. [PMID: 37776945 DOI: 10.1016/j.neuroscience.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/09/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023]
Abstract
Organisms control their visual worlds by moving their eyes, heads, and bodies. This control of "gaze" or "looking" is key to survival and intelligence, but our investigation of the underlying neural mechanisms in natural conditions is hindered by technical limitations. Recent advances have enabled measurement of both brain and behavior in freely moving animals in complex environments, expanding on historical head-fixed laboratory investigations. We juxtapose looking behavior as traditionally measured in the laboratory against looking behavior in naturalistic conditions, finding that behavior changes when animals are free to move or when stimuli have depth or sound. We specifically focus on the brainstem circuits driving gaze shifts and gaze stabilization. The overarching goal of this review is to reconcile historical understanding of the differential neural circuits for different "classes" of gaze shift with two inconvenient truths. (1) "classes" of gaze behavior are artificial. (2) The neural circuits historically identified to control each "class" of behavior do not operate in isolation during natural behavior. Instead, multiple pathways combine adaptively and non-linearly depending on individual experience. While the neural circuits for reflexive and voluntary gaze behaviors traverse somewhat independent brainstem and spinal cord circuits, both can be modulated by feedback, meaning that most gaze behaviors are learned rather than hardcoded. Despite this flexibility, there are broadly enumerable neural pathways commonly adopted among primate gaze systems. Parallel pathways which carry simultaneous evolutionary and homeostatic drives converge in superior colliculus, a layered midbrain structure which integrates and relays these volitional signals to brainstem gaze-control circuits.
Collapse
Affiliation(s)
- Mayu Takahashi
- Department of Systems Neurophysiology, Graduate School of Medical and Dental, Sciences, Tokyo Medical and Dental University, Japan.
| | - Richard Veale
- Department of Neurobiology, Graduate School of Medicine, Kyoto University, Japan
| |
Collapse
|
5
|
Ayar EC, Heusser MR, Bourrelly C, Gandhi NJ. Distinct context- and content-dependent population codes in superior colliculus during sensation and action. Proc Natl Acad Sci U S A 2023; 120:e2303523120. [PMID: 37748075 PMCID: PMC10556644 DOI: 10.1073/pnas.2303523120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 08/23/2023] [Indexed: 09/27/2023] Open
Abstract
Sensorimotor transformation is the process of first sensing an object in the environment and then producing a movement in response to that stimulus. For visually guided saccades, neurons in the superior colliculus (SC) emit a burst of spikes to register the appearance of stimulus, and many of the same neurons discharge another burst to initiate the eye movement. We investigated whether the neural signatures of sensation and action in SC depend on context. Spiking activity along the dorsoventral axis was recorded with a laminar probe as Rhesus monkeys generated saccades to the same stimulus location in tasks that require either executive control to delay saccade onset until permission is granted or the production of an immediate response to a target whose onset is predictable. Using dimensionality reduction and discriminability methods, we show that the subspaces occupied during the visual and motor epochs were both distinct within each task and differentiable across tasks. Single-unit analyses, in contrast, show that the movement-related activity of SC neurons was not different between tasks. These results demonstrate that statistical features in neural activity of simultaneously recorded ensembles provide more insight than single neurons. They also indicate that cognitive processes associated with task requirements are multiplexed in SC population activity during both sensation and action and that downstream structures could use this activity to extract context. Additionally, the entire manifolds associated with sensory and motor responses, respectively, may be larger than the subspaces explored within a certain set of experiments.
Collapse
Affiliation(s)
- Eve C. Ayar
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA15213
- Program in Neural Computation, Carnegie Mellon University, Pittsburgh, PA15213
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA15213
| | - Michelle R. Heusser
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA15213
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA15213
| | - Clara Bourrelly
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA15213
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA15213
| | - Neeraj J. Gandhi
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA15213
- Program in Neural Computation, Carnegie Mellon University, Pittsburgh, PA15213
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA15213
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA15213
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA15213
| |
Collapse
|
6
|
Baumann MP, Bogadhi AR, Denninger AF, Hafed ZM. Sensory tuning in neuronal movement commands. Proc Natl Acad Sci U S A 2023; 120:e2305759120. [PMID: 37695898 PMCID: PMC10515157 DOI: 10.1073/pnas.2305759120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/02/2023] [Indexed: 09/13/2023] Open
Abstract
Movement control is critical for successful interaction with our environment. However, movement does not occur in complete isolation of sensation, and this is particularly true of eye movements. Here, we show that the neuronal eye movement commands emitted by the superior colliculus (SC), a structure classically associated with oculomotor control, encompass a robust visual sensory representation of eye movement targets. Thus, similar saccades toward different images are associated with different saccade-related "motor" bursts. Such sensory tuning in SC saccade motor commands appeared for all image manipulations that we tested, from simple visual features to real-life object images, and it was also strongest in the most motor neurons in the deeper collicular layers. Visual-feature discrimination performance in the motor commands was also stronger than in visual responses. Comparing SC motor command feature discrimination performance to that in the primary visual cortex during steady-state gaze fixation revealed that collicular motor bursts possess a reliable perisaccadic sensory representation of the peripheral saccade target's visual appearance, exactly when retinal input is expected to be most uncertain. Our results demonstrate that SC neuronal movement commands likely serve a fundamentally sensory function.
Collapse
Affiliation(s)
- Matthias P. Baumann
- Physiology of Active Vision Laboratory, Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen72076, Germany
- Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen72076, Germany
| | - Amarender R. Bogadhi
- Physiology of Active Vision Laboratory, Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen72076, Germany
- Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen72076, Germany
- Central Nervous Systems Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach88400, Germany
| | - Anna F. Denninger
- Physiology of Active Vision Laboratory, Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen72076, Germany
- Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen72076, Germany
| | - Ziad M. Hafed
- Physiology of Active Vision Laboratory, Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen72076, Germany
- Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen72076, Germany
| |
Collapse
|
7
|
Stine GM, Trautmann EM, Jeurissen D, Shadlen MN. A neural mechanism for terminating decisions. Neuron 2023; 111:2601-2613.e5. [PMID: 37352857 PMCID: PMC10565788 DOI: 10.1016/j.neuron.2023.05.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/20/2023] [Accepted: 05/30/2023] [Indexed: 06/25/2023]
Abstract
The brain makes decisions by accumulating evidence until there is enough to stop and choose. Neural mechanisms of evidence accumulation are established in association cortex, but the site and mechanism of termination are unknown. Here, we show that the superior colliculus (SC) plays a causal role in terminating decisions, and we provide evidence for a mechanism by which this occurs. We recorded simultaneously from neurons in the lateral intraparietal area (LIP) and SC while monkeys made perceptual decisions. Despite similar trial-averaged activity, we found distinct single-trial dynamics in the two areas: LIP displayed drift-diffusion dynamics and SC displayed bursting dynamics. We hypothesized that the bursts manifest a threshold mechanism applied to signals represented in LIP to terminate the decision. Consistent with this hypothesis, SC inactivation produced behavioral effects diagnostic of an impaired threshold sensor and prolonged the buildup of activity in LIP. The results reveal the transformation from deliberation to commitment.
Collapse
Affiliation(s)
- Gabriel M Stine
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eric M Trautmann
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Grossman Center for the Statistics of Mind, Columbia University, New York, NY 10027, USA
| | - Danique Jeurissen
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA
| | - Michael N Shadlen
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
8
|
Heusser MR, Jagadisan UK, Gandhi NJ. Drifting population dynamics with transient resets characterize sensorimotor transformation in the monkey superior colliculus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.03.522634. [PMID: 36711849 PMCID: PMC9881850 DOI: 10.1101/2023.01.03.522634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
To produce goal-directed eye movements known as saccades, we must channel sensory input from our environment through a process known as sensorimotor transformation. The behavioral output of this phenomenon (an accurate eye movement) is straightforward, but the coordinated activity of neurons underlying its dynamics is not well understood. We searched for a neural correlate of sensorimotor transformation in the activity patterns of simultaneously recorded neurons in the superior colliculus (SC) of three male rhesus monkeys performing a visually guided, delayed saccade task. Neurons in the intermediate layers produce a burst of spikes both following the appearance of a visual (sensory) stimulus and preceding an eye movement command, but many also exhibit a sustained activity level during the intervening time ("delay period"). This sustained activity could be representative of visual processing or motor preparation, along with countless cognitive processes. Using a novel measure we call the Visuomotor Proximity Index (VMPI), we pitted visual and motor signals against each other by measuring the degree to which each session's population activity (as summarized in a low-dimensional framework) could be considered more visual-like or more motor-like. The analysis highlighted two salient features of sensorimotor transformation. One, population activity on average drifted systematically toward a motor-like representation and intermittently reverted to a visual-like representation following a microsaccade. Two, activity patterns that drift to a stronger motor-like representation by the end of the delay period may enable a more rapid initiation of a saccade, substantiating the idea that this movement initiation mechanism is conserved across motor systems.
Collapse
Affiliation(s)
- Michelle R Heusser
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Uday K Jagadisan
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Neeraj J Gandhi
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Bourrelly C, Massot C, Gandhi NJ. Rapid Input-Output Transformation between Local Field Potential and Spiking Activity during Sensation but not Action in the Superior Colliculus. J Neurosci 2023; 43:4047-4061. [PMID: 37127365 PMCID: PMC10255026 DOI: 10.1523/jneurosci.2318-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023] Open
Abstract
Sensorimotor transformation is the sequential process of registering a sensory signal in the environment and then responding with the relevant movement at an appropriate time. For visually guided eye movements, neural signatures in the form of spiking activity of neurons have been extensively studied along the dorsoventral axis of the superior colliculus (SC). In contrast, the local field potential (LFP), which represents the putative input to a region, remains largely unexplored in the SC. We therefore compared amplitude levels and onset times of both spike bursts and LFP modulations recorded simultaneously with a laminar probe along the dorsoventral axis of SC in 3 male monkeys performing the visually guided delayed saccade task. Both signals displayed a gradual transition from sensory activity in the superficial layers to a predominantly motor response in the deeper layers, although the transition from principally sensory to mostly motor response occurred ∼500 μm deeper for the LFP. For the sensory response, LFP modulation preceded spike burst onset by <5 ms in the superficial and intermediate layers and only when data were analyzed on a trial-by-trial basis. The motor burst in the spiking activity led LFP modulation by >25 ms in the deeper layers. The results reveal a fast and efficient input-output transformation between LFP modulation and spike burst in the visually responsive layers activity during sensation but not during action. The spiking pattern observed during the movement phase is likely dominated by intracollicular processing that is not captured in the LFP.SIGNIFICANCE STATEMENT What is the sequence of events between local field potential (LFP) modulation and spiking activity during sensorimotor transformation? A trial-by-trial analysis reveals that the LFP activity leads the spike burst in the superficial and intermediate layers of the superior colliculus during visual processing, while both trial-by-trial and the average analyses show that the spike burst leads the LFP modulation during movement generation. These results suggest an almost instantaneous LFP input, spike burst output transformation in the visually responsive layers of the superior colliculus when registering the stimulus. In contrast, substantial intracollicular processing likely results in a saccade-related spike burst that leads LFP modulation.
Collapse
Affiliation(s)
- Clara Bourrelly
- Departments of Bioengineering
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Corentin Massot
- Departments of Bioengineering
- Neurobiology
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Neeraj J Gandhi
- Departments of Bioengineering
- Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
10
|
Xia M, Agca BN, Yoshida T, Choi J, Amjad U, Bose K, Keren N, Zukerman S, Cima MJ, Graybiel AM, Schwerdt HN. Scalable, flexible carbon fiber electrode thread arrays for three-dimensional spatial profiling of neurochemical activity in deep brain structures of rodents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.15.537033. [PMID: 37131810 PMCID: PMC10153108 DOI: 10.1101/2023.04.15.537033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We developed a flexible "electrode-thread" array for recording dopamine neurochemical activity from a lateral distribution of subcortical targets (up to 16) transverse to the axis of insertion. Ultrathin (∼ 10 µm diameter) carbon fiber (CF) electrode-threads (CFETs) are clustered into a tight bundle to introduce them into the brain from a single entry point. The individual CFETs splay laterally in deep brain tissue during insertion due to their innate flexibility. This spatial redistribution allows navigation of the CFETs towards deep brain targets spreading horizontally from the axis of insertion. Commercial "linear" arrays provide single entry insertion but only allow measurements along the axis of insertion. Horizontally configured neurochemical recording arrays inflict separate penetrations for each individual channel (i.e., electrode). We tested functional performance of our CFET arrays in vivo for recording dopamine neurochemical dynamics and for providing lateral spread to multiple distributed sites in the striatum of rats. Spatial spread was further characterized using agar brain phantoms to measure electrode deflection as a function of insertion depth. We also developed protocols to slice the embedded CFETs within fixed brain tissue using standard histology techniques. This method allowed extraction of the precise spatial coordinates of the implanted CFETs and their recording sites as integrated with immunohistochemical staining for surrounding anatomical, cytological, and protein expression labels. Neurochemical recording operations tested here can be integrated with already widely established capabilities of CF-based electrodes to record single neuron activity and local field potentials, to enable multi-modal recording functions. Our CFET array has the potential to unlock a wide range of applications, from uncovering the role of neuromodulators in synaptic plasticity, to addressing critical safety barriers in clinical translation towards diagnostic and adaptive treatment in Parkinson's disease and major mood disorders.
Collapse
Affiliation(s)
- Mingyi Xia
- McGovern Institute and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
| | - Busra Nur Agca
- McGovern Institute and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
| | - Tomoko Yoshida
- McGovern Institute and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
| | - Jiwon Choi
- Department of Bioengineering, University of Pittsburgh
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Usamma Amjad
- Department of Bioengineering, University of Pittsburgh
| | - Kade Bose
- McGovern Institute and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
| | - Nikol Keren
- Department of Bioengineering, University of Pittsburgh
| | | | - Michael J Cima
- Koch Institute for Integrative Cancer Research and Department of Materials Science, Massachusetts Institute of Technology
| | - Ann M Graybiel
- McGovern Institute and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
| | - Helen N Schwerdt
- Department of Bioengineering, University of Pittsburgh
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD
| |
Collapse
|
11
|
Ventral premotor cortex encodes task relevant features during eye and head movements. Sci Rep 2022; 12:22093. [PMID: 36543870 PMCID: PMC9772313 DOI: 10.1038/s41598-022-26479-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Visual exploration of the environment is achieved through gaze shifts or coordinated movements of the eyes and the head. The kinematics and contributions of each component can be decoupled to fit the context of the required behavior, such as redirecting the visual axis without moving the head or rotating the head without changing the line of sight. A neural controller of these effectors, therefore, must show code relating to multiple muscle groups, and it must also differentiate its code based on context. In this study we tested whether the ventral premotor cortex (PMv) in monkey exhibits a population code relating to various features of eye and head movements. We constructed three different behavioral tasks or contexts, each with four variables to explore whether PMv modulates its activity in accordance with these factors. We found that task related population code in PMv differentiates between all task related features and conclude that PMv carries information about task relevant features during eye and head movements. Furthermore, this code represents both lower-level (effector and movement direction) and higher-level (context) information.
Collapse
|
12
|
Zhang T, Malevich T, Baumann MP, Hafed ZM. Superior colliculus saccade motor bursts do not dictate movement kinematics. Commun Biol 2022; 5:1222. [DOI: 10.1038/s42003-022-04203-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/01/2022] [Indexed: 11/13/2022] Open
Abstract
AbstractThe primate superior colliculus (SC) contains a topographic map of space, such that the anatomical location of active neurons defines a desired eye movement vector. Complementing such a spatial code, SC neurons also exhibit saccade-related bursts that are tightly synchronized with movement onset. Current models suggest that such bursts constitute a rate code dictating movement kinematics. Here, using two complementary approaches, we demonstrate a dissociation between the SC rate code and saccade kinematics. First, we show that SC burst strength systematically varies depending on whether saccades of the same amplitude are directed towards the upper or lower visual fields, but the movements themselves have similar kinematics. Second, we show that for the same saccade vector, when saccades are significantly slowed down by the absence of a visible saccade target, SC saccade-related burst strengths can be elevated rather than diminished. Thus, SC saccade-related motor bursts do not necessarily dictate movement kinematics.
Collapse
|
13
|
Heusser MR, Bourrelly C, Gandhi NJ. Decoding the Time Course of Spatial Information from Spiking and Local Field Potential Activities in the Superior Colliculus. eNeuro 2022; 9:ENEURO.0347-22.2022. [PMID: 36379711 PMCID: PMC9718355 DOI: 10.1523/eneuro.0347-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/31/2022] [Accepted: 11/05/2022] [Indexed: 11/17/2022] Open
Abstract
Place code representation is ubiquitous in circuits that encode spatial parameters. For visually guided eye movements, neurons in many brain regions emit spikes when a stimulus is presented in their receptive fields and/or when a movement is directed into their movement fields. Crucially, individual neurons respond for a broad range of directions or eccentricities away from the optimal vector, making it difficult to decode the stimulus location or the saccade vector from each cell's activity. We investigated whether it is possible to decode the spatial parameter with a population-level analysis, even when the optimal vectors are similar across neurons. Spiking activity and local field potentials (LFPs) in the superior colliculus (SC) were recorded with a laminar probe as monkeys performed a delayed saccade task to one of eight targets radially equidistant in direction. A classifier was applied offline to decode the spatial configuration as the trial progresses from sensation to action. For spiking activity, decoding performance across all eight directions was highest during the visual and motor epochs and lower but well above chance during the delay period. Classification performance followed a similar pattern for LFP activity too, except the performance during the delay period was limited mostly to the preferred direction. Increasing the number of neurons in the population consistently increased classifier performance for both modalities. Overall, this study demonstrates the power of population activity for decoding spatial information not possible from individual neurons.
Collapse
Affiliation(s)
- Michelle R Heusser
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213
- Center for Neural Basis of Cognition (CNBC), University of Pittsburgh, Pittsburgh, PA 15213
| | - Clara Bourrelly
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213
- Center for Neural Basis of Cognition (CNBC), University of Pittsburgh, Pittsburgh, PA 15213
| | - Neeraj J Gandhi
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213
- Center for Neural Basis of Cognition (CNBC), University of Pittsburgh, Pittsburgh, PA 15213
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213
| |
Collapse
|
14
|
McPeek RM. Motor control: Ready, steady, go! Curr Biol 2022; 32:R290-R292. [PMID: 35349819 DOI: 10.1016/j.cub.2022.02.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neurons governing saccadic eye movements typically multiplex sensory, cognitive, and movement-related signals. How is a reliable 'go' signal extracted from this mixture? A new study reveals that saccade initiation is gated by the temporal stability of rising population activity.
Collapse
Affiliation(s)
- Robert M McPeek
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, NY 10036, USA.
| |
Collapse
|