1
|
Burriel-Carranza B, Tejero-Cicuéndez H, Carné A, Mochales-Riaño G, Talavera A, Al Saadi S, Els J, Šmíd J, Tamar K, Tarroso P, Carranza S. Integrating Genomics and Biogeography to Unravel the Origin of a Mountain Biota: The Case of a Reptile Endemicity Hotspot in Arabia. Syst Biol 2025; 74:230-249. [PMID: 38953551 PMCID: PMC11958937 DOI: 10.1093/sysbio/syae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/21/2024] [Accepted: 07/05/2024] [Indexed: 07/04/2024] Open
Abstract
Advances in genomics have greatly enhanced our understanding of mountain biodiversity, providing new insights into the complex and dynamic mechanisms that drive the formation of mountain biotas. These span from broad biogeographic patterns to population dynamics and adaptations to these environments. However, significant challenges remain in integrating large-scale and fine-scale findings to develop a comprehensive understanding of mountain biodiversity. One significant challenge is the lack of genomic data, especially in historically understudied arid regions where reptiles are a particularly diverse vertebrate group. In the present study, we assembled a de novo genome-wide SNP dataset for the complete endemic reptile fauna of a mountain range (19 described species with more than 600 specimens sequenced), and integrated state-of-the-art biogeographic analyses at the population, species, and community level. Thus, we provide a holistic integration of how a whole endemic reptile community has originated, diversified and dispersed through a mountain system. Our results show that reptiles independently colonized the Hajar Mountains of southeastern Arabia 11 times. After colonization, species delimitation methods suggest high levels of within-mountain diversification, supporting up to 49 deep lineages. This diversity is strongly structured following local topography, with the highest peaks acting as a broad barrier to gene flow among the entire community. Interestingly, orogenic events do not seem key drivers of the biogeographic history of reptiles in this system. Instead, past climatic events seem to have had a major role in this community assemblage. We observe an increase of vicariant events from Late Pliocene onwards, coinciding with an unstable climatic period of rapid shifts between hyper-arid and semiarid conditions that led to the ongoing desertification of Arabia. We conclude that paleoclimate, and particularly extreme aridification, acted as a main driver of diversification in arid mountain systems which is tangled with the generation of highly adapted endemicity. Overall, our study does not only provide a valuable contribution to understanding the evolution of mountain biodiversity, but also offers a flexible and scalable approach that can be reproduced into any taxonomic group and at any discrete environment.
Collapse
Affiliation(s)
- Bernat Burriel-Carranza
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta, 37–49, 08003, Barcelona, Spain
- Museu de Ciències Naturals de Barcelona, P° Picasso s/n, Parc Ciutadella, 08003, Barcelona, Spain
| | - Héctor Tejero-Cicuéndez
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta, 37–49, 08003, Barcelona, Spain
- Department of Biodiversity, Ecology and Evolution, Faculty of Biology, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Albert Carné
- Museo Nacional de Ciencias Naturales (MNCN), CSIC, C/ José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Gabriel Mochales-Riaño
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta, 37–49, 08003, Barcelona, Spain
| | - Adrián Talavera
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta, 37–49, 08003, Barcelona, Spain
| | | | - Johannes Els
- Breeding Centre for Endangered Arabian Wildlife, Environment and Protected Areas Authority, Sharjah, United Arab Emirates
| | - Jiří Šmíd
- Department of Zoology, Faculty of Science, Charles University, 128 00, Prague, Czech Republic
| | - Karin Tamar
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta, 37–49, 08003, Barcelona, Spain
| | - Pedro Tarroso
- CIBIO,Centro de Investigação em Biodiversidade e Recursos Genéticos,InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus deVairão, 4485-661 Vairão, Portugal
| | - Salvador Carranza
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta, 37–49, 08003, Barcelona, Spain
| |
Collapse
|
2
|
Breed WG, Leigh CM, Roycroft E, Ahmer I. Sperm morphology of the Australasian hydromyine rodents and the interactions between the spermatozoon and oocyte at the time of fertilisation. Reprod Fertil Dev 2025; 37:RD25012. [PMID: 40193578 DOI: 10.1071/rd25012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 03/18/2025] [Indexed: 04/09/2025] Open
Abstract
Context This paper explores the morphology of spermatozoa in Australian hydromyine rodents, specifically focusing on the plains mouse (Pseudomys australis ), and examines the interactions between sperm and eggs at time of fertilisation. Aims The aim of this study is to provide an overview of sperm morphology of hydromyine rodents, comparing its morphology across the different species and to investigate the interactions between the gametes at fertilisation in the plains mouse. Methods We summarise the sperm head morphology of the hydromyine rodents across the six divisions, with emphasis on the structure in the plains mouse and its interactions with the zona pellucida during fertilisation. Key results Most hydromyine rodents, including the plains mouse, exhibit a highly complex sperm head morphology with two prominent ventral processes in addition to the apical hook. These processes primarily contain filamentous actin with some species of the New Guinea Pogonomys Division having a nuclear extension into the lower process. Nevertheless three species in the Pogonomys Division and a few in the Pseudomys Division have derived sperm heads which lack the ventral processes which in the plains mouse bind the sperm to the zona pellucida around the ovulated oocyte. This may stabilise the sperm head at this time and facilitate zona pellucida penetration and fusion with the oolemma at this time. Conclusion The complex sperm head morphology in most of the hydromyine rodents is likely to date back over one million years with, in the plains mouse, interaction between sperm and egg during fertilisation involving sperm head stabilisation and zona pellucida attachment. Implications These findings suggest in hydromyine rodents valuable insights into the evolutionary development of sperm morphology and sperm-egg interactions during fertilisation, and in particular that the role of the ventral processes may be critical for successful fertilisation in this group. Understanding these processes could give insight into broader studies on reproductive strategies and evolutionary biology in rodents.
Collapse
Affiliation(s)
- William G Breed
- School of Biological Sciences, Faculty of Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Chris M Leigh
- Adelaide Microscopy Unit, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Emily Roycroft
- School of Biological Sciences, Monash University, Melbourne, Vic, Australia
| | - Ingrid Ahmer
- School of Biological Sciences, Faculty of Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
3
|
Villastrigo A, Cooper SJB, Langille B, Fagan-Jeffries EP, Humphreys WF, Hendrich L, Balke M. Aridification and major geotectonic landscape change shaped an extraordinary species radiation across a world's extreme elevational gradient. Commun Biol 2024; 7:1500. [PMID: 39538007 PMCID: PMC11561355 DOI: 10.1038/s42003-024-07181-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Understanding the profound influence of climatic and tectonic histories on adaptation and speciation is a crucial focus in biology research. While voyages like Humboldt's expedition shaped our understanding of adaptation, the origin of current biodiversity remains unclear - whether it arose in situ or through dispersal from analogous habitats. Situated in the geologically complex Australopacific region, our study focuses on Limbodessus diving beetles (Dytiscidae), a diverse genus distributed from underground aquifers in Western Australia to alpine meadows in New Guinea. Using low-coverage whole-genome sequencing, we established a time-calibrated phylogenetic tree, elucidating Limbodessus' origin in the mid-late Miocene, most likely in the Sahul continent (i.e., Australia and New Guinea) and western Pacific archipelagos. Our results provide evidence for parallel colonization and speciation at extreme altitudinal ends, driven by aridification in Australia, influencing subterranean colonization, and in situ diversification of alpine taxa by passive-uplifting of local biota in New Guinea. Furthermore, our findings highlight instances of subterranean speciation in isolated underground aquifers, marked by recurrent independent colonizations of this habitat.
Collapse
Affiliation(s)
- Adrián Villastrigo
- Division of Entomology, SNSB-Zoologische Staatssammlung München, Munich, Germany.
| | - Steven J B Cooper
- South Australian Museum, Adelaide, South Australia, Australia
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, and Environment Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Barbara Langille
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, and Environment Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Erinn P Fagan-Jeffries
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, and Environment Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - William F Humphreys
- Western Australian Museum, Welshpool DC, Western Australia, Australia
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Lars Hendrich
- Division of Entomology, SNSB-Zoologische Staatssammlung München, Munich, Germany
| | - Michael Balke
- Division of Entomology, SNSB-Zoologische Staatssammlung München, Munich, Germany
- GeoBioCenter, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
4
|
Tiatragul S, Skeels A, Keogh JS. Morphological evolution and niche conservatism across a continental radiation of Australian blindsnakes. Evolution 2024; 78:1854-1868. [PMID: 39283595 DOI: 10.1093/evolut/qpae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 10/30/2024]
Abstract
Understanding how continental radiations are assembled across space and time is a major question in macroevolutionary biology. Here, we use a phylogenomic-scale phylogeny, a comprehensive morphological dataset, and environmental niche models to evaluate the relationship between trait and environment and assess the role of geography and niche conservatism in the continental radiation of Australian blindsnakes. The Australo-Papuan blindsnake genus, Anilios, comprises 47 described species of which 46 are endemic to and distributed across various biomes on continental Australia. Although we expected blindsnakes to be morphologically conserved, we found considerable interspecific variation in all morphological traits we measured. Absolute body length is negatively correlated with mean annual temperature, and body shape ratios are negatively correlated with soil compactness. We found that morphologically similar species are likely not a result of ecological convergence. Age-overlap correlation tests revealed niche similarity decreased with the relative age of speciation events. We also found low geographical overlap across the phylogeny, suggesting that speciation is largely allopatric with low rates of secondary range overlap. Our study offers insights into the eco-morphological evolution of blindsnakes and the potential for phylogenetic niche conservatism to influence continental scale radiations.
Collapse
Affiliation(s)
- Sarin Tiatragul
- Division of Ecology & Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Alexander Skeels
- Division of Ecology & Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - J Scott Keogh
- Division of Ecology & Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
5
|
Liang W, Nunes R, Leong JV, Carvalho APS, Müller CJ, Braby MF, Pequin O, Hoshizaki S, Morinaka S, Peggie D, Badon JAT, Mohagan AB, Beaver E, Hsu YF, Inayoshi Y, Monastyrskii A, Vlasanek P, Toussaint EFA, Benítez HA, Kawahara AY, Pierce NE, Lohman DJ. To and fro in the archipelago: Repeated inter-island dispersal and New Guinea's orogeny affect diversification of Delias, the world's largest butterfly genus. Mol Phylogenet Evol 2024; 194:108022. [PMID: 38325534 DOI: 10.1016/j.ympev.2024.108022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 01/20/2024] [Accepted: 01/28/2024] [Indexed: 02/09/2024]
Abstract
The world's largest butterfly genus Delias, commonly known as Jezebels, comprises ca. 251 species found throughout Asia, Australia, and Melanesia. Most species are endemic to islands in the Indo-Australian Archipelago or to New Guinea and nearby islands in Melanesia, and many species are restricted to montane habitats over 1200 m. We inferred an extensively sampled and well-supported molecular phylogeny of the group to better understand the spatial and temporal dimensions of its diversification. The remarkable diversity of Delias evolved in just ca. 15-16 Myr (crown age). The most recent common ancestor of a clade with most of the species dispersed out of New Guinea ca. 14 Mya, but at least six subsequently diverging lineages dispersed back to the island. Diversification was associated with frequent dispersal of lineages among the islands of the Indo-Australian Archipelago, and the divergence of sister taxa on a single landmass was rare and occurred only on the largest islands, most notably on New Guinea. We conclude that frequent inter-island dispersal during the Neogene-likely facilitated by frequent sea level change-sparked much diversification during that period. Many extant New Guinea lineages started diversifying 5 Mya, suggesting that orogeny facilitated their diversification. Our results largely agree with the most recently proposed species group classification system, and we use our large taxon sample to extend this system to all described species. Finally, we summarize recent insights to speculate how wing pattern evolution, mimicry, and sexual selection might also contribute to these butterflies' rapid speciation and diversification.
Collapse
Affiliation(s)
- Weijun Liang
- Department of Biology, City College of New York, City University of New York, USA
| | - Renato Nunes
- Department of Biology, City College of New York, City University of New York, USA; PhD Program in Biology, Graduate Center, City University of New York, New York, NY, USA
| | - Jing V Leong
- Department of Biology, City College of New York, City University of New York, USA; Biology Centre of the Czech Academy of Sciences, Branisovska 31, Ceske Budejovice, Czech Republic; Faculty of Science, Department of Zoology, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Ana Paula S Carvalho
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | | | - Michael F Braby
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Acton, ACT, Australia; Australian National Insect Collection, Canberra, ACT, Australia
| | | | - Sugihiko Hoshizaki
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | | | - Djunijanti Peggie
- Museum Zoologicum Bogoriense, Research Center for Biosystematics and Evolution, National Research and Innovation Agency, Cibinong-Bogor, Indonesia
| | - Jade Aster T Badon
- Animal Biology Division, Institute of Biological Sciences, University of the Philippines Los Baños, Laguna, Philippines
| | - Alma B Mohagan
- Department of Biology, College of Arts and Sciences, and Center for Biodiversity Research & Extension in Mindanao, Central Mindanao University, Musuan, Maramag, Bukidnon, Philippines
| | - Ethan Beaver
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Acton, ACT, Australia; Australian National Insect Collection, Canberra, ACT, Australia
| | - Yu-Feng Hsu
- College of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Yutaka Inayoshi
- Sritana Condominium 2, 96/173, Huay Kaeo Rd. T. Suthep, A. Muang, Chiang Mai, Thailand
| | - Alexander Monastyrskii
- Vietnam National Museum of Nature, Vietnam Academy of Science and Technology, Cau Giay, Hanoi, Viet Nam
| | - Petr Vlasanek
- T.G. Masaryk Water Research Institute, Prague, Czech Republic
| | | | - Hugo A Benítez
- Laboratorio de Ecología y Morfometría Evolutiva, Centro de Investigación de Estudios Avanzados del Maule, Universidad Católica del Maule, Talca, Chile
| | - Akito Y Kawahara
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA; Entomology & Nematology Department and Department of Biology, University of Florida, Gainesville, FL, USA
| | - Naomi E Pierce
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - David J Lohman
- Department of Biology, City College of New York, City University of New York, USA; PhD Program in Biology, Graduate Center, City University of New York, New York, NY, USA; Entomology Section, National Museum of Natural History, Manila, Philippines.
| |
Collapse
|
6
|
Roycroft E, Ford F, Ramm T, Schembri R, Breed WG, Burns PA, Rowe KC, Moritz C. Speciation across biomes: Rapid diversification with reproductive isolation in the Australian delicate mice. Mol Ecol 2024; 33:e17301. [PMID: 38385302 DOI: 10.1111/mec.17301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/23/2024]
Abstract
Phylogeographic studies of continental clades, especially when combined with palaeoclimate modelling, provide powerful insight into how environment drives speciation across climatic contexts. Australia, a continent characterized by disparate modern biomes and dynamic climate change, provides diverse opportunity to reconstruct the impact of past and present environments on diversification. Here, we use genomic-scale data (1310 exons and whole mitogenomes from 111 samples) to investigate Pleistocene diversification, cryptic diversity, and secondary contact in the Australian delicate mice (Hydromyini: Pseudomys), a recent radiation spanning almost all Australian environments. Across northern Australia, we find no evidence for introgression between cryptic lineages within Pseudomys delicatulus sensu lato, with palaeoclimate models supporting contraction and expansion of suitable habitat since the last glacial maximum. Despite multiple contact zones, we also find little evidence of introgression at a continental scale, with the exception of a potential hybrid zone in the mesic biome. In the arid zone, combined insights from genetic data and palaeomodels support a recent expansion in the arid specialist P. hermannsburgensis and contraction in the semi-arid P. bolami. In the face of repeated secondary contact, differences in sperm morphology and chromosomal rearrangements are potential mechanisms that maintain species boundaries in these recently diverged species. Additionally, we describe the western delicate mouse as a new species and recommend taxonomic reinstatement of the eastern delicate mouse. Overall, we show that speciation in an evolutionarily young and widespread clade has been driven by environmental change, and potentially maintained by divergence in reproductive morphology and chromosome rearrangements.
Collapse
Affiliation(s)
- Emily Roycroft
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Acton, Australian Capital Territory, Australia
| | - Fred Ford
- Biodiversity Conservation and Science, New South Wales Department of Planning and Environment, Queanbeyan, New South Wales, Australia
- Australian National Wildlife Collection, National Research Collections Australia, CSIRO, Canberra, Australian Capital Territory, Australia
| | - Till Ramm
- Zoo Leipzig, Leipzig, Germany
- Museum für Naturkunde Berlin, Berlin, Germany
| | - Rhiannon Schembri
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Acton, Australian Capital Territory, Australia
- School of Natural Sciences, Macquarie University, Macquarie Park, New South Wales, Australia
| | - William G Breed
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Phoebe A Burns
- Wildlife Conservation and Science, Zoos Victoria, Parkville, Victoria, Australia
| | - Kevin C Rowe
- Sciences Department, Museums Victoria, Melbourne, Victoria, Australia
- School of Biosciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Craig Moritz
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Acton, Australian Capital Territory, Australia
| |
Collapse
|
7
|
Skeels A, Boschman LM, McFadden IR, Joyce EM, Hagen O, Jiménez Robles O, Bach W, Boussange V, Keggin T, Jetz W, Pellissier L. Paleoenvironments shaped the exchange of terrestrial vertebrates across Wallace's Line. Science 2023; 381:86-92. [PMID: 37410831 DOI: 10.1126/science.adf7122] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 06/01/2023] [Indexed: 07/08/2023]
Abstract
Faunal turnover in Indo-Australia across Wallace's Line is one of the most recognizable patterns in biogeography and has catalyzed debate about the role of evolutionary and geoclimatic history in biotic interchanges. Here, analysis of more than 20,000 vertebrate species with a model of geoclimate and biological diversification shows that broad precipitation tolerance and dispersal ability were key for exchange across the deep-time precipitation gradient spanning the region. Sundanian (Southeast Asian) lineages evolved in a climate similar to the humid "stepping stones" of Wallacea, facilitating colonization of the Sahulian (Australian) continental shelf. By contrast, Sahulian lineages predominantly evolved in drier conditions, hampering establishment in Sunda and shaping faunal distinctiveness. We demonstrate how the history of adaptation to past environmental conditions shapes asymmetrical colonization and global biogeographic structure.
Collapse
Affiliation(s)
- A Skeels
- Department of Environmental Systems Science, Ecosystems and Landscape Evolution, Institute of Terrestrial Ecosystems, ETH Zurich, 8092 Zurich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
- Research School of Biology, Australian National University, Canberra 0200, Australia
| | - L M Boschman
- Department of Earth Sciences, Utrecht University, 3584 CB Utrecht, Netherlands
| | - I R McFadden
- Department of Environmental Systems Science, Ecosystems and Landscape Evolution, Institute of Terrestrial Ecosystems, ETH Zurich, 8092 Zurich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, Netherlands
| | - E M Joyce
- Systematics, Biodiversity and Evolution of Plants, Ludwig Maximilian University of Munich, 80331 Munich, Germany
| | - O Hagen
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| | - O Jiménez Robles
- Research School of Biology, Australian National University, Canberra 0200, Australia
- Institute of Biology, École Normale Supérieure, 75005 Paris, France
| | - W Bach
- Department of Environmental Systems Science, Ecosystems and Landscape Evolution, Institute of Terrestrial Ecosystems, ETH Zurich, 8092 Zurich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
| | - V Boussange
- Department of Environmental Systems Science, Ecosystems and Landscape Evolution, Institute of Terrestrial Ecosystems, ETH Zurich, 8092 Zurich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
| | - T Keggin
- Department of Environmental Systems Science, Ecosystems and Landscape Evolution, Institute of Terrestrial Ecosystems, ETH Zurich, 8092 Zurich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
| | - W Jetz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
- Center for Biodiversity and Global Change, Yale University, New Haven, CT 06520, USA
| | - L Pellissier
- Department of Environmental Systems Science, Ecosystems and Landscape Evolution, Institute of Terrestrial Ecosystems, ETH Zurich, 8092 Zurich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
| |
Collapse
|
8
|
Beck RMD, Eldridge MDB. Evolution: The evolutionary rat race in New Guinea and Australia. Curr Biol 2022; 32:R1010-R1012. [PMID: 36220087 DOI: 10.1016/j.cub.2022.08.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A new molecular phylogeny of a remarkable radiation of New Guinean and Australian rodents indicates multiple transitions between biomes and biogeographical regions within the group, and suggests that a key role was played by the geological history of New Guinea.
Collapse
Affiliation(s)
- Robin M D Beck
- School of Science, Engineering and Environment, University of Salford, Manchester M5 4WT, United Kingdom.
| | - Mark D B Eldridge
- Australian Museum Research Institute, Australian Museum, Sydney, New South Wales 2010, Australia.
| |
Collapse
|