1
|
Xu X, Morton MP, Denagamage S, Hudson NV, Nandy AS, Jadi MP. Spatial context non-uniformly modulates inter-laminar information flow in the primary visual cortex. Neuron 2024:S0896-6273(24)00693-7. [PMID: 39442514 DOI: 10.1016/j.neuron.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/19/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
Our visual experience is a result of the concerted activity of neuronal ensembles in the sensory hierarchy. Yet, how the spatial organization of objects influences this activity remains poorly understood. We investigate how inter-laminar information flow within the primary visual cortex (V1) is affected by visual stimuli in isolation or with flankers at spatial configurations that are known to cause non-uniform degradation of perception. By employing dimensionality reduction approaches to simultaneous, layer-specific population recordings, we establish that information propagation between cortical layers occurs along a structurally stable communication subspace. The spatial configuration of contextual stimuli differentially modulates inter-laminar communication efficacy, the balance of feedforward and effective feedback signaling, and contextual signaling in the superficial layers. Remarkably, these modulations mirror the spatially non-uniform aspects of perceptual degradation. Our results suggest a model of retinotopically non-uniform cortical connectivity in the output layers of V1 that influences information flow in the sensory hierarchy.
Collapse
Affiliation(s)
- Xize Xu
- Department of Neuroscience, Yale University, New Haven, CT 06510, USA; Department of Psychiatry, Yale University, New Haven, CT 06510, USA; Kavli Institute for Neuroscience, Yale University, New Haven, CT 06510, USA.
| | - Mitchell P Morton
- Department of Neuroscience, Yale University, New Haven, CT 06510, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06510, USA
| | - Sachira Denagamage
- Department of Neuroscience, Yale University, New Haven, CT 06510, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06510, USA
| | - Nyomi V Hudson
- Department of Neuroscience, Yale University, New Haven, CT 06510, USA
| | - Anirvan S Nandy
- Department of Neuroscience, Yale University, New Haven, CT 06510, USA; Department of Psychology, Yale University, New Haven, CT 06511, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06510, USA; Kavli Institute for Neuroscience, Yale University, New Haven, CT 06510, USA; Wu Tsai Institute, Yale University, New Haven, CT 06510, USA.
| | - Monika P Jadi
- Department of Neuroscience, Yale University, New Haven, CT 06510, USA; Department of Psychiatry, Yale University, New Haven, CT 06510, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06510, USA; Wu Tsai Institute, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
2
|
Yong K, Petzold A, Foster P, Young A, Bell S, Bai Y, Leff AP, Crutch S, Greenwood JA. The Graded Incomplete Letters Test (GILT): a rapid test to detect cortical visual loss, with UK Biobank implementation. Behav Res Methods 2024; 56:7748-7760. [PMID: 38890263 PMCID: PMC11362218 DOI: 10.3758/s13428-024-02448-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2024] [Indexed: 06/20/2024]
Abstract
Impairments of object recognition are core features of neurodegenerative syndromes, in particular posterior cortical atrophy (PCA; the 'visual-variant Alzheimer's disease'). These impairments arise from damage to higher-level cortical visual regions and are often missed or misattributed to common ophthalmological conditions. Consequently, diagnosis can be delayed for years with considerable implications for patients. We report a new test for the rapid measurement of cortical visual loss - the Graded Incomplete Letters Test (GILT). The GILT is an optimised psychophysical variation of a test used to diagnose cortical visual impairment, which measures thresholds for recognising letters under levels of increasing visual degradation (decreasing "completeness") in a similar fashion to ophthalmic tests. The GILT was administered to UK Biobank participants (total n=2,359) and participants with neurodegenerative conditions characterised by initial cortical visual (PCA, n=18) or memory loss (typical Alzheimer's disease, n=9). UK Biobank participants, including both typical adults and those with ophthalmological conditions, were able to recognise letters under low levels of completeness. In contrast, participants with PCA consistently made errors with only modest decreases in completeness. GILT sensitivity to PCA was 83.3% for participants reaching the 80% accuracy cut-off, increasing to 88.9% using alternative cut-offs (60% or 100% accuracy). Specificity values were consistently over 94% when compared to UK Biobank participants without or with documented visual conditions, regardless of accuracy cut-off. These first-release UK Biobank and clinical verification data suggest the GILT has utility in both rapidly detecting visual perceptual losses following posterior cortical damage and differentiating perceptual losses from common eye-related conditions.
Collapse
Affiliation(s)
- Kxx Yong
- Queen Square Institute of Neurology, University College London, London, UK.
| | - A Petzold
- Queen Square Institute of Neurology, University College London, London, UK
- Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- The National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
- Neuro-ophthalmology Expertise Centre, Amsterdam UMC, Amsterdam, NL, The Netherlands
| | - P Foster
- Institute of Ophthalmology, University College London, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - A Young
- Big Data Institute, Nuffield, Department of Population Health, University of Oxford, Oxford, UK
| | - S Bell
- UK Biobank, Stockport, UK
| | - Y Bai
- Queen Square Institute of Neurology, University College London, London, UK
| | - A P Leff
- Queen Square Institute of Neurology, University College London, London, UK
| | - S Crutch
- Queen Square Institute of Neurology, University College London, London, UK
| | - J A Greenwood
- Experimental Psychology, University College London, London, UK.
| |
Collapse
|
3
|
Kurzawski JW, Qiu BS, Majaj NJ, Benson NC, Pelli D, Winawer J. Human V4 size predicts crowding distance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.587977. [PMID: 38617271 PMCID: PMC11014589 DOI: 10.1101/2024.04.03.587977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Visual recognition is limited by both object size (acuity) and spacing. The spacing limit, called "crowding", is the failure to recognize an object in the presence of other objects. Here, we take advantage of individual differences in crowding behavior to investigate its biological basis. Crowding distance, the minimum object spacing needed for recognition, varies 2-fold among healthy adults. We test the conjecture that this variation in psychophysical crowding distance is due to variation in cortical map size. To test this, we made paired measurements of brain and behavior in 50 observers. We used psychophysics to measure crowding distance and calculate λ, the number of letters that fit into each observer's visual field without crowding. In the same observers, we used fMRI to measure the surface area A (mm^2) of retinotopic maps V1, V2, V3, and V4. Across observers, λ is proportional to the surface area of V4 but is uncorrelated with the surface area of V1 to V3. The proportional relationship of λ to area of V4 indicates conservation of cortical crowding distance across individuals: letters can be recognized if they are spaced by at least 1.4 mm on the V4 map, irrespective of map size and psychophysical crowding distance. We conclude that the size of V4 predicts the spacing limit of visual perception.
Collapse
|
4
|
Srinath R, Czarnik MM, Cohen MR. Coordinated Response Modulations Enable Flexible Use of Visual Information. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602774. [PMID: 39071390 PMCID: PMC11275750 DOI: 10.1101/2024.07.10.602774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
We use sensory information in remarkably flexible ways. We can generalize by ignoring task-irrelevant features, report different features of a stimulus, and use different actions to report a perceptual judgment. These forms of flexible behavior are associated with small modulations of the responses of sensory neurons. While the existence of these response modulations is indisputable, efforts to understand their function have been largely relegated to theory, where they have been posited to change information coding or enable downstream neurons to read out different visual and cognitive information using flexible weights. Here, we tested these ideas using a rich, flexible behavioral paradigm, multi-neuron, multi-area recordings in primary visual cortex (V1) and mid-level visual area V4. We discovered that those response modulations in V4 (but not V1) contain the ingredients necessary to enable flexible behavior, but not via those previously hypothesized mechanisms. Instead, we demonstrated that these response modulations are precisely coordinated across the population such that downstream neurons have ready access to the correct information to flexibly guide behavior without making changes to information coding or synapses. Our results suggest a novel computational role for task-dependent response modulations: they enable flexible behavior by changing the information that gets out of a sensory area, not by changing information coding within it.
Collapse
Affiliation(s)
- Ramanujan Srinath
- Department of Neurobiology and Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Martyna M. Czarnik
- Department of Neurobiology and Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA
- Current affiliation: Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Marlene R. Cohen
- Department of Neurobiology and Neuroscience Institute, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
5
|
Kim T, Pasupathy A. Neural Correlates of Crowding in Macaque Area V4. J Neurosci 2024; 44:e2260232024. [PMID: 38670806 PMCID: PMC11170949 DOI: 10.1523/jneurosci.2260-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/29/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Visual crowding refers to the phenomenon where a target object that is easily identifiable in isolation becomes difficult to recognize when surrounded by other stimuli (distractors). Many psychophysical studies have investigated this phenomenon and proposed alternative models for the underlying mechanisms. One prominent hypothesis, albeit with mixed psychophysical support, posits that crowding arises from the loss of information due to pooled encoding of features from target and distractor stimuli in the early stages of cortical visual processing. However, neurophysiological studies have not rigorously tested this hypothesis. We studied the responses of single neurons in macaque (one male, one female) area V4, an intermediate stage of the object-processing pathway, to parametrically designed crowded displays and texture statistics-matched metameric counterparts. Our investigations reveal striking parallels between how crowding parameters-number, distance, and position of distractors-influence human psychophysical performance and V4 shape selectivity. Importantly, we also found that enhancing the salience of a target stimulus could alleviate crowding effects in highly cluttered scenes, and this could be temporally protracted reflecting a dynamical process. Thus, a pooled encoding of nearby stimuli cannot explain the observed responses, and we propose an alternative model where V4 neurons preferentially encode salient stimuli in crowded displays. Overall, we conclude that the magnitude of crowding effects is determined not just by the number of distractors and target-distractor separation but also by the relative salience of targets versus distractors based on their feature attributes-the similarity of distractors and the contrast between target and distractor stimuli.
Collapse
Affiliation(s)
- Taekjun Kim
- Department of Biological Structure, University of Washington, Seattle, Washington 98195
- Washington National Primate Research Center, University of Washington, Seattle, Washington 98195
| | - Anitha Pasupathy
- Department of Biological Structure, University of Washington, Seattle, Washington 98195
- Washington National Primate Research Center, University of Washington, Seattle, Washington 98195
| |
Collapse
|
6
|
Goris RLT, Coen-Cagli R, Miller KD, Priebe NJ, Lengyel M. Response sub-additivity and variability quenching in visual cortex. Nat Rev Neurosci 2024; 25:237-252. [PMID: 38374462 PMCID: PMC11444047 DOI: 10.1038/s41583-024-00795-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 02/21/2024]
Abstract
Sub-additivity and variability are ubiquitous response motifs in the primary visual cortex (V1). Response sub-additivity enables the construction of useful interpretations of the visual environment, whereas response variability indicates the factors that limit the precision with which the brain can do this. There is increasing evidence that experimental manipulations that elicit response sub-additivity often also quench response variability. Here, we provide an overview of these phenomena and suggest that they may have common origins. We discuss empirical findings and recent model-based insights into the functional operations, computational objectives and circuit mechanisms underlying V1 activity. These different modelling approaches all predict that response sub-additivity and variability quenching often co-occur. The phenomenology of these two response motifs, as well as many of the insights obtained about them in V1, generalize to other cortical areas. Thus, the connection between response sub-additivity and variability quenching may be a canonical motif across the cortex.
Collapse
Affiliation(s)
- Robbe L T Goris
- Center for Perceptual Systems, University of Texas at Austin, Austin, TX, USA.
| | - Ruben Coen-Cagli
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kenneth D Miller
- Center for Theoretical Neuroscience, Columbia University, New York, NY, USA
- Kavli Institute for Brain Science, Columbia University, New York, NY, USA
- Dept. of Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Morton B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Swartz Program in Theoretical Neuroscience, Columbia University, New York, NY, USA
| | - Nicholas J Priebe
- Center for Learning and Memory, University of Texas at Austin, Austin, TX, USA
| | - Máté Lengyel
- Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, UK
- Center for Cognitive Computation, Department of Cognitive Science, Central European University, Budapest, Hungary
| |
Collapse
|
7
|
Morton MP, Denagamage S, Hudson NV, Nandy AS. Non-uniform contextual interactions in the visual cortex place fundamental limits on spatial vision. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.15.553380. [PMID: 37645826 PMCID: PMC10462024 DOI: 10.1101/2023.08.15.553380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
A prevailing assumption in our understanding of how neurons in the primary visual cortex (V1) integrate contextual information is that such processes are spatially uniform. Conversely, perceptual phenomena such as visual crowding, the impaired ability to accurately recognize a target stimulus among distractors, suggest that interactions among stimuli are distinctly non-uniform. Prior studies have shown flankers at specific spatial geometries exert differential effects on target perception. To resolve this discrepancy, we investigated how flanker geometry impacted the representation of a target stimulus in the laminar microcircuits of V1. Our study reveals flanker location differentially impairs stimulus representation in excitatory neurons in the superficial and input layers of V1 by tuned suppression and untuned facilitation of orientation responses. Mechanistically, this effect can be explained by asymmetrical spatial kernels in a normalization model of cortical activity. Strikingly, these non-uniform modulations of neural representation mirror perceptual anisotropies. These results establish the non-uniform spatial integration of information in the earliest stages of cortical processing as a fundamental limitation of spatial vision.
Collapse
|
8
|
Kim T, Pasupathy A. Neural correlates of crowding in macaque area V4. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562617. [PMID: 37905025 PMCID: PMC10614871 DOI: 10.1101/2023.10.16.562617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Visual crowding refers to the phenomenon where a target object that is easily identifiable in isolation becomes difficult to recognize when surrounded by other stimuli (distractors). Extensive psychophysical studies support two alternative possibilities for the underlying mechanisms. One hypothesis suggests that crowding results from the loss of visual information due to pooled encoding of multiple nearby stimuli in the mid-level processing stages along the ventral visual pathway. Alternatively, crowding may arise from limited resolution in decoding object information during recognition and the encoded information may remain inaccessible unless it is salient. To rigorously test these alternatives, we studied the responses of single neurons in macaque area V4, an intermediate stage of the ventral, object-processing pathway, to parametrically designed crowded displays and their texture-statistics matched metameric counterparts. Our investigations reveal striking parallels between how crowding parameters, e.g., number, distance, and position of distractors, influence human psychophysical performance and V4 shape selectivity. Importantly, we found that enhancing the salience of a target stimulus could reverse crowding effects even in highly cluttered scenes and such reversals could be protracted reflecting a dynamical process. Overall, we conclude that a pooled encoding of nearby stimuli cannot explain the observed responses and we propose an alternative model where V4 neurons preferentially encode salient stimuli in crowded displays.
Collapse
Affiliation(s)
- Taekjun Kim
- Department of Biological Structure, University of Washington, Seattle, WA 98195
- Washington National Primate Research Center, University of Washington, Seattle, WA 98195
| | - Anitha Pasupathy
- Department of Biological Structure, University of Washington, Seattle, WA 98195
- Washington National Primate Research Center, University of Washington, Seattle, WA 98195
| |
Collapse
|