1
|
Xie Y, Chen X, Wang X, Liu S, Chen S, Yu Z, Wang W. Transforming growth factor-β1 protects against white matter injury and reactive astrogliosis via the p38 MAPK pathway in rodent demyelinating model. J Neurochem 2024; 168:83-99. [PMID: 38183677 DOI: 10.1111/jnc.16037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 01/08/2024]
Abstract
In central nervous system (CNS), demyelination is a pathological process featured with a loss of myelin sheaths around axons, which is responsible for the diseases of multiple sclerosis, neuromyelitis optica, and so on. Transforming growth factor-beta1 (TGF-β1) is a multifunctional cytokine participating in abundant physiological and pathological processes in CNS. However, the effects of TGF-β1 on CNS demyelinating disease and its underlying mechanisms are controversial and not well understood. Herein, we evaluated the protective potential of TGF-β1 in a rodent demyelinating model established by lysophosphatidylcholine (LPC) injection. It was identified that supplement of TGF-β1 evidently rescued the cognitive deficit and motor dysfunction in LPC modeling mice assessed by novel object recognition and balance beam behavioral tests. Besides, quantified by luxol fast blue staining, immunofluorescence, and western blot, administration of TGF-β1 was found to significantly ameliorate the demyelinating lesion and reactive astrogliosis by suppressing p38 MAPK pathway. Mechanistically, the results of in vitro experiments indicated that treatment of TGF-β1 could directly promote the differentiation and migration of cultured oligodendrocytes. Our study revealed that modulating TGF-β1 activity might serve as a promising and innovative therapeutic strategy in CNS demyelinating diseases.
Collapse
Affiliation(s)
- Yi Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Xuejiao Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyue Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Liu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan, China
| | - Simiao Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Medical College, Zhejiang University, Hangzhou, China
| | - Zhiyuan Yu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Neurological Diseases of the Chinese Ministry of Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Pilipović I, Stojić-Vukanić Z, Leposavić G. Adrenoceptors as potential target for add-on immunomodulatory therapy in multiple sclerosis. Pharmacol Ther 2023; 243:108358. [PMID: 36804434 DOI: 10.1016/j.pharmthera.2023.108358] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
This review summarizes recent findings related to the role of the sympathetic nervous system (SNS) in pathogenesis of multiple sclerosis (MS) and its commonly used experimental model - experimental autoimmune encephalomyelitis (EAE). They indicate that noradrenaline, the key end-point mediator of the SNS, acting through β-adrenoceptor, has a contributory role in the early stages of MS/EAE development. This stage is characterized by the SNS hyperactivity (increased release of noradrenaline) reflecting the net effect of different factors, such as the disease-associated inflammation, stress, vitamin D hypovitaminosis, Epstein-Barr virus infection and dysbiosis. Thus, the administration of propranolol, a non-selective β-adrenoceptor blocker, readily crossing the blood-brain barrier, to experimental rats before the autoimmune challenge and in the early (preclinical/prodromal) phase of the disease mitigates EAE severity. This phenomenon has been ascribed to the alleviation of neuroinflammation (due to attenuation of primarily microglial activation/proinflammatory functions) and the diminution of the magnitude of the primary CD4+ T-cell autoimmune response (the effect associated with impaired autoantigen uptake by antigen presenting cells and their migration into draining lymph nodes). The former is partly related to breaking of the catecholamine-dependent self-amplifying microglial feed-forward loop and the positive feedback loop between microglia and the SNS, leading to down-regulation of the SNS hyperactivity and its enhancing influence on microglial activation/proinflammatory functions and the magnitude of autoimmune response. The effects of propranolol are shown to be more prominent in male EAE animals, the phenomenon important as males (like men) are likely to develop clinically more severe disease. Thus, these findings could serve as a firm scientific background for formulation of a new sex-specific immune-intervention strategy for the early phases of MS (characterized by the SNS hyperactivity) exploiting anti-(neuro)inflammatory and immunomodulatory properties of propranolol and other relatively cheap and safe adrenergic drugs with similar therapeutic profile.
Collapse
Affiliation(s)
- Ivan Pilipović
- Institute of Virology, Vaccines and Sera "Torlak", Belgrade, Serbia
| | - Zorica Stojić-Vukanić
- University of Belgrade-Faculty of Pharmacy, Department of Microbiology and Immunology, Belgrade, Serbia
| | - Gordana Leposavić
- University of Belgrade-Faculty of Pharmacy, Department of Pathobiology, Belgrade, Serbia.
| |
Collapse
|
3
|
Lynning M, Hanehøj K, Westergaard K, Kjær Ersbøll A, Claesson MH, Boesen F, Skovgaard L. Effect of Acupuncture on Cytokine Levels in Persons with Multiple Sclerosis: A Randomized Controlled Trial. J Altern Complement Med 2021; 27:832-840. [PMID: 34265224 DOI: 10.1089/acm.2020.0510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background: Cytokines have been found to play a role in the disease activity of multiple sclerosis (MS). Previous studies indicate that acupuncture can affect cytokine levels in persons with other inflammatory diseases. Objectives: The aim of this study is to investigate the effect of acupuncture on cytokine levels and health-related quality of life (HRQoL) in persons with MS. Materials and Methods: A single-blind, randomized controlled trial was performed. Participants (n = 66) were randomized into three groups (real acupuncture, sham acupuncture, and reference). Participants in the real acupuncture and sham groups received six treatments during a period of 4 weeks. The serum levels of 11 pro- and anti-inflammatory cytokines (IFNγ, IL-1β, IL-6, IL-8, IL-12p70, IL-13, TNFα, IL-10, IL-4, IL-2, and IL-17A) were assessed at baseline, after 2 and 4 weeks of treatment, and 4 weeks after the final treatment. Changes in HRQoL were assessed using the Functional Assessment of Multiple Sclerosis questionnaire. Results: No statistically significant differences in plasma levels between the three groups were seen for either of the cytokines, nor were there any differences between the groups for HRQoL. Conclusions: In this study, the authors could not demonstrate that a 4-week acupuncture treatment had a measurable effect on the plasma levels of seven selected cytokines or on HRQoL among people with MS. The trial was registered with the ISRCTN registry as ISRCTN34352011.
Collapse
Affiliation(s)
| | | | | | - Annette Kjær Ersbøll
- National Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark
| | - Mogens Helweg Claesson
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
4
|
Gezmis H, Doran T, Mayda Domac F, Yucel D, Karaci R, Kirac D. CD4+ and CD25+ T-cell response to short-time interferon-beta therapy on IL10, IL23A and FOXP3 genes in multiple sclerosis patients. Int J Clin Pract 2021; 75:e14238. [PMID: 33884734 DOI: 10.1111/ijcp.14238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/10/2021] [Indexed: 12/22/2022] Open
Abstract
AIM OF THE STUDY Interferon-beta (IFN-β), multiple sclerosis (MS) drug for years, does not have therapeutic effects on each patient. Yet, a considerable portion has experienced no therapeutic response to IFN-β. Therefore, it is necessary to determine disease-specific biomarkers that affect drug response. Here, we aimed to determine the effects of interleukin 10 (IL10) and 23 (IL23A), as well as forkhead box P3 (FOXP3) genes on MS after IFN-β therapy. MATERIALS AND METHODS Peripheral blood mononuclear cells (PBMCs) of 42 MS patients were isolated to obtain CD4+ and CD25+ T cells. Both cell types were characterised by flow cytometry. To determine optimum drug concentration of IFN-β, cytotoxicity assays were assessed on each cell type for 4, 16, 24 and 48 hours respectively. Then, cells were cultured in the presence of 500 IU/mL of IFN-β. cDNA synthesis was performed after mRNA extraction. RT-PCR was performed to measure gene expressions of IL10, IL23A and FOXP3. Results were evaluated statistically. RESULTS It was found that the cytotoxic effect of IFN-β was more efficient as the exposure time was expanded regardless of drug concentration. Moreover, CD25+ T lymphocytes were more resistant to IFN-β. IL23A was down-regulated, whereas FOXP3 was up-regulated at 48 hours in CD4+ T cells. For CD25+ T cells, the graded increase in FOXP3 was obtained while IL10 expression was gradually decreased throughout the drug intake. CONCLUSION Although a considerable change in expression was obtained, the long-term IFN-β effect on both genes and cells should be determined by follow-up at least a year.
Collapse
Affiliation(s)
- Hazal Gezmis
- Department of Medical Biology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
- Department of Materials, University of Oxford, Oxfordshire, OX1 3PH, UK
| | - Tansu Doran
- Department of Medical Biology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Fusun Mayda Domac
- Department of Neurology, University of Health Sciences, Erenkoy Mental and Nervous Diseases Training and Research Hospital, Istanbul, Turkey
| | - Deniz Yucel
- Department of Histology and Embryology, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Rahsan Karaci
- Department of Neurology, University of Health Sciences, Erenkoy Mental and Nervous Diseases Training and Research Hospital, Istanbul, Turkey
| | - Deniz Kirac
- Department of Medical Biology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
5
|
Ling Z, Cheng Y, Yan X, Shao L, Liu X, Zhou D, Zhang L, Yu K, Zhao L. Alterations of the Fecal Microbiota in Chinese Patients With Multiple Sclerosis. Front Immunol 2020; 11:590783. [PMID: 33391265 PMCID: PMC7772405 DOI: 10.3389/fimmu.2020.590783] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022] Open
Abstract
Mounting evidence indicates that alterations in the intestinal microbiota may be associated with neurological disorders such as multiple sclerosis (MS). MS is a putative autoimmune disease of the central nervous system. However, it has not been determined whether the intestinal microbiota and host immune status are altered in Chinese patients with stable MS. In our study, 22 Chinese patients with stable MS and 33 healthy controls were enrolled for fecal microbiota analysis and host immunity evaluation. The microbial diversity and composition, bacterial co-occurrence correlations, predictive functional profiles, and microbiota-cytokine correlations between the two groups were compared. We observed that while the overall structure of the fecal microbiota did not change significantly, the abundances of several key functional bacteria, primarily Faecalibacterium, decreased remarkably. Faecalibacterium and Granulicatella could be used to distinguish between patients with MS and healthy controls with an area under the curve of 0.832. PiCRUSt analysis revealed that genes associated with fructose, mannose, and fatty acid metabolism were significantly enriched in the MS microbiota. In addition, we also observed that the levels of several pro- and anti-inflammatory cytokines and chemokines, such as IL-1ra, IL-8, IL-17, and TNF-α changed observably, and the abundances of key functional bacteria like butyrate producers correlated with the changes in the cytokine levels. Our present study indicated that altered composition of the fecal microbiota might play vital roles in the etiopathogenesis of MS by regulating host immunity, which suggests that microbiota-targeting patient-tailored early intervention techniques might serve as novel therapeutic approaches for MS.
Collapse
Affiliation(s)
- Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yiwen Cheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiumei Yan
- Department of Laboratory Medicine, Lishui Second People's Hospital, Lishui, China
| | - Li Shao
- Hangzhou Normal University, Hangzhou, China.,Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Xia Liu
- Department of Intensive Care Unit, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Dajin Zhou
- Department of Laboratory Medicine, Lishui Second People's Hospital, Lishui, China
| | - Lijuan Zhang
- Department of Laboratory Medicine, Lishui Second People's Hospital, Lishui, China
| | - Kunqiang Yu
- Department of Laboratory Medicine, Lishui Second People's Hospital, Lishui, China
| | - Longyou Zhao
- Department of Laboratory Medicine, Lishui Second People's Hospital, Lishui, China
| |
Collapse
|
6
|
Guerrero-García J. The role of astrocytes in multiple sclerosis pathogenesis. NEUROLOGÍA (ENGLISH EDITION) 2020. [DOI: 10.1016/j.nrleng.2017.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
7
|
Hou M, Li Y, He L, Li X, Ding Z, Du Y, Zhang Y, Zhang S, Li X. Effect of Interferon-Beta Treatment on the Proportion of T Helper 17 Cells and Related Cytokines in Multiple Sclerosis: A Meta-Analysis. J Interferon Cytokine Res 2019; 39:771-779. [PMID: 31517556 DOI: 10.1089/jir.2019.0065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Miaomiao Hou
- Department of Neurology, Shanxi Dayi Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Yufeng Li
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Clinical Neuroscience Institute of Jinan University, Jinan University, Guangzhou, China
| | - Lingling He
- Department of Neurology, Shanxi Dayi Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Xiaoqiong Li
- Department of Neurology, Shanxi Dayi Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Zhibin Ding
- Department of Neurology, Shanxi Dayi Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Yaping Du
- Department of Neurology, Shanxi Dayi Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Yu Zhang
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China
- Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Shengxiao Zhang
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xinyi Li
- Department of Neurology, Shanxi Dayi Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| |
Collapse
|
8
|
Bucova M, Majernikova B, Durmanova V, Cudrakova D, Gmitterova K, Lisa I, Klimova E, Kluckova K, Buc M. HMGB1 as a potential new marker of disease activity in patients with multiple sclerosis. Neurol Sci 2019; 41:599-604. [DOI: 10.1007/s10072-019-04136-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/31/2019] [Indexed: 12/14/2022]
|
9
|
Effects of interferon and glatiramer acetate on cytokine patterns in multiple sclerosis patients. Cytokine 2019; 126:154911. [PMID: 31731047 DOI: 10.1016/j.cyto.2019.154911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 12/13/2022]
Abstract
Multiple sclerosis (MS) is an unpredictable autoimmune disease, which causes neurodegeneration in the central nervous system. Since the main cause of MS remains obscure, in this study, we aimed to evaluate the serum levels of some cytokines, including interleukin-5 (IL-5), IL-8, IL-9, IL-17A, transforming growth factor-beta (TGF-β), and interferon-gamma (IFN-γ) in relapsing-remitting (RR)-MS patients, treated with IFN-β and glatiramer acetate (GA). Serum samples of RR-MS patients, treated with high-dose IFN-β1a, low-dose IFN-β1a, IFN-β1b, and GA, were assessed by ELISA assay and then compared with the results of treatment-naive patients and healthy controls. The findings showed that the serum levels of IL-8, IL-9, and IFN-γ in treatment-naive patients were significantly higher than the healthy controls, while there was no significant difference in terms of other cytokines between the groups. A significant reduction was observed in the levels of IL-9 and IFN-γ, while there was a significant increase in TGF-β level among patients treated with GA. IFN-β1b resulted in a significant decline in the levels of IL-9 and TGF-β. In addition to these findings, some cytokines were positively correlated in different groups. Overall, the present results support the inflammatory and aggravating effects of IL-8, IL-9, and IFN-γ on MS. Furthermore, based on the results reported in the GA treatment group, we suggest GA as an effective treatment for RR-MS patients.
Collapse
|
10
|
MicroRNA-29b variants and MxA expression change during interferon beta therapy in patients with relapsing-remitting multiple sclerosis. Mult Scler Relat Disord 2019; 35:241-245. [PMID: 31421628 DOI: 10.1016/j.msard.2019.07.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 07/06/2019] [Accepted: 07/30/2019] [Indexed: 11/20/2022]
Abstract
BACKGROUND Multiple sclerosis is a chronic inflammatory demyelinating disease of the central nervous system (CNS) characterized by immune-mediated demyelination and axonal injury. Myelin-reactive IFN-γ-producing Th1 cells has been shown to play an important role in the development of MS. MicroRNAs (miRNAs) are a new class of small non-coding RNA molecules about 22 nucleotides long which regulate gene expression post-transcriptionally by binding to 3' UTR of their mRNA targets, and resulting in degradation or transcriptional repression of the targeted mRNA. Accumulating evidence supports that miRNA dysregulation is linked to the pathogenesis of autoimmune diseases that include MS. miR-29b expression has been shown to be upregulated in memory CD4+T cells from relapsing-remitting MS (RR-MS) patients, which may reflect chronic Th1 inflammation. Interferon beta (IFN-β) benefits patients with MS and reduces symptoms of the RR-MS. MxA is induced by type I interferon and predicts IFN-β response in MS patients. The aim of this study was to evaluate miR-29b variants and MxA expression and serum IFN-γ level in responders and non-responders to IFN-β treatment. METHODS A total of 70 IFN-β treated RR-MS patients including 35 responders and 35 non-responders were enrolled. We analyzed the expression level of miR-29b variants and MxA using the peripheral blood of MS patients treated with IFN-β for more than one year. Real-time RT-PCR was performed to analyze miR-29b variants and MxA expression one year after initiation of IFN-β therapy. Serum cytokine level was measured by ELISA. RESULTS The results indicated that the expression level of miR-29b-3p changed related to IFN-β response. Moreover, miR-29b-5p was downregulated under IFN-β treatment in responders versus non-responders. MxA level was significantly decreased in the responders. There was no change in IFN-γ level following treatment with IFN-β in the MS patients. CONCLUSIONS Our results might provide fundamentals for the development of new markers of the biological effects of IFN-β therapy.
Collapse
|
11
|
Storelli E, Cassina N, Rasini E, Marino F, Cosentino M. Do Th17 Lymphocytes and IL-17 Contribute to Parkinson's Disease? A Systematic Review of Available Evidence. Front Neurol 2019; 10:13. [PMID: 30733703 PMCID: PMC6353825 DOI: 10.3389/fneur.2019.00013] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/07/2019] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by progressive loss of dopaminergic neurons, appearance of Lewy bodies and presence of neuroinflammation. No treatments currently exist to prevent PD or delay its progression, and dopaminergic substitution treatments just relieve the consequences of dopaminergic neuron loss. Increasing evidence points to peripheral T lymphocytes as key players in PD, and recently there has been growing interest into the specific role of T helper (Th) 17 lymphocytes. Th17 are a proinflammatory CD4+ T cell lineage named after interleukin (IL)-17, the main cytokine produced by these cells. Th17 are involved in immune-related disease such as psoriasis, rheumatoid arthritis and inflammatory bowel disease, and drugs targeting Th17/IL-17 are currently approved for clinical use in such disease. In the present paper, we first summarized current knowledge about contribution of the peripheral immune system in PD, as well as about the physiopharmacology of Th17 and IL-17 together with its therapeutic relevance. Thereafter, we systematically retrieved and evaluated published evidence about Th17 and IL-17 in PD, to help assessing Th17/IL-17-targeting drugs as potentially novel antiparkinson agents. Critical appraisal of the evidence did not allow to reach definite conclusions: both animal as well as clinical studies are limited, just a few provide mechanistic evidence and none of them investigates the eventual relationship between Th17/IL-17 and clinically relevant endpoints such as disease progression, disability scores, intensity of dopaminergic substitution treatment. Careful assessment of Th17 in PD is anyway a priority, as Th17/IL-17-targeting therapeutics might represent a straightforward opportunity for the unmet needs of PD patients.
Collapse
Affiliation(s)
| | | | | | | | - Marco Cosentino
- Center of Research in Medical Pharmacology, University of Insubria, Varese, Italy
| |
Collapse
|
12
|
Guerrero-García JJ. The role of astrocytes in multiple sclerosis pathogenesis. Neurologia 2017; 35:400-408. [PMID: 28958395 DOI: 10.1016/j.nrl.2017.07.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 05/31/2017] [Accepted: 07/06/2017] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Multiple sclerosis (MS) is a demyelinating autoimmune disease of the central nervous system (CNS), in which astrocytes play an important role as CNS immune cells. However, the activity of astrocytes as antigen-presenting cells (APC) continues to be subject to debate. DEVELOPMENT This review analyses the existing evidence on the participation of astrocytes in CNS inflammation in MS and on several mechanisms that modify astrocyte activity in the disease. CONCLUSIONS Astrocytes play a crucial role in the pathogenesis of MS because they express toll-like receptors (TLR) and major histocompatibility complex (MHC) classI andII. In addition, astrocytes participate in regulating the blood-brain barrier (BBB) and in modulating T cell activity through the production of cytokines. Future studies should focus on the role of astrocytes in order to find new therapeutic targets for the treatment of MS.
Collapse
Affiliation(s)
- J J Guerrero-García
- Doctorado en Ciencias Biomédicas (DCB), CUCS, Universidad de Guadalajara, Guadalajara, Jalisco, México; Unidad Médica de Alta Especialidad (UMAE), Hospital de Pediatría (HP), Centro Médico Nacional de Occidente (CMNO), IMSS, Guadalajara, Jalisco, México.
| |
Collapse
|
13
|
Li YF, Zhang SX, Ma XW, Xue YL, Gao C, Li XY. Levels of peripheral Th17 cells and serum Th17-related cytokines in patients with multiple sclerosis: A meta-analysis. Mult Scler Relat Disord 2017; 18:20-25. [PMID: 29141810 DOI: 10.1016/j.msard.2017.09.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/26/2017] [Accepted: 09/04/2017] [Indexed: 11/18/2022]
Abstract
BACKGROUND Multiple reports have described the proportion of Th17 cells in peripheral blood and serum levels of Th17-related cytokines in patients with multiple sclerosis (MS). To clarify the status of Th17 cells and Th17-related cytokines in MS patients, we did a meta-analysis of the results published previously to assess the levels of peripheral Th17 cells and serum Th17-related cytokines in patients with MS. METHODS We searched Embase, PubMed, Cochrane, Web of Knowledge, FDA.gov, and Clinical Trials.gov systematically for studies reporting the proportion of Th17 cells and the serum levels of Th17-related cytokines (IL-17, IL23) in MS patients. Our main endpoints were the proportion of Th17 cells among CD4+ T cells in peripheral blood (PB), serum IL-17 levels, and serum IL-23 levels. We assessed pooled data by using a random-effects model. It has been registered at International Prospective Register of Systematic Reviews (PROSPERO) (number CRD42017059113). RESULTS Of 560 identified studies, a total of 12 studies were selected in our analysis. Compared with control subjects, MS patients had a higher proportion of Th17 cells [1.37, (0.53, 2.21)] in PB, an elevated levels of serum IL-17 [2.48, (1.25, 3.71)] and an increased IL-23 levels in serum [2.29, (0.58, 4.00)]. CONCLUSION Under random effect model of meta-analysis, the data showed that the proportion of Th17 cells in PB and levels of serum IL-17 and IL-23 increased among MS patients compared to control subjects. This result demonstrated that Th17 cells and Th17-related cytokines may be involved in the pathogenic mechanisms of MS.
Collapse
Affiliation(s)
- Yu-Feng Li
- Department of Neurology, Shanxi Dayi Hospital Affiliated to Shanxi Medical University, 99 Longcheng street, Taiyuan, Shanxi 030024, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi 030001, China
| | - Xiao-Wen Ma
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, Shanxi 030001, China
| | - Yu-Long Xue
- Department of Cardiovascular Medicine, Shanxi Dayi Hospital Affiliated to Shanxi Medical University, 99 Longcheng street, Taiyuan, Shanxi 030024, China
| | - Chong Gao
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Xin-Yi Li
- Department of Neurology, Shanxi Dayi Hospital Affiliated to Shanxi Medical University, 99 Longcheng street, Taiyuan, Shanxi 030024, China.
| |
Collapse
|
14
|
Pernambuco AP, Fonseca ACS, Oliveira GLD, Faria PC, Silva RV, Meireles C, Arantes SE, Silva FC, Reis DD. Increased Levels of IL-17, IL-23, MIP-1α, MCP-1 and Global Leukocytes in Fibromyalgia Patients. ACTA ACUST UNITED AC 2017. [DOI: 10.1080/24708593.2017.1357664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Andrei Pereira Pernambuco
- CEPEP, Centro Universitário de Formiga, Formiga, Brazil,
- Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil and
- Universidade de Itaúna, Itaúna, Minas Gerais, Brazil
| | | | | | | | | | | | | | | | - Débora d’Ávila Reis
- Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil and
| |
Collapse
|
15
|
Figueiredo AS, Schumacher A. The T helper type 17/regulatory T cell paradigm in pregnancy. Immunology 2016; 148:13-21. [PMID: 26855005 DOI: 10.1111/imm.12595] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/15/2016] [Accepted: 02/04/2016] [Indexed: 12/28/2022] Open
Abstract
T helper type 17 (Th17) and regulatory T (Treg) cells are active players in the establishment of tolerance and defence. These attributes of the immune system enmesh to guarantee the right level of protection. The healthy immune system, on the one hand, recognizes and eliminates dangerous non-self pathogens and, on the other hand, protects the healthy self. However, there are circumstances where this fine balance is disrupted. In fact, in situations such as in pregnancy, the foreign fetal antigens challenge the maternal immune system and Treg cells will dominate Th17 cells to guarantee fetal survival. In other situations such as autoimmunity, where the Th17 responses are often overwhelming, the immune system shifts towards an inflammatory profile and attacks the healthy tissue from the self. Interestingly, autoimmune patients have meliorating symptoms during pregnancy. This connects with the antagonist role of Th17 and Treg cells, and their specific profiles during these two immune challenging situations. In this review, we put into perspective the Th17/Treg ratio during pregnancy and autoimmunity, as well as in pregnant women with autoimmune conditions. We further review existing systems biology approaches that study specific mechanisms of these immune cells using mathematical modelling and we point out possible future directions of investigation. Understanding what maintains or disrupts the balance between these two opponent yet reciprocal cells in healthy physiological settings, sheds light into the development of innovative pharmacological approaches to fight pregnancy loss and autoimmunity.
Collapse
Affiliation(s)
- Ana Sofia Figueiredo
- Medical Faculty, Institute for Experimental Internal Medicine, Otto-von-Guericke University, Magdeburg, Germany
| | - Anne Schumacher
- Medical Faculty, Institute for Experimental Obstetrics and Gynecology, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
16
|
Abstract
Cytokines are a heterogeneous group of glycoproteins that coordinate physiological functions. Cytokine deregulation is observed in many neurological diseases. This article reviews current research focused on human clinical trials of cytokine and anticytokine therapies in the treatment of several neurological disease including stroke, neuromuscular diseases, neuroinfectious diseases, demyelinating diseases, and neurobehavioral diseases. This research suggests that cytokine therapy applications may play an important role in offering new strategies for disease modulation and treatment. Further, this research provides insights into the causal link between cytokine deregulation and neurological diseases.
Collapse
Affiliation(s)
- Shila Azodi
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Steven Jacobson
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
17
|
Tabarkiewicz J, Pogoda K, Karczmarczyk A, Pozarowski P, Giannopoulos K. The Role of IL-17 and Th17 Lymphocytes in Autoimmune Diseases. Arch Immunol Ther Exp (Warsz) 2015; 63:435-49. [PMID: 26062902 PMCID: PMC4633446 DOI: 10.1007/s00005-015-0344-z] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 05/26/2015] [Indexed: 02/07/2023]
Abstract
The end of twentieth century has introduced some changes into T helper (Th) cells division. The identification of the new subpopulation of T helper cells producing IL-17 modified model of Th1-Th2 paradigm and it was named Th17. High abilities to stimulate acute and chronic inflammation made these cells ideal candidate for crucial player in development of autoimmune disorders. Numerous publications based on animal and human models confirmed their pivotal role in pathogenesis of human systemic and organ-specific autoimmune diseases. These findings made Th17 cells and pathways regulating their development and function a good target for therapy. Therapies based on inhibition of Th17-dependent pathways are associated with clinical benefits, but on the other hand are frequently inducing adverse effects. In this review, we attempt to summarize researches focused on the importance of Th17 cells in development of human autoimmune diseases as well as effectiveness of targeting IL-17 and its pathways in pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Jacek Tabarkiewicz
- Centre for Innovative Research in Medical and Natural Sciences, Medical Faculty, University of Rzeszów, Rzeszow, Poland.
| | - Katarzyna Pogoda
- Centre for Innovative Research in Medical and Natural Sciences, Medical Faculty, University of Rzeszów, Rzeszow, Poland
| | | | - Piotr Pozarowski
- Department of Clinical Immunology, Medical University of Lublin, Lublin, Poland
| | | |
Collapse
|
18
|
Toghianifar N, Ashtari F, Zarkesh-Esfahani SH, Mansourian M. Effect of high dose vitamin D intake on interleukin-17 levels in multiple sclerosis: A randomized, double-blind, placebo-controlled clinical trial. J Neuroimmunol 2015. [DOI: 10.1016/j.jneuroim.2015.05.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
A clinical and laboratory study evaluating the profile of cytokine levels in relapsing remitting and secondary progressive multiple sclerosis. J Neuroimmunol 2015; 278:53-9. [DOI: 10.1016/j.jneuroim.2014.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 12/03/2014] [Accepted: 12/04/2014] [Indexed: 11/24/2022]
|
20
|
Moehle MS, West AB. M1 and M2 immune activation in Parkinson's Disease: Foe and ally? Neuroscience 2014; 302:59-73. [PMID: 25463515 DOI: 10.1016/j.neuroscience.2014.11.018] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/03/2014] [Accepted: 11/06/2014] [Indexed: 12/20/2022]
Abstract
Parkinson's Disease (PD) is a chronic and progressive neurodegenerative disorder of unknown etiology. Autopsy findings, genetics, retrospective studies, and molecular imaging all suggest a role for inflammation in the neurodegenerative process. However, relatively little is understood about the causes and implications of neuroinflammation in PD. Understanding how inflammation arises in PD, in particular the activation state of cells of the innate immune system, may provide an exciting opportunity for novel neuroprotective therapeutics. We analyze the evidence of immune system involvement in PD susceptibility, specifically in the context of M1 and M2 activation states. Tracking and modulating these activation states may provide new insights into both PD etiology and therapeutic strategies.
Collapse
Affiliation(s)
- M S Moehle
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, United States.
| | - A B West
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
21
|
Biomarker Studies in Multiple Sclerosis: From Proteins to Noncoding RNAs. Neurochem Res 2014; 39:1661-74. [DOI: 10.1007/s11064-014-1386-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 06/09/2014] [Accepted: 07/09/2014] [Indexed: 11/26/2022]
|
22
|
Petek-Balcı B, Çoban A, Shugaiv E, Türkoğlu R, Ulusoy C, İçöz S, Pehlivan M, Tüzün E, Akman-Demir G, Kürtüncü M, Eraksoy M. Predictive value of early serum cytokine changes on long-term interferon beta-1a efficacy in multiple sclerosis. Int J Neurosci 2014; 125:352-6. [PMID: 25026220 DOI: 10.3109/00207454.2014.939747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND In a previous study, we had evaluated short-term effects of interferon beta-1a (IFNB-1a) 44 μg s.c. three times per week treatment on serum levels of IFN-gamma (IFNG), IL-23, IL-17, IL-10, IL-9, IL-4 and TGF-beta (TGFB) and found a reduction only in IL-17 and IL-23 levels after 2 months of treatment. METHODS Using the same multiple sclerosis (MS) cohort, we assessed the predictive value of early cytokine level changes (difference between 2nd month and baseline levels as measured by ELISA) on the efficacy of long-term IFNB-1a treatment. RESULTS The alteration in IFNG levels of patients without any relapse was statistically lower than that of patients having one or more relapses (p = 0.019, Student's t-test). When patients with or without expanded disability severity scale (EDSS) progression were compared, none of the cytokine level changes showed a significant difference between groups. IL-17 and IL-23 level changes did not predict relapse and EDSS progression in IFNB-1a-treated MS patients. CONCLUSION Our results show that the predictive power of early IFNG measurement on relapse occurrence may potentially extend a time span of several years.
Collapse
Affiliation(s)
- Belgin Petek-Balcı
- 1Department of Neurology, Haseki Educational and Research Center, Istanbul, Turkey
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Roeleveld DM, van Nieuwenhuijze AEM, van den Berg WB, Koenders MI. The Th17 pathway as a therapeutic target in rheumatoid arthritis and other autoimmune and inflammatory disorders. BioDrugs 2014; 27:439-52. [PMID: 23620106 DOI: 10.1007/s40259-013-0035-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Production of the pro-inflammatory cytokine interleukin (IL)-17 by Th17 cells and other cells of the immune system protects the host against bacterial and fungal infections, but also promotes the development of rheumatoid arthritis (RA) and other autoimmune and inflammatory disorders. Several biologicals targeting IL-17, the IL-17 receptor, or IL-17-related pathways are being tested in clinical trials, and might ultimately lead to better treatment for patients suffering from various IL-17-mediated disorders. In this review, we provide a clear overview of current knowledge on Th17 cell regulation and the main Th17 effector cytokines in relation to IL-17-mediated conditions, as well as on recent IL-17-related drug developments. We demonstrate that targeting the Th17 pathway is a promising treatment for rheumatoid arthritis and various other autoimmune and inflammatory diseases. However, improvements in technical developments assisting in the identification of patients suffering from IL-17-driven disease are needed to enable the application of tailor-made, personalized medicine.
Collapse
|
24
|
Inflammatory cytokines and physical activity in multiple sclerosis. ISRN NEUROLOGY 2014; 2014:151572. [PMID: 24592334 PMCID: PMC3921944 DOI: 10.1155/2014/151572] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 12/05/2013] [Indexed: 11/18/2022]
Abstract
Background. Besides the functional benefits, physical activity triggers a hormonal pattern of immunologic responses with an anti-inflammatory effect in individuals who suffer from multiple sclerosis. Purpose. To analyze the influence of physical activity on multiple sclerosis and identify the intensity threshold which triggers the anti-inflammatory physiological mechanism. Methodology. A systematic review was made on the databases Medline, PubMed, ScienceDirect, PloS, PEDro, and Web of Science. Studies from references of retrieved articles were also collected. The criteria included studies published in English and random studies referred to the inflammatory process, connected with physical activity in individuals with multiple sclerosis. The studies were methodologically analyzed by two reviewers according to PEDro scale. Results and Discussion. Five random control trial studies were identified. The results revealed that with physical activity there seems to have a modulation on anti-inflammatory cytokines which improve physical and cardiorespiratory performance. More investigation is required. Conclusions. Physical activity influences the quality of life and it seems to stimulate the presence of anti-inflammatory cytokines. With light physical activity the cellular activity is lower, while with moderate activity there seems to have more capacity to help in the resolution of an inflammatory situation.
Collapse
|
25
|
Glasnović A, Cvija H, Stojić M, Tudorić-Đeno I, Ivčević S, Romić D, Tičinović N, Vuletić V, Lazibat I, Grčević D. Decreased level of sRAGE in the cerebrospinal fluid of multiple sclerosis patients at clinical onset. Neuroimmunomodulation 2014; 21:226-33. [PMID: 24603633 DOI: 10.1159/000357002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 10/30/2013] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Receptor for advanced glycation end products (RAGE) ligands/RAGE interactions have been proposed to have a pathogenic role in neuroinflammatory disorders. Our study aimed to assess changes in high-mobility group box (HMGB)1 and its receptor RAGE in peripheral blood (PBL) and cerebrospinal fluid (CSF) of patients with multiple sclerosis (MS) at the disease onset compared with control subjects. METHODS PBL and CSF were collected from control subjects (n = 30) and MS patients (n = 27) at clinical onset. Soluble RAGE (sRAGE), HMGB1, S100 calcium-binding protein A12 (S100A12), interleukin (IL)-1β and tumor necrosis factor (TNF)-α were measured in the CSF and plasma by enzyme-linked immunosorbent assay. Gene expression in PBL mononuclear cells (PBMCs) was detected by quantitative PCR for RAGE, HMGB1, S100A12 and several proinflammatory/immunoregulatory cytokines. RESULTS We found a significantly lower expression of IL-10 (p = 0.031) in the PBMCs of MS patients. The level of sRAGE in the CSF of MS patients was lower (p = 0.021), with the ability to discriminate between MS patients and control subjects. Moreover, PBMC gene expression for HMGB1 and S100A12 positively correlated with IL-6. CONCLUSIONS Our study confirmed that the cytokine network is disturbed in PBL and CSF at MS clinical onset. The deregulated HMGB1/RAGE axis found in our study may present an early pathogenic event in MS, proposing sRAGE as a possible novel therapeutic strategy for MS treatment.
Collapse
Affiliation(s)
- Anton Glasnović
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Pennell LM, Fish EN. Immunoregulatory effects of interferon-β in suppression of Th17 cells. J Interferon Cytokine Res 2013; 34:330-41. [PMID: 24175628 DOI: 10.1089/jir.2013.0088] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
To investigate the immunoregulatory effects of interferon (IFN)-β on CD4+ T cells, we examined the response of CD4+ T cells from IFN-β(+/+) and IFN-β(-/-) mice to CD3/CD28 activation and to differentiation to Th17 lineage, analyzing the expression of signaling effectors, cell surface receptors, production of IL-17, and gene expression profiles. We provide evidence of increased phosphorylation of the membrane proximal kinase associated with TCR activation, ZAP-70, in IFN-β(-/-) T cells compared with IFN-β(+/+) T cells. Anti-CD3/anti-CD28 antibody stimulation of whole splenocytes or CD4+ T cells from IFN-β(-/-) mice results in secretion of IL-17A, in contrast to identical stimulation of cells from IFN-β(+/+) mice, which fails to increase IL-17A production. After CD3/CD28 activation, IFN-β(-/-) CD4+ T cells express higher levels of IRF-4, required for Th17 differentiation, and increased expression of CCR6, IL-23R, IL-6R, and CXCR4, compared with activated IFN-β(+/+) T cells. Notably, cell surface expression of IL-6R and IL-23R is significantly higher in the IFN-β(-/-) CD4+ T cells, with an increased number of double-positive CCR6+IL-23R+ and IL-6R+IL-23R+ CD4+ T cells. On polarization to Th17 lineage, CD4+ T cells from IFN-β(-/-) mice exhibit a more Th17-primed transcriptome compared with CD4+ T cells from IFN-β(+/+) mice. Indeed, when CD4+ T cells from IFN-β(+/+) mice are polarized to Th17 lineage in the presence of IFN-β, many Th17-associated genes are down-regulated. Employing a MOG-peptide-induced experimental autoimmune encephalomyelitis model of multiple sclerosis, we identify a greater proportion of Th17 cells in the lymph nodes of IFN-β(-/-) mice compared with IFN-β(+/+) mice, and increased numbers of CD4+ T cells in the central nervous system of IFN-β(-/-) mice, regardless of the stage of disease. Taken together, our data indicate an immunoregulatory role for IFN-β in the suppression of Th17 cells.
Collapse
Affiliation(s)
- Leesa M Pennell
- 1 Toronto General Research Institute, University Health Network , Toronto, Canada
| | | |
Collapse
|
27
|
Martino S, Montesano S, di Girolamo I, Tiribuzi R, Di Gregorio M, Orlacchio A, Datti A, Calabresi P, Sarchielli P, Orlacchio A. Expression of cathepsins S and D signals a distinctive biochemical trait in CD34+ hematopoietic stem cells of relapsing-remitting multiple sclerosis patients. Mult Scler 2013; 19:1443-53. [PMID: 23439581 DOI: 10.1177/1352458513477230] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The elucidation of mechanistic aspects of relapsing-remitting multiple sclerosis (RRMS) pathogenesis may offer valuable insights into diagnostic decisions and medical treatment. RESULTS Two lysosomal proteases, cathepsins S and D (CatS and CatD), display an exclusive pattern of expression in CD34(+) hematopoietic stem cells (HSCs) from peripheral blood of acute MS (A-MS) patients (n = 20). While both enzymes normally exist as precursor forms in the HSCs of healthy individuals (n = 30), the same cells from A-MS patients consistently exhibit mature enzymes. Further, mature cathepsins are expressed at lower rates in stable MS subjects (S-MS, n = 15) and revert to precursor proteins after interferon-β1a treatment (n = 5). Mature CatD and CatS were induced in HSCs of healthy donors that were either co-cultured with PBMCs of A-MS patients or exposed to their plasma, suggesting a functional involvement of soluble agents. Following HSC exposure to several cytokines known to be implicated in MS, and based on relative cytokine levels displayed in A-MS, S-MS and control individuals, we identified IL-16 as a specific cell signaling factor associated with cathepsin processing. CONCLUSIONS These data point to an evident correlation between CatS and CatD expression and MS clinical stage, and define a biochemical trait in HSCs with functional, medical, and diagnostic relevance.
Collapse
Affiliation(s)
- Sabata Martino
- Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Università di Perugia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Esendagli G, Kurne AT, Sayat G, Kilic AK, Guc D, Karabudak R. Evaluation of Th17-related cytokines and receptors in multiple sclerosis patients under interferon β-1 therapy. J Neuroimmunol 2012. [PMID: 23177721 DOI: 10.1016/j.jneuroim.2012.10.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Th17-related cytokines (IL-17, IL-23, and IL-26) and receptors (IL-17R and IL-23R) were evaluated in MS patients under immunomodulatory IFN-β1 therapy during a 2year follow-up. Before the initiation of treatment, no significant difference was found in cytokine or receptor expression between controls and MS patients. Of the three cytokines evaluated, IL-26 was the highest in the patients' sera. The amount of IL-17 and CD13(+)IL-17R(+) cells was steadily decreased whereas IL-23 and IL-26 levels were gradually increased with IFN-β1 therapy. The patients in progressive phase had very high levels of IL-17. Th17-associated parameters should be considered in the immunomodulatory IFN-β1 therapy of MS.
Collapse
Affiliation(s)
- Gunes Esendagli
- Department of Basic Oncology, Institute of Oncology, Hacettepe University, Ankara, Turkey
| | | | | | | | | | | |
Collapse
|