1
|
Cong S, Peng Q, Cao L, Yi Q, Liu Y, Li L, Tong Q, Liang D. Diosgenin prevents periodontitis by inhibiting inflammation and promoting osteogenic differentiation. Oral Dis 2024; 30:2497-2510. [PMID: 37593795 DOI: 10.1111/odi.14708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/28/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023]
Abstract
Diosgenin, an essential dietary steroidal sapogenin, possess multiple pharmacological activities. This study aimed to assess the effects of diosgenin on periodontitis and elucidate the mechanisms. Lipopolysaccharide (LPS)-stimulated human periodontal ligament stem cells (hPDLCs) and a Porphyromonas gingivalis (P.g) plus ligation-induced animal model were used for in vitro and in vivo studies, respectively. Inflammatory responses, nuclear factor κ-B (NF-κB) signaling and osteogenesis-related markers were measured both in LPS-stimulated hPDLSCs and in gingival tissue of periodontitis rats. Treatment with diosgenin significantly inhibited the production of tumor necrosis factor α (TNF-α), interleukin (IL)-1β, and interleukin (IL)-6 and the activation of NF-κB pathway in LPS-stimulated hPDLSCs. Further, treatment with diosgenin enhanced the expression of osteoblast-related genes and increased the osteogenic differentiation capacity. Further, activation NF-κB pathway largely abolished the protective effects of diosgenin. Consistent with the in vitro studies, in vivo studies showed that administering diosgenin to periodontitis rats significantly lowered the levels of the TNF-α, IL-1β, and IL-6 and the inflammatory transcription factor NF-κB in gingival tissue. In addition, osteoblast-related genes were promoted. Diosgenin attenuates periodontitis by adjusting NF-κB signaling to inhibit inflammatory effects and promoting osteogenesis, suggesting diosgenin might be developed as a therapeutic strategy for treating periodontitis in the future.
Collapse
Affiliation(s)
- Shaohua Cong
- Department of Stomatology, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Qian Peng
- Plastic and Reconstructive Surgery, Hubei No. 3 People's Hospital of Jianghan University, Wuhan, China
| | - Liou Cao
- Department of Nephrology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qingqing Yi
- Clinical Research Center, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yi Liu
- Department of Stomatology, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Linhui Li
- Clinical Research Center, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Qingchun Tong
- Department of Stomatology, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Dongyu Liang
- Clinical Research Center, Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
2
|
Franchin M, Taira TM, da Silva Prado D, Hernandez CAS, de Andrade FB, Abdalla HB, Napimoga MH, Cunha TM, Fukada SY, Rosalen PL. PI3Kγ controls IL-17A expression and attenuates alveolar bone loss in an experimental periodontitis model. Inflamm Res 2023; 72:107-114. [PMID: 36333479 DOI: 10.1007/s00011-022-01662-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE In this study, we investigated the modulatory effects of PI3Kγ on IL-17A expression and the progression of experimental periodontitis in vivo. METHODS Ligature-induced periodontitis was developed around the first molar of mice. Animals were treated with anti-mouse IL-17A or IPI-549 (PI3Kγ inhibitor). In addition, PI3Kγ-deficient mice (PI3Kγ-/-) were used in the study. Alveolar bone loss was measured and real-time PCR of Il17a and Rankl genes was performed. A bioinformatics analysis was carried out using the Gene Set Enrichment Analysis computational tool. RESULTS Nine days after ligature placement, alveolar bone loss scores were significantly increased, with upregulation of Il17a and Rankl genes in the gingival tissues. Treatment with anti-mouse IL-17A (100 µg/mice) significantly attenuated alveolar bone loss. Mice with ligature-induced periodontitis treated with IPI-549 (3 mg/kg) or PI3Kγ-/- mice showed reduced alveolar bone loss and downregulation of Il17a and Rankl gene expression in the gingival tissues. Consistent with this, the bioinformatics analysis showed upregulation of IL17F, IL17A, IL17D, and STAT3 genes, as well as greater activation of IL-17 and PI3KCI pathways (upregulation of PIK3CG gene) in the gingival tissue of patients with periodontitis. CONCLUSION PI3Kγ plays an important role in modulating IL-17A expression and alveolar bone loss in vivo and can be considered a promising pathway for the management of periodontal disease and the development of new therapies.
Collapse
Affiliation(s)
- Marcelo Franchin
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil.
- School of Dentistry, Federal University Alfenas (Unifal-MG), Alfenas, MG, Brazil.
| | - Thaise Mayumi Taira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Douglas da Silva Prado
- Center for Research in Inflammatory Diseases (CRID), University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Fabio Bonifácio de Andrade
- Center for Research in Inflammatory Diseases (CRID), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Henrique Ballassini Abdalla
- Laboratory of Neuroimmune Interface of Pain Research, São Leopoldo Mandic Institute and Research Center, Campinas, SP, Brazil
| | - Marcelo Henrique Napimoga
- Laboratory of Neuroimmune Interface of Pain Research, São Leopoldo Mandic Institute and Research Center, Campinas, SP, Brazil
| | - Thiago Mattar Cunha
- Center for Research in Inflammatory Diseases (CRID), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Sandra Yasuyo Fukada
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
- Center for Research in Inflammatory Diseases (CRID), University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Pedro Luiz Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba, SP, Brazil.
- Graduate Program in Biological Sciences, Federal University of Alfenas (Unifal-MG), Alfenas, MG, Brazil.
| |
Collapse
|
3
|
Kim S, Lee JY, Park JY, Kim Y, Kang CH. Lacticaseibacillus rhamnosus MG4706 Suppresses Periodontitis in Osteoclasts, Inflammation-Inducing Cells, and Ligature-Induced Rats. Nutrients 2022; 14:nu14224869. [PMID: 36432555 PMCID: PMC9694000 DOI: 10.3390/nu14224869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Periodontitis is a chronic inflammatory disease characterized by tooth loss due to inflammation and the loss of alveolar bone. Periodontitis is closely related to various systemic diseases and is emerging as a global health problem. In this study, we investigated the anti-inflammatory effect of lactic acid bacteria (LAB) in vitro on Porphyromonas gingivalis (P. gingivalis) LPS-activated RAW264.7 and human gingival fibroblasts-1 (HGF-1) cells and the anti-osteoclastogenic effect of LAB on RANKL-induced RAW264.7 cells. All LAB strains (Lacticaseibacillus rhamnosus MG4706, MG4709, and MG4711) inhibited nitric oxide (NO)/inducible nitric oxide synthase (iNOS) in P. gingivalis LPS-activated RAW264.7 cells and pro-inflammatory cytokines (IL-1β and IL-6) and matrix metalloproteinase (MMP-8 and MMP-9) in HGF-1 cells. In addition, LAB treatment inhibited osteoclastogenesis by reducing tartrate-resistant acid phosphatase (TRAP) activity and cathepsin K (CtsK) through the downregulation of nuclear factor of activated T cells cytoplasmic 1 (NFATc1) and c-fos gene expression in RANKL-induced RAW264.7 cells. Administration of MG4706 alleviated alveolar bone loss indices and reduced the gene expression of IL-1β, IL-6, MMP-8, MMP-9, and RANKL/OPG ratio in gingival tissue. In conclusion, L. rhamnosus MG4706 has the potential to alleviate periodontitis.
Collapse
|
4
|
Li C, Yu R, Ding Y. Association between Porphyromonas Gingivalis and systemic diseases: Focus on T cells-mediated adaptive immunity. Front Cell Infect Microbiol 2022; 12:1026457. [PMID: 36467726 PMCID: PMC9712990 DOI: 10.3389/fcimb.2022.1026457] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/25/2022] [Indexed: 12/01/2023] Open
Abstract
The association between periodontal disease and systemic disease has become a research hotspot. Porphyromonas gingivalis (P. gingivalis), a crucial periodontal pathogen, affects the development of systemic diseases. The pathogenicity of P. gingivalis is largely linked to interference with the host's immunity. This review aims to discover the role of P. gingivalis in the modulation of the host's adaptive immune system through a large number of virulence factors and the manipulation of cellular immunological responses (mainly mediated by T cells). These factors may affect the cause of large numbers of systemic diseases, such as atherosclerosis, hypertension, adverse pregnancy outcomes, inflammatory bowel disease, diabetes mellitus, non-alcoholic fatty liver disease, rheumatoid arthritis, and Alzheimer's disease. The point of view of adaptive immunity may provide a new idea for treating periodontitis and related systemic diseases.
Collapse
Affiliation(s)
- Cheng Li
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Ran Yu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yumei Ding
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
5
|
Pan Z, Dong H, Huang N, Fang J. Oxidative stress and inflammation regulation of sirtuins: New insights into common oral diseases. Front Physiol 2022; 13:953078. [PMID: 36060706 PMCID: PMC9437461 DOI: 10.3389/fphys.2022.953078] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/29/2022] [Indexed: 12/22/2022] Open
Abstract
Sirtuins are a family of nicotinamide adenine dinucleotide (NAD)+-dependent histone deacetylases, comprising seven members SIRT1-SIRT7. Sirtuins have been extensively studied in regulating ageing and age-related diseases. Sirtuins are also pivotal modulators in oxidative stress and inflammation, as they can regulate the expression and activation of downstream transcriptional factors (such as Forkhead box protein O3 (FOXO3a), nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor-kappa B (NF-κB)) as well as antioxidant enzymes, through epigenetic modification and post-translational modification. Most importantly, studies have shown that aberrant sirtuins are involved in the pathogenesis of infectious and inflammatory oral diseases, and oral cancer. In this review, we provide a comprehensive overview of the regulatory patterns of sirtuins at multiple levels, and the essential roles of sirtuins in regulating inflammation, oxidative stress, and bone metabolism. We summarize the involvement of sirtuins in several oral diseases such as periodontitis, apical periodontitis, pulpitis, oral candidiasis, oral herpesvirus infections, dental fluorosis, and oral cancer. At last, we discuss the potential utilization of sirtuins as therapeutic targets in oral diseases.
Collapse
Affiliation(s)
- Zijian Pan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hao Dong
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ning Huang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie Fang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Jie Fang,
| |
Collapse
|
6
|
DNA Methylation and Histone Modification in Dental-derived Mesenchymal Stem Cells. Stem Cell Rev Rep 2022; 18:2797-2816. [PMID: 35896859 DOI: 10.1007/s12015-022-10413-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 10/16/2022]
Abstract
Epigenetic regulation, mainly involving DNA methylation, histone modification, and noncoding RNAs (ncRNAs), is essential for the regulation of multiple cellular processes. Dental-derived mesenchymal stem cells (DMSCs), a kind of multipotent cells derived from dental tissues, are impactful in regenerative medicine. Recent studies have shown that epigenetic regulation plays a major role in DMSCs. Therefore, exploring how epigenetic regulation is involved in DMSCs may be of guiding significance for tissue repair and regeneration or for exploring more effective treatments. A number of research of ncRNAs in DMSCs have been reported. However, little is known about the roles of DNA methylation and histone modifications in DMSCs. In this review, we summarize the important roles of DNA methylation and histone modifications of the fate of DMSCs.
Collapse
|
7
|
Quach SS, Zhu A, Lee RSB, Seymour GJ. Immunomodulation—What to Modulate and Why? Potential Immune Targets. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.883342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Despite over 50 years of research into the immunology of periodontal disease, the precise mechanisms and the role of many cell types remains an enigma. Progress has been limited by the inability to determine disease activity clinically. Understanding the immunopathogenesis of periodontal disease however is fundamental if immunomodulation is to be used as a therapeutic strategy. It is important for the clinician to understand what could be modulated and why. In this context, potential targets include different immune cell populations and their subsets, as well as various cytokines. The aim of this review is to examine the role of the principal immune cell populations and their cytokines in the pathogenesis of periodontal disease and their potential as possible therapeutic targets.
Collapse
|
8
|
The Role of Zinc Finger Proteins in Various Oral Conditions. ScientificWorldJournal 2022; 2022:4612054. [PMID: 35463825 PMCID: PMC9033369 DOI: 10.1155/2022/4612054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 03/30/2022] [Indexed: 11/23/2022] Open
Abstract
The zinc finger proteins (ZNFs) are essential transcription factors, and the genes encoding them constitute about 3% of the entire human genome. They are involved in the development of several tissues, and any alterations in their structure may promote chronic conditions like diabetes and tumorigenesis. Lately, their role in the development, progression, and metastasis of Oral Squamous Cell Carcinoma (OSCC), Epithelial Dysplasia, Oral Lichen Planus, and Periodontitis has been found. The present review aims to describe their role in various oral conditions. Electronic databases like Medline (PubMed) and Scopus were searched for original studies related to the role of ZNFs in various oral conditions. It yielded 48 studies included in the review. It was found that the ZNFs influenced chronic conditions like Oral Cancer and Periodontitis. They act both as tumor suppressors and oncogenes and have an anti-inflammatory effect. The knowledge from the present review may be utilized in designing drugs that prevent unusual expression of specific ZNFs. Besides, they may be applied as prognostic markers due to their high expression specificity in some tumors.
Collapse
|
9
|
Wang T, Ishikawa T, Sasaki M, Chiba T. Oral and Gut Microbial Dysbiosis and Non-alcoholic Fatty Liver Disease: The Central Role of Porphyromonas gingivalis. Front Med (Lausanne) 2022; 9:822190. [PMID: 35308549 PMCID: PMC8924514 DOI: 10.3389/fmed.2022.822190] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/19/2022] [Indexed: 02/05/2023] Open
Abstract
Gut microbiota play many important roles, such as the regulation of immunity and barrier function in the intestine, and are crucial for maintaining homeostasis in living organisms. The disruption in microbiota is called dysbiosis, which has been associated with various chronic inflammatory conditions, food allergies, colorectal cancer, etc. The gut microbiota is also affected by several other factors such as diet, antibiotics and other medications, or bacterial and viral infections. Moreover, there are some reports on the oral-gut-liver axis indicating that the disruption of oral microbiota affects the intestinal biota. Non-alcoholic fatty liver disease (NAFLD) is one of the systemic diseases caused due to the dysregulation of the oral-gut-liver axis. NAFLD is the most common liver disease reported in the developed countries. It includes liver damage ranging from simple steatosis to nonalcoholic steatohepatitis (NASH), cirrhosis, and cancer. Recently, accumulating evidence supports an association between NAFLD and dysbiosis of oral and gut microbiota. Periodontopathic bacteria, especially Porphyromonas gingivalis, have been correlated with the pathogenesis and development of NAFLD based on the clinical and basic research, and immunology. P. gingivalis was detected in the liver, and lipopolysaccharide from this bacteria has been shown to be involved in the progression of NAFLD, thereby indicating a direct role of P. gingivalis in NAFLD. Moreover, P. gingivalis induces dysbiosis of gut microbiota, which promotes the progression of NAFLD, through disrupting both metabolic and immunologic pathways. Here, we review the roles of microbial dysbiosis in NAFLD. Focusing on P. gingivalis, we evaluate and summarize the most recent advances in our understanding of the relationship between oral-gut microbiome symbiosis and the pathogenesis and progression of non-alcoholic fatty liver disease, as well as discuss novel strategies targeting both P. gingivalis and microbial dysbiosis.
Collapse
Affiliation(s)
- Ting Wang
- Division of Internal Medicine, Department of Oral Medicine, Iwate Medical University, Morioka, Japan
- Ting Wang
| | - Taichi Ishikawa
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, Morioka, Japan
| | - Minoru Sasaki
- Division of Molecular Microbiology, Department of Microbiology, Iwate Medical University, Morioka, Japan
| | - Toshimi Chiba
- Division of Internal Medicine, Department of Oral Medicine, Iwate Medical University, Morioka, Japan
- *Correspondence: Toshimi Chiba
| |
Collapse
|
10
|
Deng J, Lu C, Zhao Q, Chen K, Ma S, Li Z. The Th17/Treg cell balance: crosstalk among the immune system, bone and microbes in periodontitis. J Periodontal Res 2021; 57:246-255. [PMID: 34878170 DOI: 10.1111/jre.12958] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/04/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022]
Abstract
Periodontopathic bacteria constantly stimulate the host, which causes an immune response, leading to host-induced periodontal tissue damage. The complex interaction and imbalance between Th17 and Treg cells may be critical in the pathogenesis of periodontitis. Furthermore, the RANKL/RANK/OPG system plays a significant role in periodontitis bone metabolism, and its relationship with the Th17/Treg cell imbalance may be a bridge between periodontal bone metabolism and the immune system. This article reviews the literature related to the Th17/Treg cell imbalance mediated by pathogenic periodontal microbes, and its mechanism involving RANKL/RANK/OPG in periodontitis bone metabolism, in an effort to provide new ideas for the study of the immunopathological mechanism of periodontitis.
Collapse
Affiliation(s)
- Jianwen Deng
- Clinical Research Platform for Interdiscipline of Stomatology, The First Affiliated Hospital of Jinan University, Department of Stomatology, College of stomatology, Jinan University, Guangzhou, China
| | - Chunting Lu
- Science and Education Office, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Qingtong Zhao
- Clinical Research Platform for Interdiscipline of Stomatology, The First Affiliated Hospital of Jinan University, Department of Stomatology, College of stomatology, Jinan University, Guangzhou, China
| | - Kexiao Chen
- Clinical Research Platform for Interdiscipline of Stomatology, The First Affiliated Hospital of Jinan University, Department of Stomatology, College of stomatology, Jinan University, Guangzhou, China
| | - Shuyuan Ma
- Clinical Research Platform for Interdiscipline of Stomatology, The First Affiliated Hospital of Jinan University, Department of Stomatology, College of stomatology, Jinan University, Guangzhou, China
| | - Zejian Li
- Clinical Research Platform for Interdiscipline of Stomatology, The First Affiliated Hospital of Jinan University, Department of Stomatology, College of stomatology, Jinan University, Guangzhou, China.,Chaoshan Hospital, The First Affiliated Hospital of Jinan University, Jinan University, Chaozhou, China
| |
Collapse
|
11
|
Lu J, Hu Y, Tang Z, Zhang C, Jin L, Gu M, Yang Y. Porphyromonas gingivalis lipopolysaccharide enhances the proliferation of human periodontal ligament cells via upregulation of cyclin D1, cyclin A and cyclin B1. Exp Ther Med 2021; 23:2. [PMID: 34815754 PMCID: PMC8593868 DOI: 10.3892/etm.2021.10925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/23/2021] [Indexed: 11/06/2022] Open
Abstract
Human periodontal ligament cells (hPDLCs) play a notable role in periodontal tissue homeostasis and regeneration. However, the effect of Porphyromonas gingivalis lipopolysaccharide (Pg-LPS) on the proliferation of hPDLCs remains unclear. The present study investigated the effects of Pg-LPS on the proliferation profile of hPDLCs, and the involvement of cyclins and cyclin-dependent kinases in the process. hPDLCs were treated with Pg-LPS, and cell proliferation and cycle were detected using Cell Counting Kit-8 assays and flow cytometry. The mRNA expression levels of the cyclins and cyclin-dependent kinases (CDKs), including cyclins A, B1, D1 and D2 and CDK1, 2 and 4, were detected using reverse transcription-quantitative PCR. The protein expression levels of cyclins A, B1 and D1 were analysed using western blotting. The proliferation of hPDLCs was significantly increased after treatment with Pg-LPS at the concentrations of 0.001, 0.01, 0.1, 1 and 10 µg/ml for 24, 36 and 48 h compared with the cells cultured without LPS (P<0.01). The proliferation index of hPDLCs was significantly enhanced after treatment with Pg-LPS (0.0001, 0.001, 0.01, 0.1, 1 and 10 µg/ml) for 24 h (P<0.01). However, the S-phase fraction (SPF) only significantly increased after treatment with Pg-LPS at 0.01 µg/ml for 24 h (P<0.05), while the G2/M-phase fraction increased (P<0.01) and the G0/G1-phase fraction decreased (P<0.01) compared with the controls. The proliferation index and SPF increased, peaked at 24 h and then decreased at 48 h in both Pg-LPS-stimulated and control groups. Notably, Pg-LPS significantly upregulated the expression levels of cyclins D1, A and B1 after 24 h compared with those in the controls. Overall, the present study indicated that Pg-LPS may enhance the proliferation of hPDLCs, potentially through upregulation of cyclins D1, A and B1.
Collapse
Affiliation(s)
- Jiajing Lu
- Division of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR 999077, P.R. China.,Department of Orthodontics, School of Medical Technology, Taizhou Polytechnic College, Taizhou, Jiangsu 225300, P.R. China
| | - Yajing Hu
- Division of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR 999077, P.R. China.,Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology, Beijing 100081, P.R. China
| | - Zhongyuan Tang
- Division of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR 999077, P.R. China
| | - Chengfei Zhang
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR 999077, P.R. China
| | - Lijian Jin
- Division of Periodontology and Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR 999077, P.R. China
| | - Min Gu
- Division of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR 999077, P.R. China
| | - Yanqi Yang
- Division of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR 999077, P.R. China
| |
Collapse
|
12
|
Yu Y, Jiang L, Li J, Lei L, Li H. Hexokinase 2-mediated glycolysis promotes receptor activator of NF-κB ligand expression in Porphyromonas gingivalis lipopolysaccharide-treated osteoblasts. J Periodontol 2021; 93:1036-1047. [PMID: 34585393 DOI: 10.1002/jper.21-0227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/25/2021] [Accepted: 09/19/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND Glucose metabolism plays a pivotal role in sustaining the inflammatory response to microbial stimulation by providing sufficient energy in immune cells. The main purpose of our study was to explore whether hexokinase 2 (HK2)-mediated glycolysis affected the expression of receptor activator of NF-κB Ligand (RANKL) in Porphyromonas gingivalis lipopolysaccharide (P. gingivalis-LPS)-treated osteoblasts and evaluate the potential involvement of the AKT/PI3K pathway activation during HK2-mediated glycolysis. METHODS Primary mice osteoblasts were treated with P. gingivalis-LPS, whereas the HK2 inhibitor (Lonidamine, LND) and small interference RNA were used to restrain HK2 expression. Conditioned medium from osteoblasts was utilized for culturing osteoclast precursors. The mRNA and protein levels of genes involved in glycolysis and bone metabolism including RANKL and osteoprotegerin (OPG) were detected by real-time PCR and western blotting. HK2 and lactate levels were detected by ELISA. Tartrate-resistant acid phosphatase (TRAP) staining was utilized to assess osteoclast formation. The involvement of the AKT/PI3K pathway in osteoblasts was explored by Western blotting. RESULTS P. gingivalis-LPS enhanced HK2 expression along with rising glycolysis in osteoblasts. LND and HK2-knockdown decreased RANKL expression and the RANKL/OPG ratio in osteoblasts, leading to less osteoclast formation from osteoclast precursors as evidenced by TRAP staining, while the osteogenic potential and proliferation of osteoblasts were not affected by HK2-knockdown. Moreover, P. gingivalis-LPS activated the AKT/PI3K pathway, which could regulate HK2 and RANKL expression in osteoblasts. CONCLUSIONS HK2-mediated glycolysis promoted RANKL in osteoblasts and enhanced osteoclast differentiation. Targeting glycolysis may provide novel therapeutic methods for reducing alveolar bone loss.
Collapse
Affiliation(s)
- Yi Yu
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.,Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lishan Jiang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.,Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jingwen Li
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China.,Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lang Lei
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Houxuan Li
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
13
|
Huang J, Hu M, Niu H, Wang J, Si Y, Cheng S, Ding W. Osteopontin isoform c promotes the survival of cisplatin-treated NSCLC cells involving NFATc2-mediated suppression on calcium-induced ROS levels. BMC Cancer 2021; 21:750. [PMID: 34187410 PMCID: PMC8243455 DOI: 10.1186/s12885-021-08495-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/09/2021] [Indexed: 12/31/2022] Open
Abstract
Background Tumor microenvironment (TME) critically contributed to the malignant progression of transformed cells and the chemical responses to chemotherapy reagents. Osteopontin (OPN) is a secretory onco-protein with several splicing isoforms, all of which were known to regulate tumor growth and able to alter cell-cell or cell-TME communication, however, the exact role and regulation of the OPN splicing isoforms was not well understood. Methods In this study, the effects of conditioned medium from the culture of OPN splicing isoforms overexpressing cells on cell functions were evaluated. The methods of nuclear calcium reporter assays and subcellular distribution of nuclear factor of activated T cells c2 (NFATc2) assays were used to investigate the molecular mechanism underlining the roles of OPN splicing isoforms. Results We found that the survival of NSCLC cells treated with cisplatin was increased by secretory OPNc in the condition medium, where reduction of apoptosis by OPNc was associated with the activation of cellular calcium signals and subsequent nuclear translocation of NFATc2. Conclusions The results revealed a mechanism of OPN and downstream signal for tumor cells to survive in chemo-stressed TME, which emphasized the importance of secretory proteins in alternative splicing isoforms. Our study not only demonstrated the importance of OPN neutralization for anti-tumor effects, but also implied that modulation in calcium/NFATc2/ROS axis could be a novel approach for improving the long-term outcome of NSCLC treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08495-z.
Collapse
Affiliation(s)
- Jing Huang
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Mu Hu
- Department of Thoracic Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Huan Niu
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Jing Wang
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yang Si
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Shan Cheng
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| | - Wei Ding
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
14
|
Ng E, Tay JRH, Ong MMA. Minimally Invasive Periodontology: A Treatment Philosophy and Suggested Approach. Int J Dent 2021; 2021:2810264. [PMID: 34257659 PMCID: PMC8245214 DOI: 10.1155/2021/2810264] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 01/20/2023] Open
Abstract
Severe periodontitis is a highly prevalent dental disease. With the advent of implant dentistry, teeth are often extracted and replaced. Periodontal surgery, where indicated, could also result in increased trauma to the patient. This literature review discusses different treatment modalities for periodontitis and proposes a treatment approach emphasizing maximum preservation of teeth while minimizing morbidity to the patient. Scientific articles were retrieved from the MEDLINE/PubMed database up to January 2021 to identify appropriate articles that addressed the objectives of this review. This was supplemented with hand searching using reference lists from relevant articles. As tooth prognostication does not have a high predictive value, a more conservative approach in extracting teeth should be abided by. This may involve repeated rounds of nonsurgical periodontal therapy, and adjuncts such as locally delivered statin gels and subantimicrobial-dose doxycycline appear to be effective. Periodontal surgery should not be carried out at an early phase in therapy as improvements in nonsurgical therapy may be observed up to 12 months from initial treatment. Periodontal surgery, where indicated, should also be minimally invasive, with periodontal regeneration being shown to be effective over 20 years of follow-up. Biomarkers provide an opportunity for early detection of disease activity and personalised treatment. Quality of life is proposed as an alternative end point to the traditional biomedical paradigm focused on the disease state and clinical outcomes. In summary, minimally invasive therapy aims to preserve health and function of the natural dentition, thus improving the quality of life for patients with periodontitis.
Collapse
Affiliation(s)
- Ethan Ng
- Department of Restorative Dentistry, National Dental Centre Singapore, Singapore 168938, Singapore
| | - John Rong Hao Tay
- Department of Restorative Dentistry, National Dental Centre Singapore, Singapore 168938, Singapore
| | - Marianne Meng Ann Ong
- Department of Restorative Dentistry, National Dental Centre Singapore, Singapore 168938, Singapore
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
15
|
Zenobia C, Herpoldt KL, Freire M. Is the oral microbiome a source to enhance mucosal immunity against infectious diseases? NPJ Vaccines 2021; 6:80. [PMID: 34078913 PMCID: PMC8172910 DOI: 10.1038/s41541-021-00341-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/24/2021] [Indexed: 12/14/2022] Open
Abstract
Mucosal tissues act as a barrier throughout the oral, nasopharyngeal, lung, and intestinal systems, offering first-line protection against potential pathogens. Conventionally, vaccines are applied parenterally to induce serotype-dependent humoral response but fail to drive adequate mucosal immune protection for viral infections such as influenza, HIV, and coronaviruses. Oral mucosa, however, provides a vast immune repertoire against specific microbial pathogens and yet is shaped by an ever-present microbiome community that has co-evolved with the host over thousands of years. Adjuvants targeting mucosal T-cells abundant in oral tissues can promote soluble-IgA (sIgA)-specific protection to confer increased vaccine efficacy. Th17 cells, for example, are at the center of cell-mediated immunity and evidence demonstrates that protection against heterologous pathogen serotypes is achieved with components from the oral microbiome. At the point of entry where pathogens are first encountered, typically the oral or nasal cavity, the mucosal surfaces are layered with bacterial cohabitants that continually shape the host immune profile. Constituents of the oral microbiome including their lipids, outer membrane vesicles, and specific proteins, have been found to modulate the Th17 response in the oral mucosa, playing important roles in vaccine and adjuvant designs. Currently, there are no approved adjuvants for the induction of Th17 protection, and it is critical that this research is included in the preparedness for the current and future pandemics. Here, we discuss the potential of oral commensals, and molecules derived thereof, to induce Th17 activity and provide safer and more predictable options in adjuvant engineering to prevent emerging infectious diseases.
Collapse
Affiliation(s)
| | | | - Marcelo Freire
- Departments of Genomic Medicine and Infectious Diseases, J. Craig Venter Institute, La Jolla, CA, USA.
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
16
|
Nebbioso M, Lambiase A, Armentano M, Tucciarone G, Sacchetti M, Greco A, Alisi L. Diabetic retinopathy, oxidative stress, and sirtuins: an in depth look in enzymatic patterns and new therapeutic horizons. Surv Ophthalmol 2021; 67:168-183. [PMID: 33864872 DOI: 10.1016/j.survophthal.2021.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 12/16/2022]
Abstract
Diabetic retinopathy (DR) is one of the leading causes of blindness in the world. DR represents the most common microvascular complication of diabetes, and its incidence is constantly rising. The complex interactions between inflammation, oxidative stress, and the production of free oxygen radicals caused by prolonged exposure to hyperglycemia determine the development of DR. Sirtuins (SIRTs) are a recently discovered class of 7 histone deacetylases involved in cellular senescence, regulation of cell cycle, metabolic pathways, and DNA repair. SIRTs participate in the progress of several pathologies such as cancer, neurodegeneration, and metabolic diseases. In DR sirtuins 1,3,5, and 6 play an important role as they regulate the activation of the inflammatory response, insulin sensibility, and both glycolysis and gluconeogenesis. A wide spectrum of direct and indirect activators of SIRTs pathways (e.g., antagomiR, resveratrol, or glycyrrhizin) is currently being developed to treat the inflammatory cascade occurring in DR. We focus on the main metabolic and inflammatory pathways involving SIRTs and DR, as well as recent evidence on SIRTs activators that may be employed as novel therapeutic approaches to DR.
Collapse
Affiliation(s)
- Marcella Nebbioso
- Department of Sense Organs, Faculty of Medicine and Odontology, Policlinico Umberto I. Sapienza University of Rome, v. le del Policlinico 155, 00161 Rome, Italy
| | - Alessandro Lambiase
- Department of Sense Organs, Faculty of Medicine and Odontology, Policlinico Umberto I. Sapienza University of Rome, v. le del Policlinico 155, 00161 Rome, Italy.
| | - Marta Armentano
- Department of Sense Organs, Faculty of Medicine and Odontology, Policlinico Umberto I. Sapienza University of Rome, v. le del Policlinico 155, 00161 Rome, Italy
| | - Giosuè Tucciarone
- Department of Sense Organs, Faculty of Medicine and Odontology, Policlinico Umberto I. Sapienza University of Rome, v. le del Policlinico 155, 00161 Rome, Italy
| | - Marta Sacchetti
- Department of Sense Organs, Faculty of Medicine and Odontology, Policlinico Umberto I. Sapienza University of Rome, v. le del Policlinico 155, 00161 Rome, Italy
| | - Antonio Greco
- Department of Sense Organs, Faculty of Medicine and Odontology, Policlinico Umberto I. Sapienza University of Rome, v. le del Policlinico 155, 00161 Rome, Italy
| | - Ludovico Alisi
- Department of Sense Organs, Faculty of Medicine and Odontology, Policlinico Umberto I. Sapienza University of Rome, v. le del Policlinico 155, 00161 Rome, Italy
| |
Collapse
|
17
|
Galectin-1 Inhibited LPS-Induced Autophagy and Apoptosis of Human Periodontal Ligament Stem Cells. Inflammation 2021; 44:1302-1314. [PMID: 33566256 DOI: 10.1007/s10753-021-01417-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/23/2020] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
Periodontitis is a widespread human chronic inflammatory disease of the tooth-surrounding tissues, which induces the destruction of periodontium and pathologic loss of teeth among adults. It has been reported that interleukin (IL)-17 was significantly increased in periodontitis patients compared to controls, while galectin-1 (Gal-1) was lower. Interestingly, it is found that Gal-1 treatment reduced systemic IL-17 levels. Hence, the aim of the present study was to explore the effect of Gal-1 on periodontitis development and investigate its underlying mechanism. In this study, Gal-1 was poorly expressed in lipopolysaccharide (LPS)-induced human periodontal ligament stem cells (hPDLSCs), and Gal-1 overexpression attenuated the production of inflammatory cytokines induced by LPS. Moreover, Gal-1 overexpression alleviated LPS-induced cell autophagy and apoptosis and reduced the expressions of IL-17A and IL-17R. Interestingly, IL-17A reversed the effect of Gal-1 on cell autophagy, inflammation, and cell apoptosis induced by the LPS challenge. In conclusion, Gal-1 inhibited LPS-induced autophagy and apoptosis of hPDLSC via regulation of IL-17A expression. Therefore, Gal-1 may have promising potential in regenerating periodontium.
Collapse
|
18
|
Chen Y, Zhou F, Liu H, Li J, Che H, Shen J, Luo E. SIRT1, a promising regulator of bone homeostasis. Life Sci 2021; 269:119041. [PMID: 33453243 DOI: 10.1016/j.lfs.2021.119041] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/29/2020] [Accepted: 01/06/2021] [Indexed: 12/16/2022]
Abstract
Sirtuin 1 (SIRT1), a nicotinamide adenine dinucleotide-dependent deacetylase, epigenetically regulates various cell metabolisms, including inflammation, tumorigenesis, and bone metabolism. Many clinical studies have found the potential of SIRT1 in predicting and treating bone-related disorders, such as osteoporosis and osteonecrosis, suggesting that SIRT1 might be a regulator of bone homeostasis. In order to identify the mechanisms that underlie the pivotal role of SIRT1 in bone homeostasis, many studies revealed that SIRT1 could maintain the balance between bone formation and absorption via regulating the ratio of osteoblasts to osteoclasts. SIRT1 controls the differentiation of mesenchymal stem cells (MSCs) and bone marrow-derived macrophages, increasing osteogenesis and reducing osteoclastogenesis. Besides, SIRT1 can enhance bone-forming cells' viability, including MSCs and osteoblasts under adverse conditions by resisting senescence, suppressing apoptosis, and promoting autophagy in favor of osteogenesis. Furthermore, the effect on bone vasculature homeostasis enables SIRT1 to become a valuable strategy for ischemic osteonecrosis and senile osteoporosis. The review systemically discusses SIRT1 pathways and the critical role in bone homeostasis and assesses whether SIRT1 is a potential target for manipulation and therapy, to lay a solid foundation for further researches in the future.
Collapse
Affiliation(s)
- Ye Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Feng Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hanghang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China; Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME 04074, USA
| | - Jiaxuan Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Huiling Che
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiaqi Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - En Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
19
|
Cirano FR, Molez AM, Ribeiro FV, Tenenbaum HC, Casati MZ, Corrêa MG, Pimentel SP. Resveratrol and insulin association reduced alveolar bone loss and produced an antioxidant effect in diabetic rats. J Periodontol 2020; 92:748-759. [PMID: 32827164 DOI: 10.1002/jper.19-0718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND The present investigation studied the effects of systemic administration of resveratrol (RSV) on the development of experimental periodontitis (EP) and on the release of markers of inflammation, bone metabolism, and oxidative stress in diabetic rats. METHODS Seventy-five male rats were divided into five groups: DM+PLAC: Diabetes Mellitus + placebo solution; DM+INS: DM + insulin therapy; DM+RSV: DM + RSV; DM+RSV+INS: DM + RSV and insulin; NDM: non-diabetic. Streptozotocin was used to induce DM and EP was induced by the placement of a ligature at the fist mandibular and the second maxillary molars. Euthanasia occurred 30 days after the initiation of the study and mandible specimens were subjected for morphometric analysis of bone level. Gingival tissues from mandibular molars were collected for quantification of inflammatory and oxidative stress markers by multiplex assay system and ELISA assay, respectively. Maxillary gingival tissues were processed for real-time polymerase chain reaction (real-time PCR) assessment of markers of bone metabolism and oxidative stress. RESULTS Morphometric analysis revealed greater bone loss in DM+PLAC and DM+INS in comparison to the other treatments (P < 0.05). RSV used in conjunction with INS reduced the levels of interleukin (IL)-1β, IL-6, IL-17, interferon-gamma (IFN-γ) and superoxide dismutase 1 (SOD) (P < 0.05). RSV alone reduced nicotinamide adenine dinucleotide phosphatase oxidase (NADPH oxidase) levels, in comparison to DM+INS and DM+RSV+INS (P < 0.05). All treatments upregulated mRNA levels for osteoprotegerin (OPG) in comparison to PLAC (P < 0.05). Sirtuin 1 (SIRT) mRNA levels were lower in PLAC when compared to DM+RSV, DM+RSV+INS and NDM (P < 0.05). CONCLUSION RSV reduced the progression of EP and the levels of NADPH oxidase. Co-treatment with RSV and insulin reduced the levels of pro-inflammatory factors (either proteins or mRNA) and increased the levels of SOD. The data also demonstrated that treatment with RSV and INS alone or in combination had beneficial effects on bone loss.
Collapse
Affiliation(s)
| | - Andréia Manetta Molez
- Dental Research Division, School of Dentistry, Paulista University, São Paulo, Brazil
| | | | - Howard C Tenenbaum
- Department of Periodontology, Faculty of Dentistry, Toronto, Ontario, Canada.,Laboratory Medicine and Pathobiology, Faculty of Medicine University of Toronto, Toronto, Ontario, Canada.,School of Dental Medicine, Department of Periodontics, Tel Aviv University, Tel Aviv, Israel.,Department of Dentistry and Centre for Advanced Dental Research and Care, Sinai Health System, Toronto, Ontario, Canada
| | - Marcio Z Casati
- Dental Research Division, School of Dentistry, Paulista University, São Paulo, Brazil
| | | | - Suzana Peres Pimentel
- Dental Research Division, School of Dentistry, Paulista University, São Paulo, Brazil
| |
Collapse
|
20
|
Zhao C, Chen Q, Yu S, Xu C, Li X, Zhang C, Gao L. Effect of interleukin-22 on osteogenic differentiation and the osteoclastogenic response of human periodontal ligament fibroblasts in vitro. J Periodontol 2020; 91:1085-1097. [PMID: 31950496 DOI: 10.1002/jper.19-0470] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/06/2019] [Accepted: 11/17/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Interleukin-22 (IL-22) exerts extensive biological effects, playing both protective and pathological roles in autoimmune and infectious diseases. However, the specific role and mechanism of IL-22 in the pathogenesis of periodontitis have not been clarified. The aim of this study was to analyze the possible roles of IL-22 in the osteoclastogenesis and osteogenesis of periodontitis. METHODS Human periodontal ligament fibroblasts (hPDLFs) were treated with IL-22 and/or lipopolysaccharide from Porphyromonas gingivalis (Pg-LPS), and the mRNA and protein expression of RANKL and OPG were measured by qRT-PCR and Western blotting, respectively. Western blotting was also used to examine the phosphorylated and total protein expression of MAPK signaling molecules. The role of the MAPK pathway in osteoclastogenesis marker expression was further confirmed by inhibition assays. For osteogenic assays, the mRNA expression of osteoblastic markers was quantified by qRT-PCR, the alkaline phosphatase (ALP) activity of hPDLFs was measured by an ALP assay, and the mineralized nodules formed by hPDLFs were determined by Alizarin Red S staining. RESULTS IL-22 promoted the expression of RANKL in hPDLFs via the MAPK signaling pathway and further upregulated RANKL expression together with Pg-LPS via the p38 MAPK pathway. IL-22 could enhance the ALP activity and mineralized nodule formation of hPDLFs in the early period of osteogenic induction, while exhibiting no profound effect on the expression of osteoblastic markers. CONCLUSION IL-22 plays regulatory roles in bone homeostasis, and it is likely to contribute to osteoclastogenesis as a proinflammatory cytokine in the pathogenesis of periodontitis.
Collapse
Affiliation(s)
- Chuanjiang Zhao
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Qianying Chen
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Shaojie Yu
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Chenrong Xu
- Department of Periodontology, Guangdong Provincial Hospital of Stomatology, Stomatological Hospital of Southern Medical University, Guangzhou, China
| | - Xiting Li
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Chi Zhang
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Li Gao
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
21
|
Caribé PMV, Villar CC, Romito GA, Takada JY, Pacanaro AP, Strunz CMC, César LAM, Mansur ADP. Prospective, case-controlled study evaluating serum concentration of sirtuin-1 and mannose-binding lectin in patients with and without periodontal and coronary artery disease. Ther Adv Chronic Dis 2020; 11:2040622320919621. [PMID: 32435441 PMCID: PMC7223200 DOI: 10.1177/2040622320919621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/25/2020] [Indexed: 01/02/2023] Open
Abstract
Background: Atherosclerosis and periodontal disease (PD) are inflammatory diseases that have been shown in studies to have a direct association. Mannose-binding lectin (MBL) is an immune system protein that binds to periodontal pathogens favoring phagocytosis. Conversely, increased serum sirtuin-1 (SIRT1) concentration reduces the inflammatory process. Methods: This was a prospective, case-controlled study that analyzed serum concentration of biomarkers in patients with or without coronary artery disease (CAD) and PD. A total of 78 patients were evaluated: 20 healthy individuals, 18 patients with CAD, 20 patients with PD, and 20 patients with both PD and CAD. Clinical and laboratory characteristics were analyzed before and after nonsurgical treatment of PD and also at two equivalent times in patients without PD. Serum MBL and SIRT1 concentration were analyzed by enzyme-linked immunosorbent assay. Results: A negative correlation was observed between changes in serum concentration of MBL and SIRT1 (r = −0.30; p = 0.006). Comparison between pre- and post-treatment of PD showed a reduction in MBL levels (886.27 ± 906.72 versus 689.94 ± 808.36; p = 0.002) and an increase in SIRT1 values (0.80 ± 1.01 versus 1.49 ± 1.55; p = 0.005) in patients with PD and without CAD. The same result was observed in patients with PD and CAD for MBL and SIRT1, respectively, of 1312.43 ± 898.21 versus 1032.90 ± 602.52 (p = 0.010) and 1.32 ± 1.0 versus 1.82 ± 1.75 (p = 0.044). Conclusion: PD treatment reduced MBL serum concentration and increased SIRT1 serum concentration in patients with and without CAD.
Collapse
Affiliation(s)
| | - Cristina Cunha Villar
- Division of Periodontology, Stomatology Department, Dental School, University of São Paulo, São Paulo, Brazil
| | - Guiseppe Alexandre Romito
- Division of Periodontology, Stomatology Department, Dental School, University of São Paulo, São Paulo, Brazil
| | - Júlio Yoshio Takada
- Clinical Department, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Ana Paula Pacanaro
- Clinical Department, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | | | | | - Antonio de Padua Mansur
- Clinical Department, Heart Institute (InCor), University of São Paulo Medical School, Av. Dr. Enéas C. Aguiar, 44, CEP, São Paulo, 05403-000, Brazil
| |
Collapse
|
22
|
Chopra A, Radhakrishnan R, Sharma M. Porphyromonas gingivalis and adverse pregnancy outcomes: a review on its intricate pathogenic mechanisms. Crit Rev Microbiol 2020; 46:213-236. [PMID: 32267781 DOI: 10.1080/1040841x.2020.1747392] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Porphyromonas gingivalis (P. gingivalis), a Gram-negative facultative anaerobe of the oral cavity, is associated with the onset of various adverse pregnancy outcomes. P. gingivalis is linked with the development of preeclampsia, preterm labour, spontaneous abortion, gestational diabetes, foetal growth restriction, and misconception. The unique virulence factors, surface adhesions, enzymes of P. gingivalis can directly injure and alter the morphology, microbiome the foetal and maternal tissues. P. gingivalis can even exaggerate the production of cytokines, free radicals and acute-phase proteins in the uterine compartment that increases the risk of myometrial contraction and onset of preterm labour. Although evidence confirms the presence of P. gingivalis in the amniotic fluid and placenta of women with poor pregnancy outcomes, the intricate molecular mechanisms by which P. gingivalis initiates various antenatal and postnatal maternal and foetal complications are not well explained in the literature. Therefore, the present review aims to comprehensively summarise and highlight the recent and unique molecular pathogenic mechanisms of P. gingivalis associated with adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Aditi Chopra
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Raghu Radhakrishnan
- Department of Oral Pathology and Microbiology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Mohit Sharma
- Department of Oral Pathology, Sudha Rustagi College of Dental Sciences & Research, Faridabad, India
| |
Collapse
|
23
|
Xu W, Zhou W, Wang H, Liang S. Roles of Porphyromonas gingivalis and its virulence factors in periodontitis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 120:45-84. [PMID: 32085888 DOI: 10.1016/bs.apcsb.2019.12.001] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Periodontitis is an infection-driven inflammatory disease, which is characterized by gingival inflammation and bone loss. Periodontitis is associated with various systemic diseases, including cardiovascular, respiratory, musculoskeletal, and reproductive system related abnormalities. Recent theory attributes the pathogenesis of periodontitis to oral microbial dysbiosis, in which Porphyromonas gingivalis acts as a critical agent by disrupting host immune homeostasis. Lipopolysaccharide, proteases, fimbriae, and some other virulence factors are among the strategies exploited by P. gingivalis to promote the bacterial colonization and facilitate the outgrowth of the surrounding microbial community. Virulence factors promote the coaggregation of P. gingivalis with other bacteria and the formation of dental biofilm. These virulence factors also modulate a variety of host immune components and subvert the immune response to evade bacterial clearance or induce an inflammatory environment. In this chapter, our focus is to discuss the virulence factors of periodontal pathogens, especially P. gingivalis, and their roles in regulating immune responses during periodontitis progression.
Collapse
Affiliation(s)
- Weizhe Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China; Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
| | - Wei Zhou
- Department of Endodontics, Ninth People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, Pudong, China
| | - Huizhi Wang
- VCU Philips Institute for Oral Health Research, Department of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University School of Dentistry, Richmond, VA, United States
| | - Shuang Liang
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
| |
Collapse
|
24
|
Caribé PMV, Villar CC, Romito GA, Pacanaro AP, Strunz CMC, Takada JY, Cesar LAM, Mansur ADP. Influence of the treatment of periodontal disease in serum concentration of sirtuin 1 and mannose-binding lectin. J Periodontol 2020; 91:900-905. [PMID: 31749165 DOI: 10.1002/jper.19-0236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/02/2019] [Accepted: 09/05/2019] [Indexed: 01/28/2023]
Abstract
BACKGROUND Increased levels of periodontal pathogens disrupt the homeostasis between the host and its microbiota and increase susceptibility to periodontal diseases. Periodontitis increases the serum concentration of mannose-binding lectin (MBL), which exacerbates local inflammatory processes. In animal studies, sirtuin 1 (SIRT1) was associated with protection against inflammation. This study analyzed the influence of non-surgical periodontal treatment on serum levels of MBL and SIRT1. METHODS Forty patients with periodontitis and 38 periodontally healthy individuals (aged 45 to 79 years) were included. Periodontitis patients received scaling and root planing using machine driven and hand instruments. Clinical parameters, inflammatory biomarkers, MBL, and SIRT1 levels were measured at baseline and at post-treatment. RESULTS For all patients, an inverse correlation was observed between serum concentrations of MBL and SIRT1 (r = -0.30; P = 0.006). Periodontal treatment reduced serum concentrations of MBL (1,099.35 ± 916.59 to 861.42 ± 724.82 ng/mL; P < 0.001) and C-reactive protein (6.05 ± 8.99 to 2.49 ± 2.89 mg/L; P = 0.009). By contrast, SIRT1 serum levels increased (1.06 ± 1.03 to 1.66 ± 1.64 ng/mL; P < 0.001) following periodontal treatment. CONCLUSIONS Periodontal treatment was associated with decreased serum concentrations of MBL and CRP and increased serum levels of SIRT1. Prospective studies are needed to assess the impact of these biomarkers on pathophysiology of periodontitis.
Collapse
Affiliation(s)
- Pérola Michelle Vasconcelos Caribé
- Clinical Department, Heart Institute (InCor), University of São Paulo Medical School, Sao Paulo, Brazil.,Division of Periodontology, Stomatology Department, Dental School, University of Sao Paulo, Sao Paulo, Brazil PhD thesis of the Heart Institute (InCor), University of São Paulo Medical School, Sao Paulo, Brazil
| | - Cristina Cunha Villar
- Division of Periodontology, Stomatology Department, Dental School, University of Sao Paulo, Sao Paulo, Brazil PhD thesis of the Heart Institute (InCor), University of São Paulo Medical School, Sao Paulo, Brazil
| | - Giuseppe Alexandre Romito
- Division of Periodontology, Stomatology Department, Dental School, University of Sao Paulo, Sao Paulo, Brazil PhD thesis of the Heart Institute (InCor), University of São Paulo Medical School, Sao Paulo, Brazil
| | - Ana Paula Pacanaro
- Clinical Department, Heart Institute (InCor), University of São Paulo Medical School, Sao Paulo, Brazil
| | | | - Júlio Yoshio Takada
- Clinical Department, Heart Institute (InCor), University of São Paulo Medical School, Sao Paulo, Brazil
| | | | - Antonio de Padua Mansur
- Clinical Department, Heart Institute (InCor), University of São Paulo Medical School, Sao Paulo, Brazil
| |
Collapse
|
25
|
Allgayer S, Macedo de Menezes L, Batista EL. Interleukin 17 (IL-17) and interleukin 23 (IL-23) levels are modulated by compressive orthodontic forces in humans. J World Fed Orthod 2019. [DOI: 10.1016/j.ejwf.2019.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
26
|
Flores RA, Fernandez-Colorado CP, Afrin F, Cammayo PLT, Kim S, Kim WH, Min W. Riemerella anatipestifer infection in ducks induces IL-17A production, but not IL-23p19. Sci Rep 2019; 9:13269. [PMID: 31519917 PMCID: PMC6744436 DOI: 10.1038/s41598-019-49516-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
R. anatipestifer (RA) is one of the most harmful bacterial pathogens affecting the duck industry, and infection is associated with the production of proinflammatory cytokines, including IL-17A. Another proinflammatory cytokine, IL-23, is critical for the development of Th17 cells, which produce IL-17. However, IL-23 roles have not been studied in this infection. Here, we describe the identification and mRNA expression analysis of duck IL-23p19 (duIL-23p19) in splenic lymphocytes and macrophages stimulated with killed RA and in spleens of RA-infected ducks. Expression of duIL-23p19 transcript identified in this study was relatively high in livers of healthy ducks and was upregulated in mitogen-activated splenic lymphocytes as well as in splenic lymphocytes and macrophages stimulated with killed RA. In spleens of RA-infected ducks, expression levels of duIL-23p19 transcript were unchanged at all time points except on days 4 and 7 post-infection; however, duIL-17A and IL-17F expression levels were upregulated in both spleens of RA-infected ducks and splenic lymphocytes and macrophages stimulated with killed RA. In sera collected at 24 h after this infection, duIL-23p19 expression levels were unchanged, whereas IL-17A significantly upregulated. These results suggest that IL-23p19 does not play a critical role in the IL-17A response in early stages of RA-infected ducks.
Collapse
Affiliation(s)
- Rochelle A Flores
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju, 52828, Korea
| | - Cherry P Fernandez-Colorado
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju, 52828, Korea.,Department of Veterinary Paraclinical Sciences, College of Veterinary Medicine, University of the Philippines Los Banos, College, Laguna, 4031, Philippines
| | - Fahmida Afrin
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju, 52828, Korea.,Animal Genetic Resources Research Center, National Institute of Animal Science, Rural Development Administration, Hwang San-ro 1214-13, Unbong-up, Namwon, 55717, Korea
| | - Paula Leona T Cammayo
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju, 52828, Korea
| | - Suk Kim
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju, 52828, Korea
| | - Woo H Kim
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, 20705, USA
| | - Wongi Min
- College of Veterinary Medicine & Institute of Animal Medicine, Gyeongsang National University, Jinju, 52828, Korea.
| |
Collapse
|
27
|
Zhang W, Xue K, Gao Y, Huai Y, Wang W, Miao Z, Dang K, Jiang S, Qian A. Systems pharmacology dissection of action mechanisms of Dipsaci Radix for osteoporosis. Life Sci 2019; 235:116820. [PMID: 31476308 DOI: 10.1016/j.lfs.2019.116820] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/17/2019] [Accepted: 08/28/2019] [Indexed: 12/31/2022]
Abstract
AIMS Osteoporosis (OP) is a systemic metabolic bone disease characterized by bone mass decrease and microstructural degradation, which may increase the risk of bone fracture and leading to high morbidity. Dipsaci Radix (DR), one typical traditional Chinese medicine (TCM), which has been applied in the treatment of OP with good therapeutic effects and few side effects. However, the underlying molecular mechanisms of DR to treat OP have not been fully elucidated. In this study, we aim to dissect the molecular mechanism of DR in the treatment of OP. MATERIALS AND METHODS A systems pharmacology approach was employed to comprehensively dissect the action mechanisms of DR for the treatment of OP. KEY FINDINGS 10 compounds were screened out as the potential active ingredients with excellent biological activity based on in silico ADME (absorption, distribution, metabolism and excretion) prediction model. Then, 36 key protein targets of 6 compounds were identified by systems drug targeting model (SysDT) and they were involved in several biological processes, such as osteoclast differentiation, osteoblast differentiation and anti-inflammation. The target-pathway network indicated that targets are mainly mapped in multiple signaling pathways, i.e., MAPK, Tumor necrosis factor α (TNF-α), NF-κb and Toll-like receptor pathways. The in vitro results indicated that the compounds ursolic acid and beta-sitosterol effectively inhibited the osteoclast differentiation. SIGNIFICANCE These results systematically dissected that DR exhibits the therapeutic effects of OP by the regulation of immune system-related pathways, which provide novel perspective to drug development of OP.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Kaiyue Xue
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Yongguang Gao
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Ying Huai
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Wei Wang
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Zhiping Miao
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Kai Dang
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Shanfeng Jiang
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Airong Qian
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| |
Collapse
|
28
|
Yang H, Hu J, Chen Y(J, Ge B. Role of Sirt1 in innate immune mechanisms against Mycobacterium tuberculosis via the inhibition of TAK1 activation. Arch Biochem Biophys 2019; 667:49-58. [DOI: 10.1016/j.abb.2019.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/26/2019] [Accepted: 04/24/2019] [Indexed: 01/17/2023]
|
29
|
Tobón-Arroyave SI, Celis-Mejía N, Córdoba-Hidalgo MP, Isaza-Guzmán DM. Decreased salivary concentration of CD9 and CD81 exosome-related tetraspanins may be associated with the periodontal clinical status. J Clin Periodontol 2019; 46:470-480. [PMID: 30825338 DOI: 10.1111/jcpe.13099] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 02/07/2019] [Accepted: 02/27/2019] [Indexed: 12/13/2022]
Abstract
AIM This cross-sectional case-control study was designed to determine the association of the salivary concentration of CD9/CD81 exosome-related tetraspanins with the periodontal clinical status. MATERIALS AND METHODS Saliva samples from 104 periodontitis patients and 45 healthy controls were collected. Periodontal status was assessed based on full-mouth clinico-radiographical data, and salivary concentration of the analytes was calculated by ELISA. The association between the biomarkers with disease status was analysed using multivariate binary logistic regression models. RESULTS Significantly decreased salivary levels of CD9 and CD81 exosomes were detected in periodontitis patients in comparison with healthy controls. Also, negative significant correlations between salivary concentrations of CD9/CD81 exosomes regarding clinical measurements were observed. Likewise, a significant downward trend of the concentration of these two biomarkers concerning the stage and grade of disease could be identified. Logistic regression analyses revealed a strong/independent association for decreased salivary concentration of CD81 exosomes regarding disease status. Confounding and interaction effects between age and salivary concentration of CD9 exosomes were also noted. CONCLUSION Reduced salivary concentration of CD9/CD81 exosomes might be of significance in the context of periodontal disease pathogenesis.
Collapse
Affiliation(s)
- Sergio Iván Tobón-Arroyave
- Laboratory of Immunodetection and Bioanalysis, Faculty of Dentistry, University of Antioquia, Medellín, Colombia
| | - Natalia Celis-Mejía
- Laboratory of Immunodetection and Bioanalysis, Faculty of Dentistry, University of Antioquia, Medellín, Colombia
| | | | - Diana María Isaza-Guzmán
- Laboratory of Immunodetection and Bioanalysis, Faculty of Dentistry, University of Antioquia, Medellín, Colombia
| |
Collapse
|
30
|
Li K, Lv G, Pan L. Sirt1 alleviates LPS induced inflammation of periodontal ligament fibroblasts via downregulation of TLR4. Int J Biol Macromol 2018; 119:249-254. [DOI: 10.1016/j.ijbiomac.2018.07.099] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 12/30/2022]
|
31
|
Corrêa MG, Absy S, Tenenbaum H, Ribeiro FV, Cirano FR, Casati MZ, Pimentel SP. Resveratrol attenuates oxidative stress during experimental periodontitis in rats exposed to cigarette smoke inhalation. J Periodontal Res 2018; 54:225-232. [PMID: 30346038 DOI: 10.1111/jre.12622] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/17/2018] [Accepted: 09/12/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVES This study aimed at investigating the effect of the systemic administration of resveratrol (RESV) on oxidative stress during experimental periodontitis in rats subjected to cigarette smoke inhalation. MATERIAL AND METHODS Experimental periodontitis (EP) was induced in 26 male Wistar rats by the insertion of a ligature around one of the first mandibular and maxillary molars. The animals were assigned randomly to the following groups: cigarette smoke inhalation (CSI; 3 times/d, 8 minutes/d) + resveratrol (10 mg/Kg), that is, SMK + RESV (n = 13) and cigarette smoke inhalation + placebo, that is, SMK + PLAC (n = 13). The substances were administered daily for 30 days (19 days prior and 11 days following EP induction), and then, the animals were euthanized. The maxillary specimens were processed for morphometric analysis of bone loss, and the tissue surrounding the first maxillary molars was collected for mRNA quantification of Sirtuin 1 (SIRT1) by real-time PCR. The gingival tissues surrounding the mandibular first molars were collected for quantification of superoxide dismutase 1 (SOD1) and nicotinamide adenine dinucleotide phosphatase oxidase (NADPH) using an ELISA assay. RESULTS Reduced bone loss was demonstrated in animals in the SMK + RESV group as compared to those in the SMK + PLAC (P < 0.05) group on the basis of morphometric analysis. Resveratrol promoted higher levels of SIRT and SOD (P < 0.05) as well as reduced levels of NADPH oxidase (P < 0.05) were found in tissues derived from animals in the SMK + RESV group when compared to those in the SMK + PLAC group. CONCLUSION Resveratrol is an efficient therapeutic agent that reduces exacerbation of bone loss found in animals with EP that were also exposed to smoke. The results suggest that its effects could be mediated, at least in part, by its antioxidant and anti-inflammatory properties which attenuate the effects of oxidative stress on EP in the presence of cigarette smoke.
Collapse
Affiliation(s)
- Mônica Grazieli Corrêa
- Dental Research Division, School of Dentistry, Paulista University, São Paulo, São Paulo, Brazil
| | - Samir Absy
- Dental Research Division, School of Dentistry, Paulista University, São Paulo, São Paulo, Brazil
| | - Howard Tenenbaum
- Dental Research Division, School of Dentistry, Paulista University, São Paulo, São Paulo, Brazil.,Department of Periodontology, Faculty of Dentistry, Toronto, Ontario, Canada.,Laboratory of Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,School of Dental Medicine, Department of Periodontics, Tel Aviv University, Tel Aviv, Israel.,Department of Dentistry, Sinai Health System, Tel Aviv, Israel
| | - Fernanda Vieira Ribeiro
- Dental Research Division, School of Dentistry, Paulista University, São Paulo, São Paulo, Brazil
| | - Fabiano Ribeiro Cirano
- Dental Research Division, School of Dentistry, Paulista University, São Paulo, São Paulo, Brazil
| | - Marcio Z Casati
- Dental Research Division, School of Dentistry, Paulista University, São Paulo, São Paulo, Brazil
| | - Suzana Peres Pimentel
- Dental Research Division, School of Dentistry, Paulista University, São Paulo, São Paulo, Brazil
| |
Collapse
|
32
|
Thrombospondin-1 Production Regulates the Inflammatory Cytokine Secretion in THP-1 Cells Through NF-κB Signaling Pathway. Inflammation 2018. [PMID: 28634844 DOI: 10.1007/s10753-017-0601-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Thrombospondin-1 (TSP-1) is upregulated in several inflammatory diseases. Recent data have shown that macrophages from TSP-1-deficient mice have a reduced inflammatory phenotype, suggesting that TSP-1 plays a part in macrophage activation. DNA microarray approach revealed that Porphyromonas gingivalis lipopolysaccharide (P. gingivalis LPS) may induce the enhanced TSP-1 expression in human monocytes, suggesting a role of TSP-1-mediated pathogenesis in periodontitis. Until recently, the function of TSP-1 has been a matter of debate. In this study, we explored the role of TSP-1 in inflammatory cytokine secretions and its putative mechanism in pathogenesis of periodontitis. We demonstrated that TSP-1 expression was significantly upregulated in gingival tissues with periodontitis and in P. gingivalis LPS-stimulated THP-1 cells. Deficiency of TSP-1 by transfecting siRNAs decreased IL-6, IL-1β, and TNF-α secretions in THP-1 cells, whereas overexpression of TSP-1 resulted in an upregulation of IL-6, IL-1β, and TNF-α productions. Additional experiments showed that Pyrrolidine dithiocarbamate (PDTC) inhibited IL-6, IL-1β, and TNF-α expression induced by overexpression of TSP-1, accompanying with downregulation of phosphorylated p65 and IκBα protein levels in response to P. gingivalis LPS. These results indicated that TSP-1 played a significant role in P. gingivalis LPS-initiated inflammatory cytokines (IL-6, IL-1β, and TNF-α) secretions of THP-1 cells, and the NF-κB signaling is involved in its induction of expression. Thus, TSP-1 effectively elevated P. gingivalis LPS-induced inflammation mediated by the NF-κB pathway and may be critical for pathology of periodontitis.
Collapse
|
33
|
Muniz FWMG, Montagner F, Jacinto RC, Rösing CK, Gomes BPFA. Correlation between crestal alveolar bone loss with intracanal bacteria and apical lesion area in necrotic teeth. Arch Oral Biol 2018; 95:1-6. [PMID: 30025275 DOI: 10.1016/j.archoralbio.2018.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/14/2018] [Accepted: 07/10/2018] [Indexed: 12/31/2022]
Abstract
OBJECTIVE This study aimed to analyze the correlation between crestal alveolar bone loss with the presence of some bacterial species in root canals and the apical lesion area of necrotic teeth. DESIGN Data from 20 patients with diagnosis of pulp necrosis and acute apical abscesses, without active periodontal diseases, were evaluated. Patients with history of antibiotic usage three months prior to the study, with exposed pulp cavity, and with probing depth >3 mm were not included. The root size, the distance between the bone crest to the tooth apex in the mesial and distal surfaces, and the apical lesion area were measured from standard periapical radiographies by a calibrated examiner. Root canal samples were collected using sterilized paper points. In multirooted teeth, the largest root canal was sampled. Culture, microbial isolation and identification by phenotypic methods were performed. Spearman correlation and exact Fischer test were calculated between higher/lower existing bone crests, according to the median and the presence of specific bacteria. RESULTS No statistically significant differences were found between occurrence of pathogenic bacteria, such as Porphyromonas gingivalis, Porphyromonas endodontalis, and Prevotella intermedia, and groups with higher/lower degree of bone loss (p > 0.05). A negative significant correlation was found between Parvimonas micra and periodontal bone loss (p = 0.02). Additionally, no statistically significant association was found between crestal bone loss and the apical lesion area. CONCLUSIONS It was concluded that, in patients without active periodontitis, the presence of pathogenic bacteria in the root canal was not correlated with periodontal bone loss.
Collapse
Affiliation(s)
- Francisco Wilker M G Muniz
- Department of Periodontology, Faculty of Dentistry, Federal University of Pelotas, Rua Gonçalves Chaves, 457, Pelotas, RS, 96015-560, Brazil.
| | - Francisco Montagner
- Department of Endodontics, Faculty of Dentistry, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2492, Porto Alegre, RS, 90035-003, Brazil.
| | - Rogério C Jacinto
- Department of Endodontics, Araçatuba Dental School, State University of São Paulo, Rua José Bonifácio, 1193, Araçatuba, São Paulo, 16015-050, Brazil.
| | - Cassiano K Rösing
- Department of Periodontology, Faculty of Dentistry, Federal University of Rio Grande do Sul, Rua Ramiro Barcelos, 2492, Porto Alegre, RS, 90035-003, Brazil.
| | - Brenda P F A Gomes
- Department of Restorative Dentistry, Division of Endodontics, Piracicaba Dental School, State University of Campinas - UNICAMP, Avenida Limeira, 901, Piracicaba, SP, 13414-903, Brazil.
| |
Collapse
|
34
|
Fernandes GFS, Silva GDB, Pavan AR, Chiba DE, Chin CM, Dos Santos JL. Epigenetic Regulatory Mechanisms Induced by Resveratrol. Nutrients 2017; 9:nu9111201. [PMID: 29104258 PMCID: PMC5707673 DOI: 10.3390/nu9111201] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/05/2017] [Accepted: 09/18/2017] [Indexed: 12/11/2022] Open
Abstract
Resveratrol (RVT) is one of the main natural compounds studied worldwide due to its potential therapeutic use in the treatment of many diseases, including cancer, diabetes, cardiovascular diseases, neurodegenerative diseases and metabolic disorders. Nevertheless, the mechanism of action of RVT in all of these conditions is not completely understood, as it can modify not only biochemical pathways but also epigenetic mechanisms. In this paper, we analyze the biological activities exhibited by RVT with a focus on the epigenetic mechanisms, especially those related to DNA methyltransferase (DNMT), histone deacetylase (HDAC) and lysine-specific demethylase-1 (LSD1).
Collapse
Affiliation(s)
- Guilherme Felipe Santos Fernandes
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800903 Araraquara, Brazil.
- Institute of Chemistry, São Paulo State University (UNESP), 14800060 Araraquara, Brazil.
| | | | - Aline Renata Pavan
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800903 Araraquara, Brazil.
| | - Diego Eidy Chiba
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800903 Araraquara, Brazil.
| | - Chung Man Chin
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800903 Araraquara, Brazil.
| | - Jean Leandro Dos Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800903 Araraquara, Brazil.
| |
Collapse
|
35
|
Tan JY, Lei LH, Chen XT, Ding PH, Wu YM, Chen LL. AKT2 is involved in the IL‑17A‑mediated promotion of differentiation and calcification of murine preosteoblastic MC3T3‑E1 cells. Mol Med Rep 2017; 16:5833-5840. [PMID: 28849233 PMCID: PMC5865781 DOI: 10.3892/mmr.2017.7315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 06/27/2017] [Indexed: 11/06/2022] Open
Abstract
Interleukin (IL)‑17A exhibits pleiotropic biological activities and serves a role in the progression of periodontitis. However, data describing the association between IL‑17 and osteogenesis are not conclusive. It was previously demonstrated that RAC‑β serine/threonine protein kinase (AKT2)‑specific knockdown in MC3T3‑E1 cells weakened osteogenic effects. The role of AKT2 in the regulation of IL‑17A for osteoblast differentiation and calcification remains unclear. The MTT method was adopted in the present study to assess cell proliferation; cell cycle distribution was analyzed by flow cytometry. Following osteogenic induction treatment, the involvement of phosphatidylinositol 3‑kinase (PI3K) and phosphorylated‑PI3K was evaluated by western blotting. The effects of IL‑17A on osteogenesis‑associated markers, including Runt‑related transcription factor 2 (Runx‑2), alkaline phosphatase (ALP) and osteocalcin (OCN) were evaluated by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) analysis. An ALP activity assay and Alizarin Red S staining were used to assess the differentiation and calcification functions. AKT2 knockdown inhibited MC3T3‑E1 cell proliferation, inducing significantly increased G0/G1 cell counts, and reduced S and G2/M cell numbers. IL‑17A exerted no significant effects. The protein levels of p‑PI3K, gene expression levels of IL‑17A, Runx‑2, ALP and OCN, and relative ALP activity and calcification areas were increased in the induction group, and these effects were markedly promoted by treatment with IL‑17A. AKT2 knockdown in MC3T3‑E1 cells resulted in reduced IL‑17A‑induced differentiation and calcification, although it was not completely inhibited. The results of the present study suggested that AKT2 signaling was required for MC3T3‑E1 cell proliferation. IL‑17A promoted osteoblast differentiation and calcification in a partly AKT2‑dependent manner in MC3T3‑E1 cells in vitro, possibly reflecting compensation by other signaling pathways. The results of the present study may offer novel perspectives to guide the clinical strategy for the prevention and treatment of periodontitis.
Collapse
Affiliation(s)
- Jing-Yi Tan
- Department of Oral Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Li-Hong Lei
- Department of Oral Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Xiao-Tao Chen
- Department of Oral Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830001, P.R. China
| | - Pei-Hui Ding
- Department of Oral Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Yan-Min Wu
- Department of Oral Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Li-Li Chen
- Department of Oral Medicine, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
36
|
Nakayama M, Ohara N. Novel function of Porphyromonas gingivalis gingipains in the PI3K/Akt signaling pathway. J Oral Biosci 2017. [DOI: 10.1016/j.job.2017.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
Lipopolysaccharide-induced suppression of periodontal ligament cell proliferation and apoptosis are strengthened under high glucose conditions. Arch Oral Biol 2017; 79:70-76. [DOI: 10.1016/j.archoralbio.2017.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 11/22/2022]
|
38
|
Liu C, Mo L, Niu Y, Li X, Zhou X, Xu X. The Role of Reactive Oxygen Species and Autophagy in Periodontitis and Their Potential Linkage. Front Physiol 2017; 8:439. [PMID: 28690552 PMCID: PMC5481360 DOI: 10.3389/fphys.2017.00439] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 06/09/2017] [Indexed: 02/05/2023] Open
Abstract
Periodontitis is a chronic inflammatory disease that causes damage to periodontal tissues, which include the gingiva, periodontal ligament, and alveolar bone. The major cause of periodontal tissue destruction is an inappropriate host response to microorganisms and their products. Specifically, a homeostatic imbalance between reactive oxygen species (ROS) and antioxidant defense systems has been implicated in the pathogenesis of periodontitis. Elevated levels of ROS acting as intracellular signal transducers result in autophagy, which plays a dual role in periodontitis by promoting cell death or blocking apoptosis in infected cells. Autophagy can also regulate ROS generation and scavenging. Investigations are ongoing to elucidate the crosstalk mechanisms between ROS and autophagy. Here, we review the physiological and pathological roles of ROS and autophagy in periodontal tissues. The redox-sensitive pathways related to autophagy, such as mTORC1, Beclin 1, and the Atg12-Atg5 complex, are explored in depth to provide a comprehensive overview of the crosstalk between ROS and autophagy. Based on the current evidence, we suggest that a potential linkage between ROS and autophagy is involved in the pathogenesis of periodontitis.
Collapse
Affiliation(s)
- Chengcheng Liu
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan UniversityChengdu, China.,Department of Periodontics, West China Hospital of Stomatology, Sichuan UniversityChengdu, China
| | - Longyi Mo
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan UniversityChengdu, China
| | - Yulong Niu
- Key Lab of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan UniversityChengdu, China
| | - Xin Li
- Institute of Biophysics, Chinese Academy of SciencesBeijing, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan UniversityChengdu, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan UniversityChengdu, China
| | - Xin Xu
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan UniversityChengdu, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan UniversityChengdu, China
| |
Collapse
|
39
|
Zenobia C, Hajishengallis G. Basic biology and role of interleukin-17 in immunity and inflammation. Periodontol 2000 2017; 69:142-59. [PMID: 26252407 DOI: 10.1111/prd.12083] [Citation(s) in RCA: 289] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2014] [Indexed: 02/06/2023]
Abstract
Interleukin-17 (also known as interleukin-17A) is a key cytokine that links T-cell activation to neutrophil mobilization and activation. As such, interleukin-17 can mediate protective innate immunity to pathogens or contribute to the pathogenesis of inflammatory diseases, such as psoriasis and rheumatoid arthritis. This review summarizes the basic biology of interleukin-17 and discusses its emerging role in periodontal disease. The current burden of evidence from human and animal model studies suggests that the net effect of interleukin-17 signaling promotes disease development. In addition to promoting neutrophilic inflammation, interleukin-17 has potent pro-osteoclastogenic effects that are likely to contribute to the pathogenesis of periodontitis, rheumatoid arthritis and other diseases involving bone immunopathology. Systemic treatments with anti-interleukin-17 biologics have shown promising results in clinical trials for psoriasis and rheumatoid arthritis; however, their impact on the highly prevalent periodontal disease has not been investigated or reported. Future clinical trials, preferably using locally administered interleukin-17 blockers, are required to implicate conclusivelyinterleukin-17 in periodontitis and, more importantly, to establish an effective adjunctive treatment for this oral inflammatory disease.
Collapse
|
40
|
Zhang J, Lian M, Cao P, Bao G, Xu G, Sun Y, Wang L, Chen J, Wang Y, Feng G, Cui Z. Effects of Nerve Growth Factor and Basic Fibroblast Growth Factor Promote Human Dental Pulp Stem Cells to Neural Differentiation. Neurochem Res 2016; 42:1015-1025. [PMID: 28005222 DOI: 10.1007/s11064-016-2134-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 10/14/2016] [Accepted: 12/03/2016] [Indexed: 02/08/2023]
Abstract
Dental pulp stem cells (DPSCs) were the most widely used seed cells in the field of neural regeneration and bone tissue engineering, due to their easily isolation, lack of ethical controversy, low immunogenicity and low rates of transplantation rejection. The purpose of this study was to investigate the role of basic fibroblast growth factor (bFGF) and nerve growth factor (NGF) on neural differentiation of DPSCs in vitro. DPSCs were cultured in neural differentiation medium containing NGF and bFGF alone or combination for 7 days. Then neural genes and protein markers were analyzed using western blot and RT-PCR. Our study revealed that bFGF and NGF increased neural differentiation of DPSCs synergistically, compared with bFGF and NGF alone. The levels of Nestin, MAP-2, βIII-tubulin and GFAP were the most highest in the DPSCs + bFGF + NGF group. Our results suggested that bFGF and NGF signifiantly up-regulated the levels of Sirt1. After treatment with Sirt1 inhibitor, western blot, RT-PCR and immunofluorescence staining showed that neural genes and protein markers had markedly decreased. Additionally, the ERK and AKT signaling pathway played a key role in the neural differentiation of DPSCs stimulated with bFGF + NGF. These results suggested that manipulation of the ERK and AKT signaling pathway may be associated with the differentiation of bFGF and NGF treated DPSCs. Our date provided theoretical basis for DPSCs to treat neurological diseases and repair neuronal damage.
Collapse
Affiliation(s)
- Jinlong Zhang
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Min Lian
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Peipei Cao
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Guofeng Bao
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Guanhua Xu
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yuyu Sun
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Lingling Wang
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Jiajia Chen
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yi Wang
- Department of Stomatology, Wang Yi Dental Clinic of Mudu Town, Suzhou, 215000, Jiangsu, People's Republic of China
| | - Guijuan Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| | - Zhiming Cui
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
41
|
Ma N, Yang D, Okamura H, Teramachi J, Hasegawa T, Qiu L, Haneji T. Involvement of interleukin‑23 induced by Porphyromonas endodontalis lipopolysaccharide in osteoclastogenesis. Mol Med Rep 2016; 15:559-566. [PMID: 28000855 PMCID: PMC5364876 DOI: 10.3892/mmr.2016.6041] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 09/20/2016] [Indexed: 12/15/2022] Open
Abstract
Periapical lesions are characterized by the destruction of periapical bone, and occur as a result of local inflammatory responses to root canal infection by microorganisms including Porphyromonas endodontalis (P. endodontalis). P. endodontalis and its primary virulence factor, lipopolysaccharide (LPS), are associated with the development of periapical lesions and alveolar bone loss. Interleukin-23 (IL-23) is critical in the initiation and progression of periodontal disease via effects on peripheral bone metabolism. The present study investigated the expression of IL-23 in tissue where a periapical lesion was present, and the effect of P. endodontalis LPS on the expression of IL-23 in periodontal ligament (PDL) cells. Reverse transcription- quantitative polymerase chain reaction and immunohistochemistry revealed increased levels of IL-23 expression in tissue with periapical lesions compared with healthy PDL tissue. Treatment with P. endodontalis LPS increased the expression of IL-23 in the SH-9 human PDL cell line. BAY11-7082, a nuclear factor κB inhibitor, suppressed P. endodontalis LPS-induced IL-23 expression in SH-9 cells. Treatment of RAW264.7 cells with conditioned medium from P. endodontalis LPS-treated SH-9 cells promoted osteoclastogenesis. By contrast, RAW264.7 cells treated with conditioned medium from IL-23-knockdown SH-9 cells underwent reduced levels of osteoclastogenesis. The results of the present study indicated that the expression of IL-23 in PDL cells induced by P. endodontalis LPS treatment may be involved in the progression of periapical lesions via stimulation of the osteoclastogenesis process.
Collapse
Affiliation(s)
- Nan Ma
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Di Yang
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Hirohiko Okamura
- Department of Histology and Oral Histology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770‑8504, Japan
| | - Jumpei Teramachi
- Department of Histology and Oral Histology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770‑8504, Japan
| | - Tomokazu Hasegawa
- Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770‑8504, Japan
| | - Lihong Qiu
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Tatsuji Haneji
- Department of Histology and Oral Histology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770‑8504, Japan
| |
Collapse
|
42
|
Liukkonen J, Gürsoy UK, Pussinen PJ, Suominen AL, Könönen E. Salivary Concentrations of Interleukin (IL)-1β, IL-17A, and IL-23 Vary in Relation to Periodontal Status. J Periodontol 2016; 87:1484-1491. [DOI: 10.1902/jop.2016.160146] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Gankovskaya LV, Khelminskaya NM, Molchanova EA, Svitich OA. ROLE OF INNATE IMMUNITY FACTORS IN PERIODONTITIS PATHOGENESIS. ACTA ACUST UNITED AC 2016. [DOI: 10.36233/0372-9311-2016-2-100-107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Chronic generalized periodontitis (CGP) is a disease of periodontium tissues supporting tooth induced by bacteria, that is characterized by the presence of processes of inflammation with destruction ofbone tissue. The knowledge of molecular mechanisms of CGP pathogenesis facilitates creation of the most effective methods of therapy of this disease. Bacterial infection is a primary factor in periodontitis etiology, however is not sufficient for its start and subsequent development. It is known, that bacterial factors induce a local inflammation reaction and activate the system of innate immunity through activation of Toll-like receptors (TLR), located on the surface of resident cells and leukocytes. Activation of these cells results in production of pro-inflammatory cytokines and recruitment of phagocytes and lymphocytes into the inflammation zone. In review we examined the known data regarding factors of immune protection of periodontium including cell populations and cytokines, as well as mechanisms of tissue destruction, that support the tooth. Perspectives of therapy are also discussed.
Collapse
|
44
|
Song B, Zhang YL, Chen LJ, Zhou T, Huang WK, Zhou X, Shao LQ. The role of Toll-like receptors in periodontitis. Oral Dis 2016; 23:168-180. [PMID: 26923115 DOI: 10.1111/odi.12468] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 02/08/2016] [Accepted: 02/21/2016] [Indexed: 12/14/2022]
Abstract
Periodontitis is a common infectious disease. Recent studies have indicated that the progression of periodontitis may be regulated by interactions between host immunity and periodontopathic bacteria. Although periodontopathic bacteria can destroy periodontal tissue, a dysfunctional host immune response triggered by the bacteria can lead to more severe and persistent destruction. Toll-like receptors (TLRs), a type of pattern recognition receptor (PRR) that recognizes pathogens, have been implicated in host innate immune responses to periodontopathic bacteria and in the activation of adaptive immunity. TLR-targeted drugs may hold promise to treat periodontal disease. This review summarizes recent studies on the role of TLRs in periodontitis and discusses areas needing further research. We believe TLRs may be an effective biomarker for the prevention, diagnosis, and treatment of periodontitis in the near future.
Collapse
Affiliation(s)
- B Song
- Guizhou Provincial People's Hospital, Guiyang, China.,Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Y L Zhang
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - L J Chen
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - T Zhou
- Guizhou Provincial People's Hospital, Guiyang, China
| | - W K Huang
- Guizhou Provincial People's Hospital, Guiyang, China
| | - X Zhou
- Guizhou Provincial People's Hospital, Guiyang, China
| | - L Q Shao
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
45
|
Interleukin-17A Gene Variability in Patients with Type 1 Diabetes Mellitus and Chronic Periodontitis: Its Correlation with IL-17 Levels and the Occurrence of Periodontopathic Bacteria. Mediators Inflamm 2016; 2016:2979846. [PMID: 26924897 PMCID: PMC4748108 DOI: 10.1155/2016/2979846] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/30/2015] [Accepted: 01/03/2016] [Indexed: 01/10/2023] Open
Abstract
Interleukin-17 contributes to the pathogenesis of type 1 diabetes mellitus (T1DM) and chronic periodontitis (CP). We analyzed IL-17A -197A/G and IL-17F +7488C/T polymorphisms in T1DM and CP and determined their associations with IL-17 production and occurrence of periopathogens. Totally 154 controls, 125 T1DM, and 244 CP patients were genotyped using 5' nuclease TaqMan(®) assays. Bacterial colonization was investigated by a DNA-microarray kit. Production of IL-17 after in vitro stimulation of mononuclear cells by mitogens and bacteria was examined by the Luminex system. Although no differences in the allele/genotype frequencies between patients with CP and T1DM + CP were found, the IL-17A -197 A allele increased the risk of T1DM (P < 0.05). Levels of HbA1c were significantly elevated in carriers of the A allele in T1DM patients (P < 0.05). Production of IL-17 by mononuclear cells of CP patients (unstimulated/stimulated by Porphyromonas gingivalis) was associated with IL-17A A allele (P < 0.05). IL-17A polymorphism increased the number of Tannerella forsythia and Treponema denticola in patients with CP and T1DM + CP, respectively (P < 0.05). IL-17A gene variability may influence control of T1DM and the "red complex" bacteria occurrence in patients with CP and T1DM + CP. Our findings demonstrated the functional relevance of the IL-17A polymorphism with higher IL-17 secretion in individuals with A allele.
Collapse
|
46
|
Liu S, Lin YU, Liu X. Protective effects of SIRT1 in patients with proliferative diabetic retinopathy via the inhibition of IL-17 expression. Exp Ther Med 2015; 11:257-262. [PMID: 26889251 DOI: 10.3892/etm.2015.2877] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 06/18/2014] [Indexed: 01/07/2023] Open
Abstract
Diabetic retinopathy (DR) is a chronic microvascular complication of diabetes that may lead to loss of vision. The pathogenesis of DR is complex and elevated expression levels of T helper (Th)17 cells and interleukin (IL)-17 have been suggested to be associated with the development and progression of DR. Sirtuin 1 (SIRT1) is a nicotinamide-adenine dinucleotide+-dependent histone deacetylase that is downregulated in patients with DR. Previous studies have demonstrated that SIRT1 is capable of inhibiting the production of IL-17. In the present study, 19 patients with proliferative diabetic retinopathy (PDR) and 20 non-diabetic controls with idiopathic macular epiretinal membranes were recruited and the SIRT1 expression levels of excised specimens were analyzed using immunohistochemistry. IL-17 expression levels in the sera from patients with PDR and controls were determined by enzyme-linked immunosorbent assay (ELISA). Furthermore, SIRT1 mRNA and protein expression levels in peripheral blood mononuclear cells (PBMCs) from the two groups were analyzed following culture with or without a SIRT1 activator, resveratrol. IL-17 expression levels in the supernatants of PBMCs were determined using ELISA and the results demonstrated that IL-17 expression levels were increased in the sera of patients with PDR, as compared with the controls. Furthermore, increased expression levels of SIRT1 and IL-17 were detected in fibrovascular membranes and PBMCs harvested from patients with PDR, respectively. Notably, SIRT1 mRNA and protein expression levels were decreased in the PBMCs of patients with PDR and IL-17 production was inhibited following SIRT1 activation. The results of the present study indicated that imbalanced IL-17 and SIRT1 expression levels may contribute to the pathogenesis of DR, and SIRT1 may have a protective role in PDR by inhibiting the production of IL-17.
Collapse
Affiliation(s)
- Shulin Liu
- Chongqing Key Laboratory of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China; Chongqing Eye Institute, Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Y U Lin
- Department of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xin Liu
- Department of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
47
|
Hong JY, Bae WJ, Yi JK, Kim GT, Kim EC. Anti-inflammatory and anti-osteoclastogenic effects of zinc finger protein A20 overexpression in human periodontal ligament cells. J Periodontal Res 2015; 51:529-39. [PMID: 26548452 DOI: 10.1111/jre.12332] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2015] [Indexed: 01/21/2023]
Abstract
BACKGROUND AND OBJECTIVE Although overexpression of the nuclear factor κB inhibitory and ubiquitin-editing enzyme A20 is thought to be involved in the pathogenesis of inflammatory diseases, its function in periodontal disease remains unknown. The aims of the present study were to evaluate A20 expression in patients with periodontitis and to study the effects of A20 overexpression, using a recombinant adenovirus encoding A20 (Ad-A20), on the inflammatory response and on osteoclastic differentiation in lipopolysaccharide (LPS)- and nicotine-stimulated human periodontal ligament cells (hPDLCs). MATERIAL AND METHODS The concentration of prostaglandin E2 was measured by radioimmunoassay. Reverse transcription-polymerase chain reactions and western blot analyses were used to measure mRNA and protein levels, respectively. Osteoclastic differentiation was assessed in mouse bone marrow-derived macrophages using conditioned medium from LPS- and nicotine-treated hPDLCs. RESULTS A20 was upregulated in the gingival tissues and neutrophils from patients with periodontitis and in LPS- and nicotine-exposed hPDLCs. Pretreatment with A20 overexpression by Ad-A20 markedly attenuated LPS- and nicotine-induced production of prostaglandin E2 , as well as expression of cyclooxygenase-2 and proinflammatory cytokines. Moreover, A20 overexpression inhibited the number and size of tartrate-resistant acid phosphatase-stained osteoclasts, and downregulated osteoclast-specific gene expression. LPS- and nicotine-induced p38 phosphorylation and nuclear factor κB activation were blocked by Ad-A20. Ad-A20 inhibited the effects of nicotine and LPS on the activation of pan-protein kinase C, Akt, GSK-3β and protein kinase Cα. CONCLUSIONS This study is the first to demonstrate that A20 overexpression has anti-inflammatory effects and blocks osteoclastic differentiation in a nicotine- and LPS-stimulated hPDLC model. Thus, A20 overexpression may be a potential therapeutic target in inflammatory bone loss diseases, such as periodontal disease.
Collapse
Affiliation(s)
- J-Y Hong
- Department of Periodontology, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - W-J Bae
- Department of Oral and Maxillofacial Pathology & Research Center for Tooth and Periodontal Tissue Regeneration (MRC), School of Dentistry, Kyung Hee University, Seoul, Korea
| | - J-K Yi
- Department of Conservative Dentistry, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - G-T Kim
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - E-C Kim
- Department of Oral and Maxillofacial Pathology & Research Center for Tooth and Periodontal Tissue Regeneration (MRC), School of Dentistry, Kyung Hee University, Seoul, Korea
| |
Collapse
|
48
|
Investigation on Molecular Mechanism of Fibroblast Regulation and the Treatment of Recurrent Oral Ulcer by Shuizhongcao Granule-Containing Serum. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:324091. [PMID: 26557145 PMCID: PMC4628681 DOI: 10.1155/2015/324091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 05/17/2015] [Accepted: 05/26/2015] [Indexed: 11/26/2022]
Abstract
The purpose is to study the intervention, proliferation, and differentiation on fibroblast by Shuizhongcao Granule during the treatment of ROU and investigate the action mechanism in inflammatory microenvironment. Proliferation of rat fibroblasts was detected using CCK8. Western blot was used to detect the effect of drug-containing serum on the expression of protein associated with NF-κB and ERK pathway in rat fibroblasts. Expression of IL-10 and IL-12 was detected by PCR. Shuizhongcao Granule group successfully inhibited proliferation of rat fibroblast. Western blot results revealed that p65 and IKKB were significantly less expressed in Chinese medicine group, while pIκBα and pIKKαβ expression were significantly increased. We have also found that in this group the expression of pAKT was evidently suppressed and expression of pERK significantly decreased. PCR results showed significantly decreased expression levels of IL-10 and 1IL-12b in Chinese medicine group, while the expression of IL-12a was increased. Our results suggest that Shuizhongcao Granule can suppress the proliferation of fibroblast and inhibit the activation of NF-κB and thus suppress inflammatory reactions, possibly involving the inhibited expression of phosphorylated AKT, rather than the canonical pathway. Furthermore, it can inhibit ERK pathway and reduce IL-10 and IL-12b gene expression while enhancing IL-12a expression.
Collapse
|
49
|
Sakamoto E, Mihara C, Ikuta T, Inagaki Y, Kido J, Nagata T. Inhibitory effects of advanced glycation end-products and Porphyromonas gingivalis
lipopolysaccharide on the expression of osteoblastic markers of rat bone marrow cells in culture. J Periodontal Res 2015. [DOI: 10.1111/jre.12310] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- E. Sakamoto
- Department of Periodontology and Endodontology; Institute of Health Biosciences; Tokushima University Graduate School; Tokushima Japan
| | - C. Mihara
- Department of Periodontology and Endodontology; Institute of Health Biosciences; Tokushima University Graduate School; Tokushima Japan
| | - T. Ikuta
- Department of Periodontology and Endodontology; Institute of Health Biosciences; Tokushima University Graduate School; Tokushima Japan
| | - Y. Inagaki
- Department of Periodontology and Endodontology; Institute of Health Biosciences; Tokushima University Graduate School; Tokushima Japan
| | - J. Kido
- Department of Periodontology and Endodontology; Institute of Health Biosciences; Tokushima University Graduate School; Tokushima Japan
| | - T. Nagata
- Department of Periodontology and Endodontology; Institute of Health Biosciences; Tokushima University Graduate School; Tokushima Japan
| |
Collapse
|
50
|
Zhou Y, Guan X, Liu T, Wang X, Yu M, Yang G, Wang H. Whole body vibration improves osseointegration by up-regulating osteoblastic activity but down-regulating osteoblast-mediated osteoclastogenesis via ERK1/2 pathway. Bone 2015; 71:17-24. [PMID: 25304090 DOI: 10.1016/j.bone.2014.09.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/25/2014] [Accepted: 09/30/2014] [Indexed: 10/24/2022]
Abstract
Due to the reduction in bone mass and deterioration in bone microarchitecture, osteoporosis is an important risk factor for impairing implant osseointegration. Recently, low-magnitude, high-frequency (LMHF) vibration (LM: <1×g; HF: 20-90Hz) has been shown to exhibit anabolic, but anti-resorptive effects on skeletal homeostasis. Therefore, we hypothesized that LMHF loading, in terms of whole body vibration (WBV), may improve implant fixation under osteoporotic status. In the in vivo study, WBV treatment (magnitude: 0.3g, frequency: 40Hz, time: 30min/12h, 5days/week) was applied after hydroxyapatite-coated titanium implants were inserted in the bilateral tibiae of ovariectomized rats. The bone mass and the osteospecific gene expressions were measured at 12weeks post implantation. In the in vitro study, the cellular and molecular mechanisms underlying osteoblastic and osteoclastic activities were fully investigated using various experimental assays. Micro-CT examination showed that WBV could enhance osseointegration by improving microstructure parameters surrounding implants. WBV-regulated gene levels in favor of bone formation over resorption may be the reason for the favorable adaptive bone remolding on bone-implant surface. The in vitro study showed that vibration (magnitude: 0.3g, frequency: 40Hz, time: 30min/12h) up-regulated osteoblast differentiation, matrix synthesis and mineralization. However, mechanically regulated osteoclastic activity was mainly through the effect on osteoblastic cells producing osteoclastogenesis-associated key soluble factors, including RANKL and M-CSF. Osteoblasts were therefore the direct target cells during the mechanotransduction process. The ERK1/2 pathway was demonstrated to play an essential role in vibration-induced enhancement of bone formation and decreased bone resorption. Our data suggests that WBV was a helpful non-pharmacological intervention for improving osseointegration under osteoporosis.
Collapse
Affiliation(s)
- Yi Zhou
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Yan'an Road 395, Hangzhou 310000, People's Republic of China
| | - Xiaoxu Guan
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Yan'an Road 395, Hangzhou 310000, People's Republic of China
| | - Tie Liu
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Yan'an Road 395, Hangzhou 310000, People's Republic of China
| | - Xinhua Wang
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Yan'an Road 395, Hangzhou 310000, People's Republic of China
| | - Mengfei Yu
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Yan'an Road 395, Hangzhou 310000, People's Republic of China
| | - Guoli Yang
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Yan'an Road 395, Hangzhou 310000, People's Republic of China
| | - Huiming Wang
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Yan'an Road 395, Hangzhou 310000, People's Republic of China.
| |
Collapse
|