1
|
Törnblom S, Nisula S, Vaara ST, Poukkanen M, Andersson S, Pettilä V, Pesonen E. Neutrophil activation in septic acute kidney injury: A post hoc analysis of the FINNAKI study. Acta Anaesthesiol Scand 2019; 63:1390-1397. [PMID: 31325317 DOI: 10.1111/aas.13451] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 07/08/2019] [Accepted: 07/14/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Inflammation, reflected by high plasma interleukin-6 concentration, is associated with acute kidney injury (AKI) in septic patients. Neutrophil activation has pathophysiological significance in experimental septic AKI. We hypothesized that neutrophil activation is associated with AKI in critically ill sepsis patients. METHODS We measured plasma (n = 182) and urine (n = 118) activin A (a rapidly released cytosolic neutrophil protein), interleukin-8 (a chemotactic factor for neutrophils), myeloperoxidase (a neutrophil biomarker released in tissues), and interleukin-6 on intensive care unit admission (plasma and urine) and 24 hours later (plasma) in sepsis patients manifesting their first organ dysfunction between 24 hours preceding admission and the second calendar day in intensive care unit. AKI was defined by the Kidney Disease: Improving Global Outcomes criteria. RESULTS Plasma admission interleukin-8 (240 [60-971] vs 50 [19-164] pg/mL, P < .001) and activin A (845 [554-1895] vs 469 [285-862] pg/mL, P < .001) were but myeloperoxidase (169 [111-300] vs 144 [88-215] ng/mL, P = .059) was not higher among patients with AKI compared with those without. Urine admission interleukin-8 (50.4 [19.8-145.3] vs 9.5 [2.7-28.7] ng/mL, P < .001) and myeloperoxidase (7.7 [1.5-12.6] vs 1.9 [0.4-6.9] ng/mL, P < .001) were but activin A (9.7 [1.4-42.6] vs 4.0 [0.0-33.0] ng/mL, P = .064) was not higher in AKI than non-AKI patients. Urine myeloperoxidase correlated with urine interleukin-8 (R = .627, P < .001) but not with plasma myeloperoxidase (R = .131, P = .158). CONCLUSION Interleukin-8 in plasma and urine was associated with septic AKI. Elevated plasma activin A indicates intravascular neutrophil activation in septic AKI. Concomitant plasma and urine myeloperoxidase measurements suggest neutrophil accumulation into injured kidneys.
Collapse
Affiliation(s)
- Sanna Törnblom
- Department of Anaesthesiology, Intensive Care and Pain Medicine, Division of Intensive Care Medicine University of Helsinki and Helsinki University Hospital Helsinki Finland
| | - Sara Nisula
- Department of Anaesthesiology, Intensive Care and Pain Medicine, Division of Intensive Care Medicine University of Helsinki and Helsinki University Hospital Helsinki Finland
| | - Suvi T. Vaara
- Department of Anaesthesiology, Intensive Care and Pain Medicine, Division of Intensive Care Medicine University of Helsinki and Helsinki University Hospital Helsinki Finland
| | - Meri Poukkanen
- Department of Anaesthesia and Intensive Care Medicine Lapland Central Hospital Rovaniemi Finland
| | - Sture Andersson
- Department of Paediatrics Children’s Hospital, University of Helsinki and Helsinki University Hospital Helsinki Finland
| | - Ville Pettilä
- Department of Anaesthesiology, Intensive Care and Pain Medicine, Division of Intensive Care Medicine University of Helsinki and Helsinki University Hospital Helsinki Finland
| | - Eero Pesonen
- Department of Anaesthesiology, Intensive Care and Pain Medicine, Division of Anaesthesiology University of Helsinki and Helsinki University Hospital Helsinki Finland
| |
Collapse
|
2
|
Activin-A in the regulation of immunity in health and disease. J Autoimmun 2019; 104:102314. [PMID: 31416681 DOI: 10.1016/j.jaut.2019.102314] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 07/28/2019] [Indexed: 02/08/2023]
Abstract
The TGF-β superfamily of cytokines plays pivotal roles in the regulation of immune responses protecting against or contributing to diseases, such as, allergy, autoimmunity and cancer. Activin-A, a member of the TGF-β superfamily, was initially identified as an inducer of follicle-stimulating hormone secretion. Extensive research over the past decades illuminated fundamental roles for activin-A in essential biologic processes, including embryonic development, stem cell maintenance and differentiation, haematopoiesis, cell proliferation and tissue fibrosis. Activin-A signals through two type I and two type II receptors which, upon ligand binding, activate their kinase activity, phosphorylate the SMAD2 and 3 intracellular signaling mediators that form a complex with SMAD4, translocate to the nucleus and activate or silence gene expression. Most immune cell types, including macrophages, dendritic cells (DCs), T and B lymphocytes and natural killer cells have the capacity to produce and respond to activin-A, although not in a similar manner. In innate immune cells, including macrophages, DCs and neutrophils, activin-A exerts a broad range of pro- or anti-inflammatory functions depending on the cell maturation and activation status and the spatiotemporal context. Activin-A also controls the differentiation and effector functions of Th cell subsets, including Th9 cells, TFH cells, Tr1 Treg cells and Foxp3+ Treg cells. Moreover, activin-A affects B cell responses, enhancing mucosal IgA secretion and inhibiting pathogenic autoantibody production. Interestingly, an array of preclinical and clinical studies has highlighted crucial functions of activin-A in the initiation, propagation and resolution of human diseases, including autoimmune diseases, such as, systemic lupus erythematosus, rheumatoid arthritis and pulmonary alveolar proteinosis, in allergic disorders, including allergic asthma and atopic dermatitis, in cancer and in microbial infections. Here, we provide an overview of the biology of activin-A and its signaling pathways, summarize recent studies pertinent to the role of activin-A in the modulation of inflammation and immunity, and discuss the potential of targeting activin-A as a novel therapeutic approach for the control of inflammatory diseases.
Collapse
|
3
|
Wijayarathna R, Hedger MP. Activins, follistatin and immunoregulation in the epididymis. Andrology 2019; 7:703-711. [DOI: 10.1111/andr.12682] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/18/2019] [Accepted: 06/25/2019] [Indexed: 12/21/2022]
Affiliation(s)
- R. Wijayarathna
- Centre for Reproductive Health Hudson Institute of Medical Research Clayton Vic. Australia
- Department of Molecular and Translational Sciences School of Clinical Sciences Monash University Clayton Vic. Australia
| | - M. P. Hedger
- Centre for Reproductive Health Hudson Institute of Medical Research Clayton Vic. Australia
- Department of Molecular and Translational Sciences School of Clinical Sciences Monash University Clayton Vic. Australia
| |
Collapse
|
4
|
Qi Y, Ge J, Ma C, Wu N, Cui X, Liu Z. Activin A regulates activation of mouse neutrophils by Smad3 signalling. Open Biol 2018; 7:rsob.160342. [PMID: 28515224 PMCID: PMC5451541 DOI: 10.1098/rsob.160342] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 04/24/2017] [Indexed: 12/19/2022] Open
Abstract
Activin A, a member of the transforming growth factor beta superfamily, acts as a pro-inflammatory factor in acute phase response, and influences the pathological progress of neutrophil-mediated disease. However, whether activin A can exert an effect on the activities of neutrophils remains unclear. In this study, we found that the release of activin A was enhanced from neutrophils of mouse when stimulated with lipopolysaccharide. Furthermore, neutrophils were not only the source of activin A but also the target cells in response to activin A, in which canonical activin signalling components existed, and levels of ACTRIIA, SMAD3 and p-SMAD3 proteins were elevated in activin A-treated neutrophils. Next, the role of activin A was determined in regulation of neutrophils activities. Our data revealed that activin A induced O2− release and reactive oxygen species production, promoted IL-6 release, and enhanced phagocytosis, but failed to attract neutrophils migrating across the trans-well membrane. Moreover, we found that effect of activin A on IL-6 release from the peritoneal neutrophils of mouse was significantly attenuated by in vivo Smad3 knockdown. In summary, these data demonstrate that activin A can exert an effect on neutrophils activation in an autocrine/paracrine manner through Smad3 signalling, suggesting that activin A is an important regulator of neutrophils.
Collapse
Affiliation(s)
- Yan Qi
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, People's Republic of China.,Key Laboratory of Neuroimmunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, People's Republic of China
| | - Jingyan Ge
- Key Laboratory of Neuroimmunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, People's Republic of China
| | - Chunhui Ma
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, People's Republic of China
| | - Na Wu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, People's Republic of China
| | - Xueling Cui
- Key Laboratory of Neuroimmunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, People's Republic of China
| | - Zhonghui Liu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, People's Republic of China .,Key Laboratory of Neuroimmunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, People's Republic of China
| |
Collapse
|
5
|
Spottiswoode N, Armitage AE, Williams AR, Fyfe AJ, Biswas S, Hodgson SH, Llewellyn D, Choudhary P, Draper SJ, Duffy PE, Drakesmith H. Role of Activins in Hepcidin Regulation during Malaria. Infect Immun 2017; 85:e00191-17. [PMID: 28893916 PMCID: PMC5695100 DOI: 10.1128/iai.00191-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/23/2017] [Indexed: 12/21/2022] Open
Abstract
Epidemiological observations have linked increased host iron with malaria susceptibility, and perturbed iron handling has been hypothesized to contribute to the potentially life-threatening anemia that may accompany blood-stage malaria infection. To improve our understanding of these relationships, we examined the pathways involved in regulation of the master controller of iron metabolism, the hormone hepcidin, in malaria infection. We show that hepcidin upregulation in Plasmodium berghei murine malaria infection was accompanied by changes in expression of bone morphogenetic protein (BMP)/sons of mothers against decapentaplegic (SMAD) pathway target genes, a key pathway involved in hepcidin regulation. We therefore investigated known agonists of the BMP/SMAD pathway and found that Bmp gene expression was not increased in infection. In contrast, activin B, which can signal through the BMP/SMAD pathway and has been associated with increased hepcidin during inflammation, was upregulated in the livers of Plasmodium berghei-infected mice; hepatic activin B was also upregulated at peak parasitemia during infection with Plasmodium chabaudi Concentrations of the closely related protein activin A increased in parallel with hepcidin in serum from malaria-naive volunteers infected in controlled human malaria infection (CHMI) clinical trials. However, antibody-mediated neutralization of activin activity during murine malaria infection did not affect hepcidin expression, suggesting that these proteins do not stimulate hepcidin upregulation directly. In conclusion, we present evidence that the BMP/SMAD signaling pathway is perturbed in malaria infection but that activins, although raised in malaria infection, may not have a critical role in hepcidin upregulation in this setting.
Collapse
Affiliation(s)
- Natasha Spottiswoode
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
- Laboratory of Malaria Immunology & Vaccinology, NIAID, NIH, Bethesda, Maryland, USA
| | - Andrew E Armitage
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Andrew R Williams
- Department of Veterinary Disease Biology, University of Copenhagen, Frederiksberg, Denmark
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Alex J Fyfe
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Sumi Biswas
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - David Llewellyn
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - Simon J Draper
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Patrick E Duffy
- Laboratory of Malaria Immunology & Vaccinology, NIAID, NIH, Bethesda, Maryland, USA
| | - Hal Drakesmith
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
6
|
Maresch CC, Stute DC, Alves MG, Oliveira PF, de Kretser DM, Linn T. Diabetes-induced hyperglycemia impairs male reproductive function: a systematic review. Hum Reprod Update 2017; 24:86-105. [DOI: 10.1093/humupd/dmx033] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 10/16/2017] [Indexed: 12/30/2022] Open
Affiliation(s)
- Constanze C Maresch
- Clinical Research Unit, Centre of Internal Medicine, Justus-Liebig-University, Giessen, Germany
- Hudson Institute of Medical Research and Department of Anatomy & Developmental Biology, Monash University, Melbourne, Australia
| | - Dina C Stute
- Clinical Research Unit, Centre of Internal Medicine, Justus-Liebig-University, Giessen, Germany
| | - Marco G Alves
- Department of Microscopy, Laboratory of Cell Biology, and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Pedro F Oliveira
- Department of Microscopy, Laboratory of Cell Biology, and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Department of Genetics, Faculty of Medicine, University of Porto, Porto, Portugal
- I3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
| | - David M de Kretser
- Hudson Institute of Medical Research and Department of Anatomy & Developmental Biology, Monash University, Melbourne, Australia
| | - Thomas Linn
- Clinical Research Unit, Centre of Internal Medicine, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
7
|
Abstract
BACKGROUND Activins A and B, members of the TGF-β superfamily, are produced as part of the physiological response to tissue damage and the resulting proinflammatory response. Given that lung allograft reperfusion results in an inflammatory response, it is likely that the activins and their binding protein follistatin will form part of the regulatory response. There is a need to document the response of these proteins to allograft reperfusion to determine if there is a role for the use of follistatin to control the biological actions of the activins because some of these are potentially damaging. METHODS Serum from 48 consecutive patients undergoing lung transplantation (LTx) was collected at 2, 6, 12, and 26 weeks post-LTx. The serum levels of activin A and B and follistatin were measured by enzyme-linked immunosorbent assay and specific radioimmunoassays and compared with clinical events. RESULTS Serum activin A and B levels were at the upper limit of the normal ranges at 2 weeks post-LTx decreasing thereafter to 12 weeks post-LTx (P < 0.05). In contrast, serum follistatin levels were unchanged between 2 and 12 weeks, with a late significant increase at 24 week post-LTx (P < 0.01). Patients with primary graft dysfunction had lower serum follistatin levels (7.7 vs 9.5 ng/mL; P = 0.04) and a higher activin A/follistatin ratio (13.1 vs 10.4; P = 0.02) at 2 weeks post-LTx. CONCLUSIONS Activin and follistatin levels vary with time form LTX and reflect a proinflammatory environment. Future studies will elucidate associations with chronic lung allograft dysfunction and the therapeutic potential of exogenous follistatin administration.
Collapse
|
8
|
Maresch CC, Stute DC, Ludlow H, Hammes HP, de Kretser DM, Hedger MP, Linn T. Hyperglycemia is associated with reduced testicular function and activin dysregulation in the Ins2 Akita+/- mouse model of type 1 diabetes. Mol Cell Endocrinol 2017; 446:91-101. [PMID: 28214591 DOI: 10.1016/j.mce.2017.02.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 02/09/2017] [Accepted: 02/12/2017] [Indexed: 01/23/2023]
Abstract
Type 1 diabetes (T1D) is associated with subfertility in men. We hypothesised that this results from inhibitory effects of chronic hyperglycemia on testicular function and used the Ins2Akita+/- mouse model to investigate this. Diabetic mice exhibited progressive testicular dysfunction, with a 30% reduction in testis weight at 24 weeks of age. Diabetic mice showed significantly reduced seminiferous tubule diameters and increased spermatogenic disruption, although testes morphology appeared grossly normal. Unexpectedly, serum LH and intra-testicular testosterone were similar in all groups. Ins2Akita+/- mice displayed elevation of the testicular inflammatory cytokines activin A and IL-6. Intratesticular activin B was downregulated, while the activin regulatory proteins, follistatin and inhibin, were unchanged. Activin signalling, measured by pSmad3 and Smad4 production, was enhanced in diabetic mice only. These results suggest that prolonged exposure to hyperglycemia in the Ins2Akita+/- mice leads to progressive testicular disruption mediated by testicular activin activity, rather than hormonal dysregulation.
Collapse
Affiliation(s)
- Constanze C Maresch
- Clinical Research Unit, Centre of Internal Medicine, Justus-Liebig-University, Giessen, Germany; Hudson Institute of Medical Research and Department of Anatomy & Developmental Biology, Monash University, Melbourne, Australia.
| | - Dina C Stute
- Clinical Research Unit, Centre of Internal Medicine, Justus-Liebig-University, Giessen, Germany
| | | | - Hans-Peter Hammes
- V. Medical Dept., Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - David M de Kretser
- Hudson Institute of Medical Research and Department of Anatomy & Developmental Biology, Monash University, Melbourne, Australia
| | - Mark P Hedger
- Hudson Institute of Medical Research and Department of Anatomy & Developmental Biology, Monash University, Melbourne, Australia
| | - Thomas Linn
- Clinical Research Unit, Centre of Internal Medicine, Justus-Liebig-University, Giessen, Germany
| |
Collapse
|
9
|
Wijayarathna R, de Kretser DM. Activins in reproductive biology and beyond. Hum Reprod Update 2016; 22:342-57. [PMID: 26884470 DOI: 10.1093/humupd/dmv058] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/20/2015] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Activins are members of the pleiotrophic family of the transforming growth factor-beta (TGF-β) superfamily of cytokines, initially isolated for their capacity to induce the release of FSH from pituitary extracts. Subsequent research has demonstrated that activins are involved in multiple biological functions including the control of inflammation, fibrosis, developmental biology and tumourigenesis. This review summarizes the current knowledge on the roles of activin in reproductive and developmental biology. It also discusses interesting advances in the field of modulating the bioactivity of activins as a therapeutic target, which would undoubtedly be beneficial for patients with reproductive pathology. METHODS A comprehensive literature search was carried out using PUBMED and Google Scholar databases to identify studies in the English language which have contributed to the advancement of the field of activin biology, since its initial isolation in 1987 until July 2015. 'Activin', 'testis', 'ovary', 'embryonic development' and 'therapeutic targets' were used as the keywords in combination with other search phrases relevant to the topic of activin biology. RESULTS Activins, which are dimers of inhibin β subunits, act via a classical TGF-β signalling pathway. The bioactivity of activin is regulated by two endogenous inhibitors, inhibin and follistatin. Activin is a major regulator of testicular and ovarian development. In the ovary, activin A promotes oocyte maturation and regulates granulosa cell steroidogenesis. It is also essential in endometrial repair following menstruation, decidualization and maintaining pregnancy. Dysregulation of the activin-follistatin-inhibin system leads to disorders of female reproduction and pregnancy, including polycystic ovary syndrome, ectopic pregnancy, miscarriage, fetal growth restriction, gestational diabetes, pre-eclampsia and pre-term birth. Moreover, a rise in serum activin A, accompanied by elevated FSH, is characteristic of female reproductive aging. In the male, activin A is an autocrine and paracrine modulator of germ cell development and Sertoli cell proliferation. Disruption of normal activin signalling is characteristic of many tumours affecting reproductive organs, including endometrial carcinoma, cervical cancer, testicular and ovarian cancer as well as prostate cancer. While activin A and B aid the progression of many tumours of the reproductive organs, activin C acts as a tumour suppressor. Activins are important in embryonic induction, morphogenesis of branched glandular organs, development of limbs and nervous system, craniofacial and dental development and morphogenesis of the Wolffian duct. CONCLUSIONS The field of activin biology has advanced considerably since its initial discovery as an FSH stimulating agent. Now, activin is well known as a growth factor and cytokine that regulates many aspects of reproductive biology, developmental biology and also inflammation and immunological mechanisms. Current research provides evidence for novel roles of activins in maintaining the structure and function of reproductive and other organ systems. The fact that activin A is elevated both locally as well as systemically in major disorders of the reproductive system makes it an important biomarker. Given the established role of activin A as a pro-inflammatory and pro-fibrotic agent, studies of its involvement in disorders of reproduction resulting from these processes should be examined. Follistatin, as a key regulator of the biological actions of activin, should be evaluated as a therapeutic agent in conditions where activin A overexpression is established as a contributing factor.
Collapse
Affiliation(s)
- R Wijayarathna
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia Centre for Reproductive Health, Hudson Institute of Medical Research, 27-31, Wright Street, Clayton, VIC 3168, Australia
| | - D M de Kretser
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia Centre for Reproductive Health, Hudson Institute of Medical Research, 27-31, Wright Street, Clayton, VIC 3168, Australia
| |
Collapse
|
10
|
Sharkey DJ, Schjenken JE, Mottershead DG, Robertson SA. Seminal fluid factors regulate activin A and follistatin synthesis in female cervical epithelial cells. Mol Cell Endocrinol 2015; 417:178-90. [PMID: 26415587 DOI: 10.1016/j.mce.2015.09.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/28/2015] [Accepted: 09/22/2015] [Indexed: 12/16/2022]
Abstract
Seminal fluid induces pro-inflammatory cytokines and elicits an inflammation-like response in the cervix. Here, Affymetrix microarray and qPCR was utilised to identify activin A (INHBA) and its inhibitor follistatin (FST) amongst the cytokines induced by seminal plasma in Ect1 ectocervical epithelial cells, and a similar response was confirmed in primary ectocervical epithelial cells. TGFB is abundant in seminal plasma and all three TGFB isoforms induced INHBA in Ect1 and primary cells, and neutralisation of TGFB in seminal plasma suppressed the INHBA response. Bacterial lipopolysaccharide in seminal plasma also elicited INHBA, but potently suppressed FST production. There was moderate reciprocal inhibition between FST and INHBA, and cross-attenuating effects were seen. These data identify TGFB and potentially LPS as factors mediating seminal plasma-induced INHBA synthesis in cervical cells. INHBA and FST induced by seminal fluid in cervical tissues may thus contribute to regulation of the post-coital response in women.
Collapse
Affiliation(s)
- David J Sharkey
- Robinson Research Institute and School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia, Australia
| | - John E Schjenken
- Robinson Research Institute and School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia, Australia
| | - David G Mottershead
- Robinson Research Institute and School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Sarah A Robertson
- Robinson Research Institute and School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
11
|
Hardy CL, King SJ, Mifsud NA, Hedger MP, Phillips DJ, Mackay F, de Kretser DM, Wilson JW, Rolland JM, O'Hehir RE. The activin A antagonist follistatin inhibits cystic fibrosis-like lung inflammation and pathology. Immunol Cell Biol 2015; 93:567-74. [PMID: 25753271 PMCID: PMC4495664 DOI: 10.1038/icb.2015.7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 12/17/2014] [Accepted: 12/17/2014] [Indexed: 01/16/2023]
Abstract
Cystic fibrosis (CF) is the most common life-limiting genetically acquired respiratory disorder. Patients with CF have thick mucus obstructing the airways leading to recurrent infections, bronchiectasis and neutrophilic airway inflammation culminating in deteriorating lung function. Current management targets airway infection and mucus clearance, but despite recent advances in care, life expectancy is still only 40 years. We investigated whether activin A is elevated in CF lung disease and whether inhibiting activin A with its natural antagonist follistatin retards lung disease progression. We measured serum activin A levels, lung function and nutritional status in CF patients. We studied the effect of activin A on CF lung pathogenesis by treating newborn CF transgenic mice (β-ENaC) intranasally with the natural activin A antagonist follistatin. Activin A levels were elevated in the serum of adult CF patients, and correlated inversely with lung function and body mass index. Follistatin treatment of newborn β-ENaC mice, noted for respiratory pathology mimicking human CF, decreased the airway activin A levels and key features of CF lung disease including mucus hypersecretion, airway neutrophilia and levels of mediators that regulate inflammation and chemotaxis. Follistatin treatment also increased body weight and survival of β-ENaC mice, with no evidence of local or systemic toxicity. Our findings demonstrate that activin A levels are elevated in CF and provide proof-of-concept for the use of the activin A antagonist, follistatin, as a therapeutic in the long-term management of lung disease in CF patients.
Collapse
Affiliation(s)
- Charles L Hardy
- 1] Department of Allergy, Immunology & Respiratory Medicine, Central Clinical School, Monash University, Melbourne, Victoria, Australia [2] Department of Immunology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Susannah J King
- Department of Allergy, Immunology & Respiratory Medicine, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Nicole A Mifsud
- 1] Department of Allergy, Immunology & Respiratory Medicine, Central Clinical School, Monash University, Melbourne, Victoria, Australia [2] Department of Allergy, Immunology & Respiratory Medicine, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Mark P Hedger
- MIMR-PHI Institute of Medical Research, Clayton, Victoria, Australia
| | - David J Phillips
- MIMR-PHI Institute of Medical Research, Clayton, Victoria, Australia
| | - Fabienne Mackay
- Department of Immunology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - David M de Kretser
- 1] MIMR-PHI Institute of Medical Research, Clayton, Victoria, Australia [2] Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - John W Wilson
- 1] Department of Allergy, Immunology & Respiratory Medicine, Central Clinical School, Monash University, Melbourne, Victoria, Australia [2] Department of Allergy, Immunology & Respiratory Medicine, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Jennifer M Rolland
- 1] Department of Allergy, Immunology & Respiratory Medicine, Central Clinical School, Monash University, Melbourne, Victoria, Australia [2] Department of Immunology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Robyn E O'Hehir
- 1] Department of Allergy, Immunology & Respiratory Medicine, Central Clinical School, Monash University, Melbourne, Victoria, Australia [2] Department of Immunology, Central Clinical School, Monash University, Melbourne, Victoria, Australia [3] Department of Allergy, Immunology & Respiratory Medicine, The Alfred Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
12
|
Sugii H, Maeda H, Tomokiyo A, Yamamoto N, Wada N, Koori K, Hasegawa D, Hamano S, Yuda A, Monnouchi S, Akamine A. Effects of Activin A on the phenotypic properties of human periodontal ligament cells. Bone 2014; 66:62-71. [PMID: 24928494 DOI: 10.1016/j.bone.2014.05.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/30/2014] [Accepted: 05/07/2014] [Indexed: 02/05/2023]
Abstract
Periodontal ligament (PDL) tissue plays an important role in tooth preservation by structurally maintaining the connection between the tooth root and the bone. The mechanisms involved in the healing and regeneration of damaged PDL tissue, caused by bacterial infection, caries and trauma, have been explored. Accumulating evidence suggests that Activin A, a member of the transforming growth factor-β (TGF-β) superfamily and a dimer of inhibinβa, contributes to tissue healing through cell proliferation, migration, and differentiation of various target cells. In bone, Activin A has been shown to exert an inhibitory effect on osteoblast maturation and mineralization. However, there have been no reports examining the expression and function of Activin A in human PDL cells (HPDLCs). Thus, we aimed to investigate the biological effects of Activin A on HPDLCs. Activin A was observed to be localized in HPDLCs and rat PDL tissue. When PDL tissue was surgically damaged, Activin A and IL-1β expression increased and the two proteins were shown to be co-localized around the lesion. HPDLCs treated with IL-1β or TNF-α also up-regulated the expression of the gene encoding inhibinβa. Activin A promoted chemotaxis, migration and proliferation of HPDLCs, and caused an increase in fibroblastic differentiation of these cells while down-regulating their osteoblastic differentiation. These osteoblastic inhibitory effects of Activin A, however, were only noted during the early phase of HPDLC osteoblastic differentiation, with later exposures having no effect on differentiation. Collectively, our results suggest that Activin A could be used as a therapeutic agent for healing and regenerating PDL tissue in response to disease, trauma or surgical reconstruction.
Collapse
Affiliation(s)
- Hideki Sugii
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hidefumi Maeda
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Atsushi Tomokiyo
- Colgate Australian Clinical Dental Research Centre, School of Dentistry, University of Adelaide, SA 5005, Australia
| | - Naohide Yamamoto
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Naohisa Wada
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Katsuaki Koori
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Daigaku Hasegawa
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Sayuri Hamano
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Asuka Yuda
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Satoshi Monnouchi
- Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Akifumi Akamine
- Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan; Department of Endodontology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
13
|
Xiu F, Stanojcic M, Diao L, Jeschke MG. Stress hyperglycemia, insulin treatment, and innate immune cells. Int J Endocrinol 2014; 2014:486403. [PMID: 24899891 PMCID: PMC4034653 DOI: 10.1155/2014/486403] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/06/2014] [Accepted: 04/08/2014] [Indexed: 01/04/2023] Open
Abstract
Hyperglycemia (HG) and insulin resistance are the hallmarks of a profoundly altered metabolism in critical illness resulting from the release of cortisol, catecholamines, and cytokines, as well as glucagon and growth hormone. Recent studies have proposed a fundamental role of the immune system towards the development of insulin resistance in traumatic patients. A comprehensive review of published literatures on the effects of hyperglycemia and insulin on innate immunity in critical illness was conducted. This review explored the interaction between the innate immune system and trauma-induced hypermetabolism, while providing greater insight into unraveling the relationship between innate immune cells and hyperglycemia. Critical illness substantially disturbs glucose metabolism resulting in a state of hyperglycemia. Alterations in glucose and insulin regulation affect the immune function of cellular components comprising the innate immunity system. Innate immune system dysfunction via hyperglycemia is associated with a higher morbidity and mortality in critical illness. Along with others, we hypothesize that reduction in morbidity and mortality observed in patients receiving insulin treatment is partially due to its effect on the attenuation of the immune response. However, there still remains substantial controversy regarding moderate versus intensive insulin treatment. Future studies need to determine the integrated effects of HG and insulin on the regulation of innate immunity in order to provide more effective insulin treatment regimen for these patients.
Collapse
Affiliation(s)
- Fangming Xiu
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Room D704, Toronto, ON, Canada
| | - Mile Stanojcic
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Room D704, Toronto, ON, Canada
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada M4N 3M5
| | - Li Diao
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Room D704, Toronto, ON, Canada
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada M4N 3M5
| | - Marc G. Jeschke
- Ross Tilley Burn Centre, Sunnybrook Health Sciences Centre, University of Toronto, 2075 Bayview Avenue, Room D704, Toronto, ON, Canada
- Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada M4N 3M5
- Department of Surgery, Division of Plastic Surgery, Department of Immunology, University of Toronto, Toronto, ON, Canada
- *Marc G. Jeschke:
| |
Collapse
|
14
|
Hedger MP, de Kretser DM. The activins and their binding protein, follistatin-Diagnostic and therapeutic targets in inflammatory disease and fibrosis. Cytokine Growth Factor Rev 2013; 24:285-95. [PMID: 23541927 DOI: 10.1016/j.cytogfr.2013.03.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 03/05/2013] [Indexed: 02/05/2023]
Abstract
The activins, as members of the transforming growth factor-β superfamily, are pleiotrophic regulators of cell development and function, including cells of the myeloid and lymphoid lineages. Clinical and animal studies have shown that activin levels increase in both acute and chronic inflammation, and are frequently indicators of disease severity. Moreover, inhibition of activin action can reduce inflammation, damage, fibrosis and morbidity/mortality in various disease models. Consequently, activin A and, more recently, activin B are emerging as important diagnostic tools and therapeutic targets in inflammatory and fibrotic diseases. Activin antagonists such as follistatin, an endogenous activin-binding protein, offer considerable promise as therapies in conditions as diverse as sepsis, liver fibrosis, acute lung injury, asthma, wound healing and ischaemia-reperfusion injury.
Collapse
Affiliation(s)
- M P Hedger
- Monash Institute of Medical Research, Monash University, Melbourne, Victoria, Australia.
| | | |
Collapse
|
15
|
Activin, neutrophils, and inflammation: just coincidence? Semin Immunopathol 2013; 35:481-99. [PMID: 23385857 PMCID: PMC7101603 DOI: 10.1007/s00281-013-0365-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 01/17/2013] [Indexed: 01/18/2023]
Abstract
During the 26 years that have elapsed since its discovery, activin-A, a member of the transforming growth factor β super-family originally discovered from its capacity to stimulate follicle-stimulating hormone production by cultured pituitary gonadotropes, has been established as a key regulator of various fundamental biological processes, such as development, homeostasis, inflammation, and tissue remodeling. Deregulated expression of activin-A has been observed in several human diseases characterized by an immuno-inflammatory and/or tissue remodeling component in their pathophysiology. Various cell types have been recognized as sources of activin-A, and plentiful, occasionally contradicting, functions have been described mainly by in vitro studies. Not surprisingly, both harmful and protective roles have been postulated for activin-A in the context of several disorders. Recent findings have further expanded the functional repertoire of this molecule demonstrating that its ectopic overexpression in mouse airways can cause pathology that simulates faithfully human acute respiratory distress syndrome, a disorder characterized by strong involvement of neutrophils. This finding when considered together with the recent discovery that neutrophils constitute an important source of activin-A in vivo and earlier observations of upregulated activin-A expression in diseases characterized by strong activation of neutrophils may collectively imply a more intimate link between activin-A expression and neutrophil reactivity. In this review, we provide an outline of the functional repertoire of activin-A and suggest that this growth factor functions as a guardian of homeostasis, a modulator of immunity and an orchestrator of tissue repair activities. In this context, a relationship between activin-A and neutrophils may be anything but coincidental.
Collapse
|