1
|
Giraud E, Fiette L, Melanitou E. Type 1 diabetes and parasite infection: An exploratory study in NOD mice. PLoS One 2024; 19:e0308868. [PMID: 39436890 PMCID: PMC11495574 DOI: 10.1371/journal.pone.0308868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/29/2024] [Indexed: 10/25/2024] Open
Abstract
Microorganisms have long been suspected to influence the outcome of immune-related syndromes, particularly autoimmune diseases. Type 1 diabetes (T1D) results from the autoimmune destruction of the insulin-producing beta cells of pancreatic islets, causing high glycemia levels. Genetics is part of its aetiology, but environmental factors, particularly infectious microorganisms, also play a role. Bacteria, viruses, and parasites influence the outcome of T1D in mice and humans. We used nonobese diabetic (NOD) mice, which spontaneously develop T1D, to investigate the influence of a parasitic infection, leishmaniasis. Leishmania amazonensis is an intracellular eukaryotic parasite that replicates predominantly in macrophages and is responsible for cutaneous leishmaniasis. The implication of Th1 immune responses in T1D and leishmaniasis led us to study this parasite in the NOD mouse model. We previously constructed osteopontin knockout mice with a NOD genetic background and demonstrated that this protein plays a role in the T1D phenotype. In addition, osteopontin (OPN) has been found to play a role in the immune response to various infectious microorganisms and to be implicated in other autoimmune conditions, such as multiple sclerosis in humans and experimental autoimmune encephalomyelitis (EAE) in mice. We present herein data demonstrating the role of OPN in the response to Leishmania in NOD mice and the influence of this parasitic infection on T1D. This exploratory study aimed to investigate the environmental infectious component of the autoimmune response, including Th1 immunity, which is common to both T1D and leishmaniasis.
Collapse
Affiliation(s)
- Emilie Giraud
- Chemogenomic and Biological Screening Core Facility, C2RT, CNRS UMR 3523, Institut Pasteur, Université Paris Cité, Paris, France
| | - Laurence Fiette
- Human Histopathology, and Animal Models Laboratory, Institut Pasteur, Université Paris Cité, Paris, France
| | - Evie Melanitou
- Department of Parasites & Insect-Vectors, Institut Pasteur, Université Paris Cité, Paris, France
| |
Collapse
|
2
|
Liukang C, Zhao J, Tian J, Huang M, Liang R, Zhao Y, Zhang G. Deciphering infected cell types, hub gene networks and cell-cell communication in infectious bronchitis virus via single-cell RNA sequencing. PLoS Pathog 2024; 20:e1012232. [PMID: 38743760 PMCID: PMC11125504 DOI: 10.1371/journal.ppat.1012232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/24/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
Infectious bronchitis virus (IBV) is a coronavirus that infects chickens, which exhibits a broad tropism for epithelial cells, infecting the tracheal mucosal epithelium, intestinal mucosal epithelium, and renal tubular epithelial cells. Utilizing single-cell RNA sequencing (scRNA-seq), we systematically examined cells in renal, bursal, and tracheal tissues following IBV infection and identified tissue-specific molecular markers expressed in distinct cell types. We evaluated the expression of viral RNA in diverse cellular populations and subsequently ascertained that distal tubules and collecting ducts within the kidney, bursal mucosal epithelial cells, and follicle-associated epithelial cells exhibit susceptibility to IBV infection through immunofluorescence. Furthermore, our findings revealed an upregulation in the transcription of proinflammatory cytokines IL18 and IL1B in renal macrophages as well as increased expression of apoptosis-related gene STAT in distal tubules and collecting duct cells upon IBV infection leading to renal damage. Cell-to-cell communication unveiled potential interactions between diverse cell types, as well as upregulated signaling pathways and key sender-receiver cell populations after IBV infection. Integrating single-cell data from all tissues, we applied weighted gene co-expression network analysis (WGCNA) to identify gene modules that are specifically expressed in different cell populations. Based on the WGCNA results, we identified seven immune-related gene modules and determined the differential expression pattern of module genes, as well as the hub genes within these modules. Our comprehensive data provides valuable insights into the pathogenesis of IBV as well as avian antiviral immunology.
Collapse
Affiliation(s)
- Chengyin Liukang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jing Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jiaxin Tian
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Min Huang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Rong Liang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Ye Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Guozhong Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Kimak A, Woźniacka A. The Role of Osteopontin in Psoriasis-A Scoping Review. J Clin Med 2024; 13:655. [PMID: 38337350 PMCID: PMC10856165 DOI: 10.3390/jcm13030655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/03/2024] [Accepted: 01/18/2024] [Indexed: 02/12/2024] Open
Abstract
Psoriasis is a chronic systemic disease with an immunological basis and a complex pathophysiology. The chronic inflammatory status of psoriasis is associated with several comorbidities, such as metabolic syndrome, obesity, and cardiovascular disease. The development of psoriasis is influenced by osteopontin, a glycoprotein that influences physiological and pathological reactions by modulating Th1 and Th17 cellular responses, stimulating keratinocyte proliferation, regulating cellular apoptosis, and promoting angiogenesis. The recent identification of immune pathways involved in psoriasis development has facilitated the development of biological treatments; however, a better understanding of the intricate relationship between underlying inflammatory processes, psoriasis development, and accompanying comorbidities is needed for improved disease management.
Collapse
Affiliation(s)
| | - Anna Woźniacka
- Department of Dermatology and Venereology, Medical University of Lodz, Hallera 1, 90-647 Lodz, Poland;
| |
Collapse
|
4
|
Jawich K, Hadakie R, Jamal S, Habeeb R, Al Fahoum S, Ferlin A, De Toni L. Emerging Role of Non-collagenous Bone Proteins as Osteokines in Extraosseous Tissues. Curr Protein Pept Sci 2024; 25:215-225. [PMID: 37937553 DOI: 10.2174/0113892037268414231017074054] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 11/09/2023]
Abstract
Bone is a unique tissue, composed of various types of cells embedded in a calcified extracellular matrix (ECM), whose dynamic structure consists of organic and inorganic compounds produced by bone cells. The main inorganic component is represented by hydroxyapatite, whilst the organic ECM is primarily made up of type I collagen and non-collagenous proteins. These proteins play an important role in bone homeostasis, calcium regulation, and maintenance of the hematopoietic niche. Recent advances in bone biology have highlighted the importance of specific bone proteins, named "osteokines", possessing endocrine functions and exerting effects on nonosseous tissues. Accordingly, osteokines have been found to act as growth factors, cell receptors, and adhesion molecules, thus modifying the view of bone from a static tissue fulfilling mobility to an endocrine organ itself. Since bone is involved in a paracrine and endocrine cross-talk with other tissues, a better understanding of bone secretome and the systemic roles of osteokines is expected to provide benefits in multiple topics: such as identification of novel biomarkers and the development of new therapeutic strategies. The present review discusses in detail the known osseous and extraosseous effects of these proteins and the possible respective clinical and therapeutic significance.
Collapse
Affiliation(s)
- Kenda Jawich
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Damascus University, Damascus, Syrian Arab Republic
- Department of Biochemistry, Faculty of Pharmacy, International University of Science and Technology, Darrah, Syrian Arab Republic
| | - Rana Hadakie
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Damascus University, Damascus, Syrian Arab Republic
| | - Souhaib Jamal
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Damascus University, Damascus, Syrian Arab Republic
| | - Rana Habeeb
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Damascus University, Damascus, Syrian Arab Republic
- Department of Biochemistry, Faculty of Pharmacy, International University of Science and Technology, Darrah, Syrian Arab Republic
| | - Sahar Al Fahoum
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Damascus University, Damascus, Syrian Arab Republic
| | - Alberto Ferlin
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| | - Luca De Toni
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Padova, Italy
| |
Collapse
|
5
|
Sekiguchi K, Matsuda A, Yamada M, Matsumoto S, Sakurazawa N, Kawano Y, Yamada T, Miyashita M, Yoshida H. The utility of serum osteopontin levels for predicting postoperative complications after colorectal cancer surgery. Int J Clin Oncol 2022; 27:1706-1716. [PMID: 35951171 DOI: 10.1007/s10147-022-02225-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/19/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND/AIM Osteopontin (OPN) is a secretory glycoprotein, which is expressed not only in osteoblasts, but immune cells including macrophages and activated T cells. Its pleiotropic immune functions, such as bone remodeling, cancer progression, immune response, and inflammation have been reported previously. However, the association between OPN and postoperative complications (POC) after colorectal cancer (CRC) surgery has not been studied, so far. METHODS Peripheral blood samples were collected before (pre) and immediately after surgery (post), and on postoperative days (POD) 1, 3, 5, and 7. Serum OPN levels were measured by ELISA. In total, 78 patients who underwent elective CRC surgery were divided into the No-POC (n = 54) and POC (n = 24) groups. RESULTS The POC group had significantly higher OPN levels than the No-POC group throughout the postoperative observation period. The maximum OPN levels from pre- to postsurgical samples showed the best predictive potential for POCs (cut off: 20.75 ng/mL, area under the curve: 0.724) and were correlated with length of postoperative stays. OPN values were significantly correlated with C-reactive protein on POD3 and were identified as an independent predictive marker for POCs (odds ratio: 3.88, 95% CI: 1.175-12.798, P = 0.026). The severity of POCs was reflected in increased OPN levels. CONCLUSION Increased postoperative OPN was associated with increased postoperative inflammatory host responses and POC after CRC surgery. Serum OPN level may be a useful biomarker for early prediction of POC and it may provide additional information for treatment decisions to prevent POC.
Collapse
Affiliation(s)
- Kumiko Sekiguchi
- Department of Surgery, Nippon Medical School Chiba Hokusoh Hospital, 1715 Kamagari , Inzai, Chiba, 270-1694, Japan.,Department of Surgery, Nippon Medical School Tama Nagayama Hospital, 1-7-1 Nagayama, Tama, Tokyo, 206-8512, Japan
| | - Akihisa Matsuda
- Department of Surgery, Nippon Medical School Chiba Hokusoh Hospital, 1715 Kamagari , Inzai, Chiba, 270-1694, Japan. .,Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan.
| | - Marina Yamada
- Department of Surgery, Nippon Medical School Chiba Hokusoh Hospital, 1715 Kamagari , Inzai, Chiba, 270-1694, Japan.,Faculty of Medical Science, Nippon Sport Science University, 1221-1 Kamoshida-cho, Aoba-ku, Yokohama, Kanagawa, 227-0033, Japan
| | - Satoshi Matsumoto
- Department of Surgery, Nippon Medical School Chiba Hokusoh Hospital, 1715 Kamagari , Inzai, Chiba, 270-1694, Japan
| | - Nobuyuki Sakurazawa
- Department of Surgery, Nippon Medical School Chiba Hokusoh Hospital, 1715 Kamagari , Inzai, Chiba, 270-1694, Japan.,Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan
| | - Youichi Kawano
- Department of Surgery, Nippon Medical School Chiba Hokusoh Hospital, 1715 Kamagari , Inzai, Chiba, 270-1694, Japan
| | - Takeshi Yamada
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan
| | - Masao Miyashita
- Department of Surgery, Nippon Medical School Chiba Hokusoh Hospital, 1715 Kamagari , Inzai, Chiba, 270-1694, Japan
| | - Hiroshi Yoshida
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603, Japan
| |
Collapse
|
6
|
Djokic V, Rocha SC, Parveen N. Lessons Learned for Pathogenesis, Immunology, and Disease of Erythrocytic Parasites: Plasmodium and Babesia. Front Cell Infect Microbiol 2021; 11:685239. [PMID: 34414129 PMCID: PMC8369351 DOI: 10.3389/fcimb.2021.685239] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/15/2021] [Indexed: 11/24/2022] Open
Abstract
Malaria caused by Plasmodium species and transmitted by Anopheles mosquitoes affects large human populations, while Ixodes ticks transmit Babesia species and cause babesiosis. Babesiosis in animals has been known as an economic drain, and human disease has also emerged as a serious healthcare problem in the last 20–30 years. There is limited literature available regarding pathogenesis, immunity, and disease caused by Babesia spp. with their genomes sequenced only in the last decade. Therefore, using previous studies on Plasmodium as the foundation, we have compared similarities and differences in the pathogenesis of Babesia and host immune responses. Sexual life cycles of these two hemoparasites in their respective vectors are quite similar. An adult Anopheles female can take blood meal several times in its life such that it can both acquire and transmit Plasmodia to hosts. Since each tick stage takes blood meal only once, transstadial horizontal transmission from larva to nymph or nymph to adult is essential for the release of Babesia into the host. The initiation of the asexual cycle of these parasites is different because Plasmodium sporozoites need to infect hepatocytes before egressed merozoites can infect erythrocytes, while Babesia sporozoites are known to enter the erythrocytic cycle directly. Plasmodium metabolism, as determined by its two- to threefold larger genome than different Babesia, is more complex. Plasmodium replication occurs in parasitophorous vacuole (PV) within the host cells, and a relatively large number of merozoites are released from each infected RBC after schizogony. The Babesia erythrocytic cycle lacks both PV and schizogony. Cytoadherence that allows the sequestration of Plasmodia, primarily P. falciparum in different organs facilitated by prominent adhesins, has not been documented for Babesia yet. Inflammatory immune responses contribute to the severity of malaria and babesiosis. Antibodies appear to play only a minor role in the resolution of these diseases; however, cellular and innate immunity are critical for the clearance of both pathogens. Inflammatory immune responses affect the severity of both diseases. Macrophages facilitate the resolution of both infections and also offer cross-protection against related protozoa. Although the immunosuppression of adaptive immune responses by these parasites does not seem to affect their own clearance, it significantly exacerbates diseases caused by coinfecting bacteria during coinfections.
Collapse
Affiliation(s)
- Vitomir Djokic
- Department for Bacterial Zoonozes, Laboratory for Animal Health, French Agency for Food, Environmental and Occupational Health & Safety, UPEC, University Paris-Est, Maisons-Alfort, France
| | - Sandra C Rocha
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| | - Nikhat Parveen
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
7
|
Hattori T, Iwasaki-Hozumi H, Bai G, Chagan-Yasutan H, Shete A, Telan EF, Takahashi A, Ashino Y, Matsuba T. Both Full-Length and Protease-Cleaved Products of Osteopontin Are Elevated in Infectious Diseases. Biomedicines 2021; 9:biomedicines9081006. [PMID: 34440210 PMCID: PMC8394573 DOI: 10.3390/biomedicines9081006] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022] Open
Abstract
Circulating full-length osteopontin (FL-OPN) is elevated in plasma from patients with various infectious diseases, such as adult T-cell leukemia, Mycobacterium tuberculosis (TB), hepatitis virus infection, leptospirosis, acquired immune deficiency syndrome (AIDS), AIDS/TB, and coronavirus disease 2019 (COVID-19). Proteolysis of OPN by thrombin, matrix metalloproteases, caspase 8/3, cathepsin D, plasmin, and enterokinase generates various cleaved OPNs with a variety of bioactivities by binding to different target cells. Moreover, OPN is susceptible to gradual proteolysis. During inflammation, one of the cleaved fragments, N-terminal thrombin-cleaved OPN (trOPN or OPN-Arg168 [OPN-R]), induces dendritic cell (DC) adhesion. Further cleavage by carboxypeptidase B2 or carboxypeptidase N removes Arg168 from OPN-R to OPN-Leu167 (OPN-L). Consequently, OPN-L decreases DC adhesion. In particular, the differences in plasma level over time are observed between FL-OPN and its cleaved OPNs during inflammation. We found that the undefined OPN levels (mixture of FL-OPN and cleaved OPN) were elevated in plasma and reflected the pathology of TB and COVID-19 rather than FL-OPN. These infections are associated with elevated levels of various proteases. Inhibition of the cleavage or the activities of cleaved products may improve the outcome of the therapy. Research on the metabolism of OPN is expected to create new therapies against infectious diseases.
Collapse
Affiliation(s)
- Toshio Hattori
- Research Institute of Health and Welfare, Kibi International University, Takahashi 716-8508, Japan; (H.I.-H.); (G.B.); (H.C.-Y.); (A.T.)
- Correspondence: ; Tel./Fax: +81-866-22-9469
| | - Hiroko Iwasaki-Hozumi
- Research Institute of Health and Welfare, Kibi International University, Takahashi 716-8508, Japan; (H.I.-H.); (G.B.); (H.C.-Y.); (A.T.)
| | - Gaowa Bai
- Research Institute of Health and Welfare, Kibi International University, Takahashi 716-8508, Japan; (H.I.-H.); (G.B.); (H.C.-Y.); (A.T.)
| | - Haorile Chagan-Yasutan
- Research Institute of Health and Welfare, Kibi International University, Takahashi 716-8508, Japan; (H.I.-H.); (G.B.); (H.C.-Y.); (A.T.)
- Mongolian Psychosomatic Medicine Department, International Mongolian Medicine Hospital of Inner Mongolia, Hohhot 010065, China
| | - Ashwnini Shete
- ICMR-National AIDS Research Institute, 73 G-Block, MIDC, Bhosari, Pune 411026, India;
| | - Elizabeth Freda Telan
- STD AIDS Cooperative Central Laboratory, San Lazaro Hospital, Manila 1003, Philippines;
| | - Atsushi Takahashi
- Research Institute of Health and Welfare, Kibi International University, Takahashi 716-8508, Japan; (H.I.-H.); (G.B.); (H.C.-Y.); (A.T.)
| | - Yugo Ashino
- Department of Respiratory Medicine, Sendai City Hospital, Sendai 982-8502, Japan;
| | - Takashi Matsuba
- Department of Animal Pharmaceutical Science, School of Pharmaceutical Science, Kyusyu University of Health and Welfare, Nobeoka 882-8508, Japan;
| |
Collapse
|
8
|
Pérez‐Mazliah D, Ward AI, Lewis MD. Host-parasite dynamics in Chagas disease from systemic to hyper-local scales. Parasite Immunol 2021; 43:e12786. [PMID: 32799361 PMCID: PMC11475410 DOI: 10.1111/pim.12786] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022]
Abstract
Trypanosoma cruzi is a remarkably versatile parasite. It can parasitize almost any nucleated cell type and naturally infects hundreds of mammal species across much of the Americas. In humans, it is the cause of Chagas disease, a set of mainly chronic conditions predominantly affecting the heart and gastrointestinal tract, which can progress to become life threatening. Yet around two thirds of infected people are long-term asymptomatic carriers. Clinical outcomes depend on many factors, but the central determinant is the nature of the host-parasite interactions that play out over the years of chronic infection in diverse tissue environments. In this review, we aim to integrate recent developments in the understanding of the spatial and temporal dynamics of T. cruzi infections with established and emerging concepts in host immune responses in the corresponding phases and tissues.
Collapse
Affiliation(s)
- Damián Pérez‐Mazliah
- York Biomedical Research InstituteHull York Medical SchoolUniversity of YorkYorkUK
| | - Alexander I. Ward
- Department of Infection BiologyFaculty of Infectious and Tropical DiseasesLondon School of Hygiene and Tropical MedicineLondonUK
| | - Michael D. Lewis
- Department of Infection BiologyFaculty of Infectious and Tropical DiseasesLondon School of Hygiene and Tropical MedicineLondonUK
| |
Collapse
|
9
|
Lamort AS, Giopanou I, Psallidas I, Stathopoulos GT. Osteopontin as a Link between Inflammation and Cancer: The Thorax in the Spotlight. Cells 2019; 8:cells8080815. [PMID: 31382483 PMCID: PMC6721491 DOI: 10.3390/cells8080815] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/25/2019] [Accepted: 07/31/2019] [Indexed: 12/23/2022] Open
Abstract
The glycoprotein osteopontin (OPN) possesses multiple functions in health and disease. To this end, osteopontin has beneficial roles in wound healing, bone homeostasis, and extracellular matrix (ECM) function. On the contrary, osteopontin can be deleterious for the human body during disease. Indeed, osteopontin is a cardinal mediator of tumor-associated inflammation and facilitates metastasis. The purpose of this review is to highlight the importance of osteopontin in malignant processes, focusing on lung and pleural tumors as examples.
Collapse
Affiliation(s)
- Anne-Sophie Lamort
- Comprehensive Pneumology Center and Institute for Lung Biology and Disease, University Hospital, Ludwig-Maximilians University of Munich and Helmholtz Center Munich, Member of the German Center for Lung Research, Max-Lebsche-Platz 31, 81377 Munich, Bavaria, Germany.
| | - Ioanna Giopanou
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Biomedical Sciences Research Center, 1 Asklepiou Str., University Campus, 26504 Rio, Achaia, Greece
| | - Ioannis Psallidas
- Lungs for Living Research Centre, UCL Respiratory, University College London, London WC1E6BT, UK
| | - Georgios T Stathopoulos
- Comprehensive Pneumology Center and Institute for Lung Biology and Disease, University Hospital, Ludwig-Maximilians University of Munich and Helmholtz Center Munich, Member of the German Center for Lung Research, Max-Lebsche-Platz 31, 81377 Munich, Bavaria, Germany.
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Biomedical Sciences Research Center, 1 Asklepiou Str., University Campus, 26504 Rio, Achaia, Greece.
| |
Collapse
|
10
|
Feldbrin Z, Omelchenko E, Lipkin A, Shargorodsky M. Osteopontin levels in plasma, muscles, and bone in patient with non-healing diabetic foot ulcers: A new player in wound healing process? J Diabetes Complications 2018; 32:795-798. [PMID: 29871782 DOI: 10.1016/j.jdiacomp.2018.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/15/2018] [Accepted: 05/12/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND The present study was designed to investigate the impact of osteopontin (OPN) in different tissue (e.g., plasma, muscles and bone) on amputation rate (in-hospital and during one year follow-up) for non-healing diabetic foot ulcers (DFUs). METHODS This pilot study consisted of 30 diabetic patients, hospitalized due to non-healing DFUs. Patients were divided into two groups: Group 1 included 14 patients who underwent limb-preserved debridement procedure without amputation; Group 2 included 16 subjects who underwent amputation. Additionally, recurrent amputation rate during 1 year follow-up was investigated. RESULTS Plasma OPN was higher and bone OPN was lower in Group 2 compared to Group 1 (p = 0.016 and p = 0.004, respectively). In the logistic regression analysis, bone OPN emerged as a significant independent predictor of amputation (OR = 0.042, 95% CI 0.003-0.699, p = 0.027). Plasma OPN was also associated with amputation such that each unit increase in plasma OPN was associated with an increase in odds of amputation of 17.7% (95% CI 0.997-1.388, p = 0.045). During 1 year follow-up 11 patients underwent recurrent amputation. Plasma OPN were higher and bone osteopontin was lower in patients who underwent amputation compared to patients who did not need amputation at one year follow-up. However, in GLM analysis bone OPN was only marginally associated with one year amputation (OR 0.001, 95% CI 0.000-2.0, p = 0.076). CONCLUSIONS Decreased levels of OPN in bone and increased plasma OPN are independently associated with in-hospital amputation. Consequently, plasma OPN may be relevant in the routine assessment of amputation risk in this patient population.
Collapse
Affiliation(s)
- Z Feldbrin
- Department of Diabetic Foot, Wolfson Medical Center, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - E Omelchenko
- Department of Diabetic Foot, Wolfson Medical Center, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - A Lipkin
- Department of Diabetic Foot, Wolfson Medical Center, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - M Shargorodsky
- Department of Endocrinology, Wolfson Medical Center, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
11
|
Tang M, Tian L, Luo G, Yu X. Interferon-Gamma-Mediated Osteoimmunology. Front Immunol 2018; 9:1508. [PMID: 30008722 PMCID: PMC6033972 DOI: 10.3389/fimmu.2018.01508] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/18/2018] [Indexed: 02/05/2023] Open
Abstract
Osteoimmunology is the interdiscipline that focuses on the relationship between the skeletal and immune systems. They are interconnected by shared signal pathways and cytokines. Interferon-gamma (IFN-γ) plays important roles in immune responses and bone metabolism. IFN-γ enhances macrophage activation and antigen presentation. It regulates antiviral and antibacterial immunity as well as signal transduction. IFN-γ can promote osteoblast differentiation and inhibit bone marrow adipocyte formation. IFN-γ plays dual role in osteoclasts depending on its stage. Furthermore, IFN-γ is an important pathogenetic factor in some immune-mediated bone diseases including rheumatoid arthritis, postmenopausal osteoporosis, and acquired immunodeficiency syndrome. This review will discuss the contradictory findings of IFN-γ in osteoimmunology and its clinical application potential.
Collapse
Affiliation(s)
- Mengjia Tang
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Tian
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guojing Luo
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Fresno M, Gironès N. Regulatory Lymphoid and Myeloid Cells Determine the Cardiac Immunopathogenesis of Trypanosoma cruzi Infection. Front Microbiol 2018; 9:351. [PMID: 29545782 PMCID: PMC5838393 DOI: 10.3389/fmicb.2018.00351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 02/14/2018] [Indexed: 01/19/2023] Open
Abstract
Chagas disease is a multisystemic disorder caused by the protozoan parasite Trypanosoma cruzi, which affects ~8 million people in Latin America, killing 7,000 people annually. Chagas disease is one of the main causes of death in the endemic area and the leading cause of infectious myocarditis in the world. T. cruzi infection induces two phases, acute and chronic, where the infection is initially asymptomatic and the majority of patients will remain clinically indeterminate for life. However, over a period of 10–30 years, ~30% of infected individuals will develop irreversible, potentially fatal cardiac syndromes (chronic chagasic cardiomyopathy [CCC]), and/or dilatation of the gastro-intestinal tract (megacolon or megaesophagus). Myocarditis is the most serious and frequent manifestation of chronic Chagas heart disease and appears in about 30% of infected individuals several years after infection occurs. Myocarditis is characterized by a mononuclear cell infiltrate that includes different types of myeloid and lymphoid cells and it can occur also in the acute phase. T. cruzi infects and replicates in macrophages and cardiomyocytes as well as in other nucleated cells. The pathogenesis of the chronic phase is thought to be dependent on an immune-inflammatory reaction to a low-grade replicative infection. It is known that cytokines produced by type 1 helper CD4+ T cells are able to control infection. However, the role that infiltrating lymphoid and myeloid cells may play in experimental and natural Chagas disease pathogenesis has not been completely elucidated, and several reports indicate that it depends on the mouse genetic background and parasite strain and/or inoculum. Here, we review the role that T cell CD4+ subsets, myeloid subclasses including myeloid-derived suppressor cells may play in the immunopathogenesis of Chagas disease with special focus on myocarditis, by comparing results obtained with different experimental animal models.
Collapse
Affiliation(s)
- Manuel Fresno
- Centro de Biología Molecular Severo Ochoa (CSIC), Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain
| | - Núria Gironès
- Centro de Biología Molecular Severo Ochoa (CSIC), Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa, Madrid, Spain
| |
Collapse
|
13
|
Caballero EP, Santamaría MH, Corral RS. Endogenous osteopontin induces myocardial CCL5 and MMP-2 activation that contributes to inflammation and cardiac remodeling in a mouse model of chronic Chagas heart disease. Biochim Biophys Acta Mol Basis Dis 2017; 1864:11-23. [PMID: 28987763 DOI: 10.1016/j.bbadis.2017.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/21/2017] [Accepted: 10/03/2017] [Indexed: 01/22/2023]
Abstract
Cardiac dysfunction with progressive inflammation and fibrosis is a hallmark of Chagas disease caused by persistent Trypanosoma cruzi infection. Osteopontin (OPN) is a pro-inflammatory cytokine that orchestrates mechanisms controlling cell recruitment and cardiac architecture. Our main goal was to study the role of endogenous OPN as a modulator of myocardial CCL5 chemokine and MMP-2 metalloproteinase, and its pathological impact in a murine model of Chagas heart disease. Wild-type (WT) and OPN-deficient (spp1 -/-) mice were parasite-infected (Brazil strain) for 100days. Both groups developed chronic myocarditis with similar parasite burden and survival rates. However, spp1 -/- infection showed lower heart-to-body ratio (P<0.01) as well as reduced inflammatory pathology (P<0.05), CCL5 expression (P<0.05), myocyte size (P<0.05) and fibrosis (P<0.01) in cardiac tissues. Intense OPN labeling was observed in inflammatory cells recruited to infected heart (P<0.05). Plasma concentration of MMP-2 was higher (P<0.05) in infected WT than in spp1 -/- mice. Coincidently, specific immunostaining revealed increased gelatinase expression (P<0.01) and activity (P<0.05) in the inflamed hearts from T. cruzi WT mice, but not in their spp1 -/- littermates. CCL5 and MMP-2 induction occurred preferentially (P<0.01) in WT heart-invading CD8+ T cells and was mediated via phospho-JNK MAPK signaling. Heart levels of OPN, CCL5 and MMP-2 correlated (P<0.01) with collagen accumulation in the infected WT group only. Endogenous OPN emerges as a key player in the pathogenesis of chronic Chagas heart disease, through the upregulation of myocardial CCL5/MMP-2 expression and activities resulting in pro-inflammatory and pro-hypertrophic events, cardiac remodeling and interstitial fibrosis.
Collapse
Affiliation(s)
| | - Miguel H Santamaría
- Laboratorio de Biología Experimental, Centro de Estudios Metabólicos, Santander, Spain
| | - Ricardo S Corral
- Servicio de Parasitología-Chagas, Hospital de Niños "Dr. Ricardo Gutiérrez", Buenos Aires, Argentina.
| |
Collapse
|
14
|
Thrombin Cleavage of Osteopontin Modulates Its Activities in Human Cells In Vitro and Mouse Experimental Autoimmune Encephalomyelitis In Vivo. J Immunol Res 2016; 2016:9345495. [PMID: 27478856 PMCID: PMC4961817 DOI: 10.1155/2016/9345495] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/08/2016] [Indexed: 12/14/2022] Open
Abstract
Osteopontin is a proinflammatory cytokine and plays a pathogenetic role in multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE), by recruiting autoreactive T cells into the central nervous system. Osteopontin functions are modulated by thrombin cleavage generating N- and C-terminal fragment, whose individual roles are only partly known. Published data are difficult to compare since they have been obtained with heterogeneous approaches. Interestingly, thrombin cleavage of osteopontin unmasks a cryptic domain of interaction with α4β1 integrin that is the main adhesion molecule involved in lymphocyte transmigration to the brain and is the target for natalizumab, the most potent drug preventing relapses. We produced recombinant osteopontin and its N- and C-terminal fragments in an eukaryotic system in order to allow their posttranslational modifications. We investigated, in vitro, their effect on human cells and in vivo in EAE. We found that the osteopontin cleavage plays a key role in the function of this cytokine and that the two fragments exert distinct effects both in vitro and in vivo. These findings suggest that drugs targeting each fragment may be used to fine-tune the pathological effects of osteopontin in several diseases.
Collapse
|
15
|
Hirano Y, Aziz M, Yang WL, Wang Z, Zhou M, Ochani M, Khader A, Wang P. Neutralization of osteopontin attenuates neutrophil migration in sepsis-induced acute lung injury. Crit Care 2015; 19:53. [PMID: 25887405 PMCID: PMC4345018 DOI: 10.1186/s13054-015-0782-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/02/2015] [Indexed: 11/10/2022] Open
Abstract
Introduction Sepsis refers to severe systemic inflammation leading to acute lung injury (ALI) and death. Introducing novel therapies can reduce the mortality in ALI. Osteopontin (OPN), a secretory glycoprotein produced by immune reactive cells, plays a deleterious role in various inflammatory diseases. However, its role in ALI caused by sepsis remains unexplored. We hypothesize that treatment with an OPN-neutralizing antibody (anti-OPN Ab) protects mice against ALI during sepsis. Methods Sepsis was induced in 8-week-old male C57BL/6 mice by cecal ligation and puncture (CLP). Anti-OPN Ab or non-immunized IgG as control, at a dose of 50 μg/mouse, was intravenously injected at the time of CLP. After 20 hours, the expression of OPN and proinflammatory cytokines in tissues and plasma was examined by real-time PCR, Western blot, and ELISA. Plasma levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) and the lung myeloperoxidase (MPO) levels were determined by colorimetric assays. Lung damage and neutrophil infiltrations were determined by histological H&E and Gr-1 staining, respectively. The effect of recombinant mouse OPN (rmOPN) on human neutrophil-like cell (HL-60) migration was performed by Boyden chamber assays and the involvement of intracellular signaling molecules in HL-60 cells was revealed by Western blot. Results After 20 hours of sepsis, mRNA and protein levels of OPN were significantly induced in lungs, spleen, and plasma. Treatment with an anti-OPN Ab in septic mice significantly reduced the plasma levels of ALT, AST, and LDH, and the proinflammatory cytokines IL-6, IL-1β and the chemokine MIP-2, compared with the vehicle group. Similarly, the lung mRNA and protein expressions of proinflammatory cytokines and chemokine were greatly reduced in anti-OPN Ab-treated animals. The lung histological architecture, MPO and neutrophil infiltration were significantly improved in anti-OPN Ab-treated mice compared with the vehicle animals. Treatment of rmOPN in HL-60 cells significantly increased their migration, in vitro. The neutrophils treated with rmOPN remarkably increased the levels of phospho focal adhesion kinase (pFAK), phospho extracellular signal-regulated kinase (pERK) and phospho p38. Conclusions Our findings clearly demonstrate the beneficial outcomes of anti-OPN Ab treatment in protecting against ALI, implicating a novel therapeutic strategy in sepsis.
Collapse
Affiliation(s)
- Yohei Hirano
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine and Center for Translational Research, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA. .,Department of Emergency and Critical Care Medicine, Juntendo University, Urayasu Hospital, 2-1-1 Tomioka, Urayasu, Chiba, 279-0021, Japan.
| | - Monowar Aziz
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine and Center for Translational Research, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.
| | - Weng-Lang Yang
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine and Center for Translational Research, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.
| | - Zhimin Wang
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine and Center for Translational Research, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.
| | - Mian Zhou
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine and Center for Translational Research, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.
| | - Mahendar Ochani
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine and Center for Translational Research, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.
| | - Adam Khader
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine and Center for Translational Research, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.
| | - Ping Wang
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine and Center for Translational Research, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY, 11030, USA.
| |
Collapse
|
16
|
FORTIS S, KHADAROO RG, HAITSMA JJ, ZHANG H. Osteopontin is associated with inflammation and mortality in a mouse model of polymicrobial sepsis. Acta Anaesthesiol Scand 2015; 59:170-5. [PMID: 25328143 DOI: 10.1111/aas.12422] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 09/09/2014] [Indexed: 01/14/2023]
Abstract
BACKGROUND Osteopontin (OPN) is a multifunctional glycoprotein with pro-inflammatory properties. In severe sepsis, levels of plasma OPN are significantly higher in non-survivors than in survivors. We hypothesized that OPN results in greater inflammation and worse outcome through modulation of endogenous glucocorticoid production in sepsis. METHODS AND RESULTS Sepsis was induced by cecal ligation and puncture (CLP) in wild type (WT) and OPN gene knockout (OPN(-/-) ) mice. In response to sepsis, the OPN(-/-) mice had lower levels of plasma cytokines and chemokines than the WT mice. The levels of corticosterone in plasma were similar between WT and OPN(-/-) sham animals but they increased 24 h after CLP induction in the WT mice, but not in the OPN(-/-) mice. The mortality rate was lower in the OPN(-/-) mice than in the WT mice. CONCLUSION OPN is associated with greater inflammatory response and increased mortality, despite the higher corticosterone levels in plasma. Corticosterone production is not impaired in the absence of OPN.
Collapse
Affiliation(s)
- S. FORTIS
- Keenan Research Center for Biomedical Science; St. Michael's Hospital; Toronto ON Canada
- Department of Anaesthesia; University of Toronto; Toronto ON Canada
- Interdepartmental Division of Critical Care Medicine; University of Toronto; Toronto ON Canada
- Department of Physiology; University of Toronto; Toronto ON Canada
| | - R. G. KHADAROO
- Keenan Research Center for Biomedical Science; St. Michael's Hospital; Toronto ON Canada
- Department of Anaesthesia; University of Toronto; Toronto ON Canada
- Interdepartmental Division of Critical Care Medicine; University of Toronto; Toronto ON Canada
- Department of Physiology; University of Toronto; Toronto ON Canada
| | - J. J. HAITSMA
- Keenan Research Center for Biomedical Science; St. Michael's Hospital; Toronto ON Canada
- Interdepartmental Division of Critical Care Medicine; University of Toronto; Toronto ON Canada
| | - H. ZHANG
- Keenan Research Center for Biomedical Science; St. Michael's Hospital; Toronto ON Canada
- Department of Anaesthesia; University of Toronto; Toronto ON Canada
- Interdepartmental Division of Critical Care Medicine; University of Toronto; Toronto ON Canada
- Department of Physiology; University of Toronto; Toronto ON Canada
| |
Collapse
|
17
|
Omura S, Kawai E, Sato F, Martinez NE, Chaitanya GV, Rollyson PA, Cvek U, Trutschl M, Alexander JS, Tsunoda I. Bioinformatics multivariate analysis determined a set of phase-specific biomarker candidates in a novel mouse model for viral myocarditis. CIRCULATION. CARDIOVASCULAR GENETICS 2014; 7:444-54. [PMID: 25031303 PMCID: PMC4332820 DOI: 10.1161/circgenetics.114.000505] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Myocarditis is an inflammatory disease of the cardiac muscle and is mainly caused by viral infections. Viral myocarditis has been proposed to be divided into 3 phases: the acute viral phase, the subacute immune phase, and the chronic cardiac remodeling phase. Although individualized therapy should be applied depending on the phase, no clinical or experimental studies have found biomarkers that distinguish between the 3 phases. Theiler's murine encephalomyelitis virus belongs to the genus Cardiovirus and can cause myocarditis in susceptible mouse strains. METHODS AND RESULTS Using this novel model for viral myocarditis induced with Theiler's murine encephalomyelitis virus, we conducted multivariate analysis including echocardiography, serum troponin and viral RNA titration, and microarray to identify the biomarker candidates that can discriminate the 3 phases. Using C3H mice infected with Theiler's murine encephalomyelitis virus on 4, 7, and 60 days post infection, we conducted bioinformatics analyses, including principal component analysis and k-means clustering of microarray data, because our traditional cardiac and serum assays, including 2-way comparison of microarray data, did not lead to the identification of a single biomarker. Principal component analysis separated heart samples clearly between the groups of 4, 7, and 60 days post infection. Representative genes contributing to the separation were as follows: 4 and 7 days post infection, innate immunity-related genes, such as Irf7 and Cxcl9; 7 and 60 days post infection, acquired immunity-related genes, such as Cd3g and H2-Aa; and cardiac remodeling-related genes, such as Mmp12 and Gpnmb. CONCLUSIONS Sets of molecules, not single molecules, identified by unsupervised principal component analysis, were found to be useful as phase-specific biomarkers.
Collapse
Affiliation(s)
- Seiichi Omura
- From the Departments of Microbiology and Immunology (S.O., E.K., F.S., N.E.M., I.T.) and Molecular and Cellular Physiology (G.V.C., J.S.A.), Louisiana State University Health Sciences Center, Shreveport; and Department of Computer Science, Louisiana State University Shreveport (P.A.R., U.C., M.T.)
| | - Eiichiro Kawai
- From the Departments of Microbiology and Immunology (S.O., E.K., F.S., N.E.M., I.T.) and Molecular and Cellular Physiology (G.V.C., J.S.A.), Louisiana State University Health Sciences Center, Shreveport; and Department of Computer Science, Louisiana State University Shreveport (P.A.R., U.C., M.T.)
| | - Fumitaka Sato
- From the Departments of Microbiology and Immunology (S.O., E.K., F.S., N.E.M., I.T.) and Molecular and Cellular Physiology (G.V.C., J.S.A.), Louisiana State University Health Sciences Center, Shreveport; and Department of Computer Science, Louisiana State University Shreveport (P.A.R., U.C., M.T.)
| | - Nicholas E Martinez
- From the Departments of Microbiology and Immunology (S.O., E.K., F.S., N.E.M., I.T.) and Molecular and Cellular Physiology (G.V.C., J.S.A.), Louisiana State University Health Sciences Center, Shreveport; and Department of Computer Science, Louisiana State University Shreveport (P.A.R., U.C., M.T.)
| | - Ganta V Chaitanya
- From the Departments of Microbiology and Immunology (S.O., E.K., F.S., N.E.M., I.T.) and Molecular and Cellular Physiology (G.V.C., J.S.A.), Louisiana State University Health Sciences Center, Shreveport; and Department of Computer Science, Louisiana State University Shreveport (P.A.R., U.C., M.T.)
| | - Phoebe A Rollyson
- From the Departments of Microbiology and Immunology (S.O., E.K., F.S., N.E.M., I.T.) and Molecular and Cellular Physiology (G.V.C., J.S.A.), Louisiana State University Health Sciences Center, Shreveport; and Department of Computer Science, Louisiana State University Shreveport (P.A.R., U.C., M.T.)
| | - Urska Cvek
- From the Departments of Microbiology and Immunology (S.O., E.K., F.S., N.E.M., I.T.) and Molecular and Cellular Physiology (G.V.C., J.S.A.), Louisiana State University Health Sciences Center, Shreveport; and Department of Computer Science, Louisiana State University Shreveport (P.A.R., U.C., M.T.)
| | - Marjan Trutschl
- From the Departments of Microbiology and Immunology (S.O., E.K., F.S., N.E.M., I.T.) and Molecular and Cellular Physiology (G.V.C., J.S.A.), Louisiana State University Health Sciences Center, Shreveport; and Department of Computer Science, Louisiana State University Shreveport (P.A.R., U.C., M.T.)
| | - J Steven Alexander
- From the Departments of Microbiology and Immunology (S.O., E.K., F.S., N.E.M., I.T.) and Molecular and Cellular Physiology (G.V.C., J.S.A.), Louisiana State University Health Sciences Center, Shreveport; and Department of Computer Science, Louisiana State University Shreveport (P.A.R., U.C., M.T.)
| | - Ikuo Tsunoda
- From the Departments of Microbiology and Immunology (S.O., E.K., F.S., N.E.M., I.T.) and Molecular and Cellular Physiology (G.V.C., J.S.A.), Louisiana State University Health Sciences Center, Shreveport; and Department of Computer Science, Louisiana State University Shreveport (P.A.R., U.C., M.T.).
| |
Collapse
|
18
|
Bandopadhyay M, Bulbule A, Butti R, Chakraborty G, Ghorpade P, Ghosh P, Gorain M, Kale S, Kumar D, Kumar S, Totakura KVS, Roy G, Sharma P, Shetti D, Soundararajan G, Thorat D, Tomar D, Nalukurthi R, Raja R, Mishra R, Yadav AS, Kundu GC. Osteopontin as a therapeutic target for cancer. Expert Opin Ther Targets 2014; 18:883-95. [DOI: 10.1517/14728222.2014.925447] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
19
|
McPherson CA, Merrick BA, Harry GJ. In vivo molecular markers for pro-inflammatory cytokine M1 stage and resident microglia in trimethyltin-induced hippocampal injury. Neurotox Res 2013; 25:45-56. [PMID: 24002884 DOI: 10.1007/s12640-013-9422-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 08/13/2013] [Accepted: 08/20/2013] [Indexed: 12/18/2022]
Abstract
Microglia polarization to the classical M1 activation state is characterized by elevated pro-inflammatory cytokines; however, a full profile has not been generated in the early stages of a sterile inflammatory response recruiting only resident microglia. We characterized the initial M1 state in a hippocampal injury model dependent upon tumor necrosis factor (TNF) receptor signaling for dentate granule cell death. Twenty-one-day-old CD1 male mice were injected with trimethyltin (TMT 2.3 mg/kg, i.p.) and the hippocampus was examined at an early stage (24-h post-dosing) of neuronal death. Glia activation was assessed using a custom quantitative nuclease protection assay. We report elevated mRNA levels for glia response such as ionizing calcium-binding adapter molecule-1 and glial fibrillary acidic protein (Gfap); Fas, hypoxia inducible factor alpha, complement component 1qb, TNF-related genes (Tnf, Tnfaip3, Tnfrsfla); interleukin-1 alpha, Cd44, chemokine (C-C motif) ligand (Ccl)2, Cc14, integrin alpha M, lipocalin (Lcn2), and secreted phosphoprotein 1 (Spp1). These changes occurred in the absence of changes in matrix metalloproteinase 9 and 12, neural cell adhesion molecule, metabotropic glutamate receptor (Grm)3, and Ly6/neurotoxin 1 (Lynx1), as well as, a decrease in neurotrophin 3, glutamate receptor subunit epsilon (Grin)-2b, and neurotrophic tyrosine kinase receptor, type 3. The M2 anti-inflammatory marker, transforming growth factor beta-1 (Tgfb1) was elevated. mRNAs associated with early stage of injury-induced neurogenesis including fibroblast growth factor 21 and Mki67 were elevated. In the "non-injured" temporal cortex receiving projections from the hippocampus, Lynx1, Grm3, and Grin2b were decreased and Gfap increased. Formalin fixed-paraffin-embedded tissue did not generate a comparable profile.
Collapse
Affiliation(s)
- C A McPherson
- Neurotoxicology Group, Division of National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, P.O. Box 12233, MD E1-07, Research Triangle Park, NC, 27709, USA
| | | | | |
Collapse
|
20
|
Salvi V, Scutera S, Rossi S, Zucca M, Alessandria M, Greco D, Bosisio D, Sozzani S, Musso T. Dual regulation of osteopontin production by TLR stimulation in dendritic cells. J Leukoc Biol 2013; 94:147-58. [DOI: 10.1189/jlb.0412194] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|