1
|
Simmons J, Gallo RL. The Central Roles of Keratinocytes in Coordinating Skin Immunity. J Invest Dermatol 2024; 144:2377-2398. [PMID: 39115524 DOI: 10.1016/j.jid.2024.06.1280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 10/25/2024]
Abstract
The function of keratinocytes (KCs) to form a barrier and produce cytokines is well-known, but recent progress has revealed many different roles for KCs in regulation of skin immunity. In this review, we provide an update on the current understanding of how KCs communicate with microbes, immunocytes, neurons, and other cells to form an effective immune barrier. We catalog the large list of genes and metabolites of KCs that participate in host defense and discuss the mechanisms of immune crosstalk, addressing how KCs simultaneously form a physical barrier, communicate with fibroblasts, and control immune signals. Overall, the signals sent and received by KCs are an exciting group of therapeutic targets to explore in the treatment of dermatologic disorders.
Collapse
Affiliation(s)
- Jared Simmons
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Richard L Gallo
- Department of Dermatology, School of Medicine, University of California San Diego, La Jolla, California, USA.
| |
Collapse
|
2
|
Chen HW, Liu FC, Kuo HM, Tang SH, Niu GH, Zhang MM, Tsou LK, Sung PJ, Wen ZH. Immunomodulatory and anti-angiogenesis effects of excavatolide B and its derivatives in alleviating atopic dermatitis. Biomed Pharmacother 2024; 172:116279. [PMID: 38368838 DOI: 10.1016/j.biopha.2024.116279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/03/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin condition primarily driven by T helper 2 (Th2) cytokines, resulting in skin barrier defects, angiogenesis, and inflammatory responses. The marine natural product excavatolide B (EXCB), isolated from the Formosan Gorgonian coral Briareum stechei, exhibits anti-inflammatory and analgesic properties. To enhance solubility, EXCB is chemically modified into the derivatives EXCB-61 salt and EXCB-79. The study aims to investigate the therapeutic effects of these compounds on dinitrochlorbenzene (DNCB)-induced skin damage and to elucidate the underlying anti-inflammatory and anti-angiogenesis mechanism. In vitro, using lipopolysaccharide (LPS)-induced RAW 264.7 cells, all compounds at 10 μM significantly inhibited expression of inflammatory proteins (inducible nitric oxide synthase and cyclooxygenase-2), vascular endothelial growth factor (VEGF), and cytokines (interleukin (IL)-1β, IL-6, and IL-17A). In vivo, topical application of these compounds on DNCB-induced AD mice alleviated skin symptoms, reduced serum levels of IgE, IL-4, IL-13, IL-17, and interferon-γ, and moderated histological phenomena such as hyperplasia, inflammatory cell infiltration, and angiogenesis. The three compounds restored the expression of skin barrier-related proteins (loricrin, filaggrin, and claudin-1) and reduced the expression of angiogenesis-related proteins (VEGF and platelet endothelial cell adhesion molecule-CD31) in the tissues. This is the first study to indicate that EXCB, EXCB-61 salt, and EXCB-79 can treat AD disease by reducing inflammation and angiogenesis. Hence, they may be considered potential candidates for the development of new drugs for AD.
Collapse
Affiliation(s)
- Hsiu-Wen Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Feng-Cheng Liu
- Division of Rheumatology/Immunology and Allergy, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114202, Taiwan
| | - Hsiao-Mei Kuo
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University, College of Medicine, Kaohsiung 83301, Taiwan
| | - Shih-Hsuan Tang
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Guang-Hao Niu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Zhunan 35053, Taiwan
| | - Mingzi M Zhang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Zhunan 35053, Taiwan
| | - Lun Kelvin Tsou
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Zhunan 35053, Taiwan.
| | - Ping-Jyun Sung
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; National Museum of Marine Biology and Aquarium, Pingtung 94450, Taiwan.
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; Institute of Biotechnology and Pharmaceutical Research, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| |
Collapse
|
3
|
Maji L, Sengupta S, Purawarga Matada GS, Teli G, Biswas G, Das PK, Panduranga Mudgal M. Medicinal chemistry perspective of JAK inhibitors: synthesis, biological profile, selectivity, and structure activity relationship. Mol Divers 2024:10.1007/s11030-023-10794-5. [PMID: 38236444 DOI: 10.1007/s11030-023-10794-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/07/2023] [Indexed: 01/19/2024]
Abstract
JAK-STAT signalling pathway was discovered more than quarter century ago. The JAK-STAT pathway protein is considered as one of the crucial hubs for cytokine secretion which mediates activation of different inflammatory, cellular responses and hence involved in different etiological factors. The various etiological factors involved are haematopoiesis, immune fitness, tissue repair, inflammation, apoptosis, and adipogenesis. The presence of the active mutation V617K plays a significant role in the progression of the JAK-STAT pathway-related disease. Consequently, targeting the JAK-STAT pathway could be a promising therapeutic approach for addressing a range of causative factors. In this current review, we provided a comprehensive discussion for the in-detail study of anatomy and physiology of the JAK-STAT pathway which contributes structural domain rearrangement, activation, and negative regulation associated with the downstream signaling pathway, relationship between different cytokines and diseases. This review also discussed the recent development of clinical trial entities. Additionally, this review also provides updates on FDA-approved drugs. In the current investigation, we have classified recently developed small molecule inhibitors of JAK-STAT pathway according to different chemical classes and we emphasized their synthetic routes, biological evaluation, selectivity, and structure-activity relationship.
Collapse
Affiliation(s)
- Lalmohan Maji
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Sindhuja Sengupta
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | | | - Ghanshyam Teli
- School of Pharmacy, Sangam University, Atoon, Bhilwara, 311001, Rajasthan, India
| | - Gourab Biswas
- Department of Pharmaceutical Technology, Brainware University, Kolkata, West Bengal, India
| | - Pronoy Kanti Das
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | | |
Collapse
|
4
|
Guttman-Yassky E, Irvine AD, Brunner PM, Kim BS, Boguniewicz M, Parmentier J, Platt AM, Kabashima K. The role of Janus kinase signaling in the pathology of atopic dermatitis. J Allergy Clin Immunol 2023; 152:1394-1404. [PMID: 37536511 DOI: 10.1016/j.jaci.2023.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 06/06/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023]
Abstract
Atopic dermatitis (AD) is a heterogeneous, chronic, relapsing, inflammatory skin disease associated with considerable physical, psychological, and economic burden. The pathology of AD includes complex interactions involving abnormalities in immune and skin barrier genes, skin barrier disruption, immune dysregulation, microbiome disturbance, and other environmental factors. Many of the cytokines involved in AD pathology, including IL-4, IL-13, IL-22, IL-31, thymic stromal lymphopoietin, and IFN-γ, signal through the Janus kinase (JAK)-signal transducer and activation of transcription (STAT) pathway. The JAK family includes JAK1, JAK2, JAK3, and tyrosine kinase 2; the STAT family includes STAT1, STAT2, STAT3, STAT4, STAT5A/B, and STAT6. Activation of the JAK-STAT pathway has been implicated in the pathology of several immune-mediated inflammatory diseases, including AD. However, the exact mechanisms of JAK-STAT involvement in AD have not been fully characterized. This review aims to discuss current knowledge about the role of the JAK-STAT signaling pathway and, specifically, the role of JAK1 in the pathology and symptomology of AD.
Collapse
Affiliation(s)
- Emma Guttman-Yassky
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York.
| | | | - Patrick M Brunner
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York
| | - Brian S Kim
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York
| | - Mark Boguniewicz
- Department of Pediatrics, National Jewish Health and University of Colorado School of Medicine, Denver
| | | | | | - Kenji Kabashima
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto
| |
Collapse
|
5
|
Dai CL, Yang HX, Liu QP, Rahman K, Zhang H. CXCL6: A potential therapeutic target for inflammation and cancer. Clin Exp Med 2023; 23:4413-4427. [PMID: 37612429 DOI: 10.1007/s10238-023-01152-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/23/2023] [Indexed: 08/25/2023]
Abstract
Chemokines were originally defined as cytokines that affect the movement of immune cells. In recent years, due to the increasing importance of immune cells in the tumor microenvironment (TME), the role of chemokines has changed from a single "chemotactic agent" to a key factor that can regulate TME and affect the tumor phenotype. CXCL6, also known as granulocyte chemoattractant protein-2 (GCP-2), can recruit neutrophils to complete non-specific immunity in the process of inflammation. Cancer-related genes and interleukin family can promote the abnormal secretion of CXCL6, which promotes tumor growth, metastasis, epithelial mesenchymal transformation (EMT) and angiogenesis in the TME. CXCL6 also has a role in promoting fibrosis and tissue damage repair. In this review, we focus on the regulatory network affecting CXCL6 expression, its role in the progress of inflammation and how it affects tumorigenesis and progression based on the TME, in an attempt to provide a potential target for the treatment of diseases such as inflammation and cancer.
Collapse
Affiliation(s)
- Chun-Lan Dai
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong-Xuan Yang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiu-Ping Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Khalid Rahman
- School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Liverpool, UK
| | - Hong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
6
|
David E, Ungar B, Renert-Yuval Y, Facheris P, Del Duca E, Guttman-Yassky E. The evolving landscape of biologic therapies for atopic dermatitis: Present and future perspective. Clin Exp Allergy 2023; 53:156-172. [PMID: 36653940 DOI: 10.1111/cea.14263] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/05/2022] [Accepted: 11/23/2022] [Indexed: 01/20/2023]
Abstract
Atopic dermatitis (AD) is one of the most common, chronic inflammatory skin diseases with a significant physical, emotional and socioeconomic burden. In recent years the understanding of AD pathogenesis has expanded from the Th2-centred perspective, with the recognition of the involvement of other immune axes. In different AD endotypes, influenced by environment, genetics and race, transcriptomic profiles have identified differing contributions of multiple immune axes such as, Th17, Th22 and Th1. The enriched pathogenic model of AD has catalysed the development of numerous biologic therapies targeting a range of key molecules implicated in disease progression. Currently, dupilumab and tralokinumab, which both target the Th2 pathway, are the only approved biologic therapies for AD in the United States and Europe. New biologic therapies in development, however, target different Th2-pathway molecules along with cytokines in other immune axes, including Th17 and Th22, offering promise for varied treatments for this heterogeneous disease. As the biologic pipeline advances, the integration into clinical practice and approval of these experimental biologics may provide more effective, tailored therapeutic solutions and illuminate on the pathologic processes of AD across a broader, more diverse patient population.
Collapse
Affiliation(s)
- Eden David
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Benjamin Ungar
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yael Renert-Yuval
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Paola Facheris
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ester Del Duca
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Emma Guttman-Yassky
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
7
|
Uchendu I, Zhilenkova A, Pirogova Y, Basova M, Bagmet L, Kohanovskaia I, Ngaha Y, Ikebunwa O, Sekacheva M. Cytokines as Potential Therapeutic Targets and their Role in the Diagnosis and Prediction of Cancers. Curr Pharm Des 2023; 29:2552-2567. [PMID: 37916493 DOI: 10.2174/0113816128268111231024054240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023]
Abstract
The death rate from cancer is declining as a result of earlier identification and more advanced treatments. Nevertheless, a number of unfavourable adverse effects, including prolonged, long-lasting inflammation and reduced immune function, usually coexist with anti-cancer therapies and lead to a general decline in quality of life. Improvements in standardized comprehensive therapy and early identification of a variety of aggressive tumors remain the main objectives of cancer research. Tumor markers in those with cancer are tumor- associated proteins that are clinically significant. Even while several tumor markers are routinely used, they don't always provide reliable diagnostic information. Serum cytokines are promising markers of tumor stage, prognosis, and responsiveness to therapy. In fact, several cytokines are currently proposed as potential biomarkers in a variety of cancers. It has actually been proposed that the study of circulatory cytokines together with biomarkers that are particular to cancer can enhance and accelerate cancer diagnosis and prediction, particularly via blood samples that require minimal to the absence of invasion. The purpose of this review was to critically examine relevant primary research literature in order to elucidate the role and importance of a few identified serum cytokines as prospective therapeutic targets in oncological diseases.
Collapse
Affiliation(s)
- Ikenna Uchendu
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), Moscow, Russia
- Department of Medical Laboratory Science, Faculty of Health Science and Technology, University of Nigeria, Enugu Campus, Enugu, Nigeria
| | - Angelina Zhilenkova
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), Moscow, Russia
| | - Yuliya Pirogova
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), Moscow, Russia
| | - Maria Basova
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), Moscow, Russia
| | - Leonid Bagmet
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), Moscow, Russia
| | - Iana Kohanovskaia
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), Moscow, Russia
| | - Yvan Ngaha
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), Moscow, Russia
| | - Obinna Ikebunwa
- Department of Medical Laboratory Science, Faculty of Health Science and Technology, University of Nigeria, Enugu Campus, Enugu, Nigeria
- Department of Biotechnology, First Moscow State Medical University of The Ministry of Health of Russia (Sechenov University), Moscow, Russia
| | - Marina Sekacheva
- Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), Moscow, Russia
| |
Collapse
|
8
|
Krajewski PK, Szepietowski JC. Ruxolitinib cream for the short-term treatment of mild-moderate atopic dermatitis. Expert Rev Clin Immunol 2022; 19:349-356. [PMID: 36542765 DOI: 10.1080/1744666x.2023.2161511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Atopic dermatitis (AD) is a chronic, recurrent, itchy inflammatory skin disease with a vast influence on a patient's quality of life (QoL). Mild-moderate AD was classically managed with the use of topical corticosteroid (TCS) and calcineurin inhibitors (TCI). It was proven that the JAK pathway plays an important role in the development of AD. The introduction of topical JAK inhibitors may revolutionize the classical approach to the management of mild-to-moderate atopic dermatitis. AREAS COVERED This review discussed the role of the JAK pathway in the development and exacerbations of AD with an emphasis on the newly introduced, topical selective JAK1 and JAK2 inhibitor - Ruxolitinib (RUX) cream. It provides an extensive review of pharmacokinetics and pharmacodynamics, efficacy, and safety of RUX cream in clinical trials. EXPERT OPINION Results from phase II and two phase III clinical trials have shown that RUX cream could be a promising topical treatment of mild-moderate AD. Its favorable safety profile and good efficacy make RUX cream a beneficial modality for patients with chronic TCSs and TCIs use. Future studies on younger patients and with a longer observational period are necessary to adequately assess the efficacy and safety of RUX cream in the whole AD population.
Collapse
Affiliation(s)
- Piotr K Krajewski
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Chalubinskiego Street 1, Wrocław 50-368, Poland
| | - Jacek C Szepietowski
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Chalubinskiego Street 1, Wrocław 50-368, Poland
| |
Collapse
|
9
|
Unveiling the Ability of Witch Hazel ( Hamamelis virginiana L.) Bark Extract to Impair Keratinocyte Inflammatory Cascade Typical of Atopic Eczema. Int J Mol Sci 2022; 23:ijms23169279. [PMID: 36012541 PMCID: PMC9408886 DOI: 10.3390/ijms23169279] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/06/2022] [Accepted: 08/13/2022] [Indexed: 01/11/2023] Open
Abstract
Hamamelis virginiana L. bark extract is a traditional remedy for skin affections, including atopic dermatitis/eczema (AD). Hamamelis preparations contain tannins, including hamamelitannin (HT), although their pharmacological role in AD is still unknown. This study aimed to study the rational for its topical use by considering the impact of crucial biomarkers on AD pathogenesis. A standardized extract (HVE) (0.5−125 μg/mL) was compared to hamamelitannin (HT), its main compound (0.5−5 μg/mL), in a model of human keratinocytes (HaCaTs), challenged with an AD-like cytokine milieu (TNF-α, IFN-γ, and IL-4). HVE inhibited the release of mediators involved in skin autoimmunity (IL-6 and IL-17C) and allergy (TSLP, IL-6, CCL26, and MMP-9) with a concentration-dependent fashion (IC50s < 25 μg/mL). The biological mechanism was ascribed, at least in part, to the impairment of the NF-κB-driven transcription. Moreover, HVE counteracted the proliferative effects of IL-4 and recovered K10, a marker of skin differentiation. Notably, HT showed activity on well-known targets of IL-4 pathway (CCL26, K10, cell proliferation). To the best of our knowledge, this work represents the first demonstration of the potential role of Hamamelis virginiana in the control of AD symptoms, such as itch and skin barrier impairment, supporting the relevance of the whole phytocomplex.
Collapse
|
10
|
Alsabbagh M, Ismaeel A. The role of cytokines in atopic dermatitis: a breakthrough in immunopathogenesis and treatment. ACTA DERMATOVENEROLOGICA ALPINA PANNONICA ET ADRIATICA 2022. [DOI: 10.15570/actaapa.2022.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Hwang J, Newton EM, Hsiao J, Shi VY. Aryl Hydrocarbon Receptor/nuclear factor E2-related factor 2 (AHR/NRF2) Signaling: A Novel Therapeutic Target for Atopic Dermatitis. Exp Dermatol 2022; 31:485-497. [PMID: 35174548 DOI: 10.1111/exd.14541] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/25/2022] [Accepted: 02/12/2022] [Indexed: 11/28/2022]
Abstract
Aryl hydrocarbon receptor (AHR)/nuclear factor-erythroid 2-related factor 2 (NRF2) modulation are emerging as novel targets in the treatment of atopic dermatitis and other inflammatory skin disorders. Agonist activation of this pathway has downstream effects on epidermal barrier function, immunomodulation, oxidative stress reduction, and cutaneous microbiome modulation. Tapinarof, a dual agonist of the AHR/NRF2 signaling pathway, has shown promise in phase 2 trials for atopic dermatitis. In this review, we summarize current knowledge of the AHR/NRF2 pathway and implications in skin disease process. We also review the therapeutic potential of current AHR agonists and propose future directions to address knowledge gaps.
Collapse
Affiliation(s)
- Jonwei Hwang
- University of Illinois College of Medicine, 808 S. Wood St. - 380 CME, Chicago, IL, 60612-7307, USA
| | - Edita M Newton
- University of Arkansas for Medical Sciences, Department of Dermatology, 4301 West Markham, Slot 576, Little Rock, Arkansas, 72205, USA
| | - Jennifer Hsiao
- University of Southern California, Department of Dermatology, Ezralow Tower, 1441 Eastlake Avenue, Suite 5301, Los Angeles, CA, 90033, USA
| | - Vivian Y Shi
- University of Arkansas for Medical Sciences, Department of Dermatology, 4301 West Markham, Slot 576, Little Rock, Arkansas, 72205, USA
| |
Collapse
|
12
|
Giri PS, Shah F, Gupta B, Dhangar A, Pathak VN, Desai B, Dwivedi M. Genetic association of interleukin-4 VNTR polymorphism with susceptibility to rheumatoid arthritis in South Gujarat population. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Lim SJ. CCL24 Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1302:91-98. [PMID: 34286443 DOI: 10.1007/978-3-030-62658-7_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chemokines with their network play an important role in cancer growth, metastasis, and host-tumor interactions. Of many chemokines, C-C motif chemokine ligand 24 (CCL24) has been shown to contribute to tumorigenesis as well as inflammatory diseases like asthma, allergies, and eosinophilic esophagitis. CCL24 is expressed in some tumor cells such as colon cancer, hepatocellular carcinoma, and cutaneous T cell lymphoma. CCL24 can be used as a potential biomarker in several cancers including colon cancer, non-small cell cancer, and nasopharyngeal carcinoma as the plasma level of CCL24 is increased. The various functions of CCL24 contribute to the biology of cancer by M2 macrophage polarization, angiogenesis, invasion and migration, and recruitment of eosinophils.
Collapse
Affiliation(s)
- Sung-Jig Lim
- Department of Pathology, School of Medicine, Kyung Hee University Hospital at Gangdong, Seoul, South Korea.
| |
Collapse
|
14
|
Dubin C, Del Duca E, Guttman-Yassky E. The IL-4, IL-13 and IL-31 pathways in atopic dermatitis. Expert Rev Clin Immunol 2021; 17:835-852. [PMID: 34106037 DOI: 10.1080/1744666x.2021.1940962] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Atopic dermatitis (AD) is the most common inflammatory skin disease. It has a complex pathophysiology, with a combination of immune dysregulation and intrinsic barrier defects driving cutaneous inflammation and allergic symptomatology. The IL-4, IL-13 and IL-31 inflammatory pathways have been identified as hallmark features in the pathogenesis of the disease, contributing uniquely and synergistically to immune and barrier abnormalities as well as the key symptoms, such as pruritis. Novel therapeutics that target these pathways have been under development to find treatments for AD.Areas covered: This review discusses the IL-4, IL-13 and IL-31 pathways in AD. We will also detail novel targeted therapeutics that have recently been or are currently in clinical trials for AD. A literature search was conducted by querying Scopus, Google Scholar, PubMed, and Clinicaltrials.gov up to January 2021 using combinations of the search terms 'IL-4' 'IL-13' 'IL-31' 'atopic dermatitis' 'immune pathway' 'biologics' 'novel therapeutics' 'JAK/STAT inhibitors.'Expert opinion: The complex pathophysiology of AD advocates for innovation. Novel minimally invasive sampling modalities such as tape stripping will allow for a broader characterization of the immunomechanisms behind AD pathophysiology. This will allow for the continued development of a personalized medicine approach to treat AD.
Collapse
Affiliation(s)
- Celina Dubin
- Department of Dermatology, And Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Ester Del Duca
- Department of Dermatology, And Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, USA.,Department of Dermatology, Magna Graecia, Catanzaro, IT, Calabria
| | - Emma Guttman-Yassky
- Department of Dermatology, And Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, USA.,Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York USA
| |
Collapse
|
15
|
Han EJ, Kim HS, Jung K, Asanka Sanjeewa KK, Iresha Nadeeka Madushani Herath KH, Lee W, Jee Y, Jeon YJ, Lee J, Kim T, Shanura Fernando IP, Ahn G. Sargassum horneri ethanol extract ameliorates TNF-α/IFN-γ-induced inflammation in human keratinocytes and TPA-induced ear edema in mice. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Furue M. Regulation of Skin Barrier Function via Competition between AHR Axis versus IL-13/IL-4‒JAK‒STAT6/STAT3 Axis: Pathogenic and Therapeutic Implications in Atopic Dermatitis. J Clin Med 2020; 9:E3741. [PMID: 33233866 PMCID: PMC7700181 DOI: 10.3390/jcm9113741] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
Atopic dermatitis (AD) is characterized by skin inflammation, barrier dysfunction, and chronic pruritus. As the anti-interleukin-4 (IL-4) receptor α antibody dupilumab improves all three cardinal features of AD, the type 2 cytokines IL-4 and especially IL-13 have been indicated to have pathogenic significance in AD. Accumulating evidence has shown that the skin barrier function is regulated via competition between the aryl hydrocarbon receptor (AHR) axis (up-regulation of barrier) and the IL-13/IL-4‒JAK‒STAT6/STAT3 axis (down-regulation of barrier). This latter axis also induces oxidative stress, which exacerbates inflammation. Conventional and recently developed agents for treating AD such as steroid, calcineurin inhibitors, cyclosporine, dupilumab, and JAK inhibitors inhibit the IL-13/IL-4‒JAK‒STAT6/STAT3 axis, while older remedies such as coal tar and glyteer are antioxidative AHR agonists. In this article, I summarize the pathogenic and therapeutic implications of the IL-13/IL-4‒JAK‒STAT6/STAT3 axis and the AHR axis in AD.
Collapse
Affiliation(s)
- Masutaka Furue
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; ; Tel.: +81-92-642-5581; Fax: +81-92-642-5600
- Research and Clinical Center for Yusho and Dioxin, Kyushu University Hospital, Fukuoka 812-8582, Japan
| |
Collapse
|
17
|
Gu L, Liu H, Liu X, Zeng X, Lei Z, Wan X. The Relationship Between Interleukin-4 Levels and Cardiovascular Events in Patients with Chronic Kidney Disease. Risk Manag Healthc Policy 2020; 13:2371-2377. [PMID: 33173361 PMCID: PMC7646470 DOI: 10.2147/rmhp.s270845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 10/08/2020] [Indexed: 12/24/2022] Open
Abstract
Background Cardiovascular diseases (CVDs) are the main cause of death in patients with chronic kidney disease (CKD). Interleukin-4 (IL-4) is considered an inflammatory cytokine. However, few studies have investigated the association between serum IL-4 and cardiovascular events in CKD. This study investigated whether serum IL-4 levels were associated with an increased risk of cardiovascular (CV) events in patients with CKD. Patients and Methods A total of 302 patients with stage 1–5 CKD were followed up for a mean of 32 (range=4–36) months for end points (CV events). Serum IL-4 levels were measured at baseline. The independent relationship between serum IL-4 and the risk of CV events was assessed with multivariate Cox regression analysis. Results The average age of this cohort (N=302) was 65.4 years. A total of 69.9% of them were male. CV events numbered 41 (13.6%) during the follow-up period. The Kaplan–Meier analysis showed that the rate of CV events was higher in patients with CKD with IL-4 levels above the mean (126.2 pg/mL) than in those with IL-4 levels below the mean. The multivariate Cox proportional hazard analysis revealed that serum IL-4 (HR=1.650, 95% CI 1.266–2.210, P<0.001) was associated with CV events in these patients with CKD. Sensitivity analysis showed that the association between serum IL-4 and CV events was not affected by the use of anti-inflammatory medication. The significant association between higher IL-4 levels and increased risk of CV events existed in patients with CKD3-5 but not in patients with CKD1-2 by using the stratified analysis. Conclusion Higher serum IL-4 levels were associated with an increased risk of CV events during follow-up. Elevated serum IL-4 levels may help clinicians predict early CV events in patients with CKD.
Collapse
Affiliation(s)
- Ling Gu
- Department of Critical Care Medicine, Mindong Hospital of Fujian Medical University, Fuan, Fujian 355000, People's Republic of China
| | - Huogen Liu
- Department of Critical Care Medicine, Mindong Hospital of Fujian Medical University, Fuan, Fujian 355000, People's Republic of China
| | - Xianhong Liu
- Department of Nephrology, Mindong Hospital of Fujian Medical University, Fuan, Fujian 355000, People's Republic of China
| | - Xi Zeng
- Department of Geriatrics, Mindong Hospital of Fujian Medical University, Fuan, Fujian 355000, People's Republic of China
| | - Zuchen Lei
- Department of Critical Care Medicine, Mindong Hospital of Fujian Medical University, Fuan, Fujian 355000, People's Republic of China
| | - Xin Wan
- Department of Critical Care Medicine, Mindong Hospital of Fujian Medical University, Fuan, Fujian 355000, People's Republic of China
| |
Collapse
|
18
|
Calabrese L, Malvaso D, Chiricozzi A, Tambone S, D'Urso DF, Guerriero C, Peris K. Baricitinib: therapeutic potential for moderate to severe atopic dermatitis. Expert Opin Investig Drugs 2020; 29:1089-1098. [PMID: 32703039 DOI: 10.1080/13543784.2020.1800639] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Atopic dermatitis (AD) is a chronic inflammatory skin disease mediated by multiple signals including janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway. Current therapeutic armamentarium consists of a limited number of drugs which may result in the insufficient management of AD. Preclinical evidence regarding inhibition of JAK/STAT led to the development of a promising class of therapeutics, namely, JAK inhibitors. Baricitinib, a novel JAK1/JAK2 inhibitor is currently under investigation in AD clinical trials. AREAS COVERED This review offers an overview of Baricitinib and examines clinical efficacy and safety data in patients with moderate-to-severe AD. EXPERT OPINION Baricitinib showed promising preliminary data in terms of efficacy in phase II and III trials, with a very rapid onset of response and great improvements of itch and sleep disturbances. These aforementioned aspects combined with the advantage of an oral formulation have reduced drug production costs compared to biologic agents and could lead to consideration of baricitinib as a first line systemic treatment. Also, in some countries, it could be a therapeutic option in the case of contraindication or failure of conventional systemic drugs prior to biologic therapies. Data related to long-term safety and efficacy will be important to refine the place-in-therapy of this drug.
Collapse
Affiliation(s)
- Laura Calabrese
- A. Gemelli IRCCS, UOC Di Dermatologia, Fondazione Policlinico Universitario , Rome, Italy.,Dermatologia, Università Cattolica Del Sacro Cuore , Rome, Italy
| | - Dalma Malvaso
- A. Gemelli IRCCS, UOC Di Dermatologia, Fondazione Policlinico Universitario , Rome, Italy.,Dermatologia, Università Cattolica Del Sacro Cuore , Rome, Italy
| | - Andrea Chiricozzi
- A. Gemelli IRCCS, UOC Di Dermatologia, Fondazione Policlinico Universitario , Rome, Italy.,Dermatologia, Università Cattolica Del Sacro Cuore , Rome, Italy
| | - Sara Tambone
- A. Gemelli IRCCS, UOC Di Dermatologia, Fondazione Policlinico Universitario , Rome, Italy
| | - Dario Francesco D'Urso
- A. Gemelli IRCCS, UOC Di Dermatologia, Fondazione Policlinico Universitario , Rome, Italy.,Dermatologia, Università Cattolica Del Sacro Cuore , Rome, Italy
| | | | - Ketty Peris
- A. Gemelli IRCCS, UOC Di Dermatologia, Fondazione Policlinico Universitario , Rome, Italy.,Dermatologia, Università Cattolica Del Sacro Cuore , Rome, Italy
| |
Collapse
|
19
|
Bakker DS, Drylewicz J, Nierkens S, Knol EF, Giovannone B, Delemarre EM, van der Schaft J, Balak DMW, de Bruin-Weller MS, Thijs JL. Early identification of atopic dermatitis patients in need of systemic immunosuppressive treatment. Clin Exp Allergy 2019; 49:1641-1644. [PMID: 31520450 PMCID: PMC6973172 DOI: 10.1111/cea.13495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Daphne S Bakker
- Department of Dermatology and Allergology, National Expertise Center for Atopic Dermatitis, University Medical Center Utrecht, Utrecht, The Netherlands.,Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Julia Drylewicz
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Stefan Nierkens
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Edward F Knol
- Department of Dermatology and Allergology, National Expertise Center for Atopic Dermatitis, University Medical Center Utrecht, Utrecht, The Netherlands.,Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Barbara Giovannone
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Eveline M Delemarre
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jorien van der Schaft
- Department of Dermatology and Allergology, National Expertise Center for Atopic Dermatitis, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Deepak M W Balak
- Department of Dermatology and Allergology, National Expertise Center for Atopic Dermatitis, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marjolein S de Bruin-Weller
- Department of Dermatology and Allergology, National Expertise Center for Atopic Dermatitis, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Judith L Thijs
- Department of Dermatology and Allergology, National Expertise Center for Atopic Dermatitis, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
20
|
Szilveszter KP, Németh T, Mócsai A. Tyrosine Kinases in Autoimmune and Inflammatory Skin Diseases. Front Immunol 2019; 10:1862. [PMID: 31447854 PMCID: PMC6697022 DOI: 10.3389/fimmu.2019.01862] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/23/2019] [Indexed: 12/30/2022] Open
Abstract
Tyrosine kinases relay signals from diverse leukocyte antigen receptors, innate immune receptors, and cytokine receptors, and therefore mediate the recruitment and activation of various leukocyte populations. Non-receptor tyrosine kinases of the Jak, Src, Syk, and Btk families play major roles in various immune-mediated disorders, and small-molecule tyrosine kinase inhibitors are emerging novel therapeutics in a number of those diseases. Autoimmune and inflammatory skin diseases represent a broad spectrum of immune-mediated diseases. Genetic and pharmacological studies in humans and mice support the role of tyrosine kinases in several inflammatory skin diseases. Atopic dermatitis and psoriasis are characterized by an inflammatory microenvironment which activates cytokine receptors coupled to the Jak-Stat signaling pathway. Jak kinases are also implicated in alopecia areata and vitiligo, skin disorders mediated by cytotoxic T lymphocytes. Genetic studies indicate a critical role for Src-family kinases and Syk in animal models of autoantibody-mediated blistering skin diseases. Here, we review the various tyrosine kinase signaling pathways and their role in various autoimmune and inflammatory skin diseases. Special emphasis will be placed on identification of potential therapeutic targets, as well as on ongoing preclinical and clinical studies for the treatment of inflammatory skin diseases by small-molecule tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Kata P Szilveszter
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Tamás Németh
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Attila Mócsai
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| |
Collapse
|
21
|
Lin B, Cai B, Wang H. Honeysuckle extract relieves ovalbumin-induced allergic rhinitis by inhibiting AR-induced inflammation and autoimmunity. Biosci Rep 2019; 39:BSR20190673. [PMID: 31308153 PMCID: PMC6663992 DOI: 10.1042/bsr20190673] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/13/2019] [Accepted: 06/20/2019] [Indexed: 02/05/2023] Open
Abstract
Honeysuckle has antiviral, antioxidative and anti-inflammatory properties. Allergic rhinitis (AR) is induced by immunoglobulin E (IgE)-mediated inflammatory reaction. Our study investigates whether honeysuckle extract (HE) has therapeutic effect on AR. An AR model of mice was established by ovalbumin (OVA). Hematoxylin-Eosin staining was used to assess nasal mucosa damage. Enzyme-linked immunosorbent assay (ELISA) was performed to determine serum histamine, IgE and interleukin (IL)-2, IL-4, IL-17 and interferon-γ (IFN-γ) from nasal lavage fluid. Western blot was carried out to analyze the protein level from nasal mucosa tissue. We found that HE not only decreased nasal rubbing and sneezing in AR mice, but also reduced AR-induced damage to nasal mucosa. Moreover, HE lowered the levels of serum IgE and histamine and inhibited IL-4 and IL-17 levels from AR mice but raised IL-2 and IFN-γ levels in AR-induced nasal lavage fluid. Our results also showed that HE elevated the protein levels of forkhead box P3 (Foxp3) and T-box transcription factor (T-bet) in AR-induced nasal mucosa tissue, whereas it inhibited signal transducer and activator of transcription (STAT) 3 and GATA binding protein 3 (GATA-3) protein levels. By regulating AR-induced inflammatory reaction and autoimmune response, HE also relieved OVA-induced AR. Thus, HE could be used as a potential drug to treat AR.
Collapse
Affiliation(s)
- Bin Lin
- ENT Department, Guangzhou Hospital of Integrated Traditional and West Medicine, No. 87 Yingbin Road, Huadu District, Guangzhou 510800, Guangdong Province, China
| | - Bijuan Cai
- ENT Department, Guangzhou Hospital of Integrated Traditional and West Medicine, No. 87 Yingbin Road, Huadu District, Guangzhou 510800, Guangdong Province, China
| | - Huige Wang
- ENT Department, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
22
|
Lázaro-Sastre M, García-Sánchez A, Gómez-Cardeñosa A, Dávila I. Dupilumab in Atopic Dermatitis. CURRENT TREATMENT OPTIONS IN ALLERGY 2019. [DOI: 10.1007/s40521-019-00218-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Armandi A, Bonetto S, Pellicano R, Caviglia GP, Astegiano M, Saracco GM, Ribaldone DG. Dupilumab to target interleukin 4 for inflammatory bowel disease? Hypothesis based on a translational message. MINERVA BIOTECNOL 2019. [DOI: 10.23736/s1120-4826.19.02556-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Park JH, Yeo IJ, Han JH, Suh JW, Lee HP, Hong JT. Anti-inflammatory effect of astaxanthin in phthalic anhydride-induced atopic dermatitis animal model. Exp Dermatol 2019; 27:378-385. [PMID: 28887839 DOI: 10.1111/exd.13437] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2017] [Indexed: 12/25/2022]
Abstract
In this study, we investigated anti-dermatitic effects of astaxanthin (AST) in phthalic anhydride (PA)-induced atopic dermatitis (AD) animal model as well as in vitro model. AD-like lesion was induced by the topical application of 5% PA to the dorsal skin or ear of Hos:HR-1 mouse. After AD induction, 100 μL of 1 mg/mL and 2 mg/mL of AST (10 μg or 20 μg/cm2 ) was spread on the dorsum of ear or back skin three times a week for four weeks. We evaluated dermatitis severity, histopathological changes and changes in protein expression by Western blotting for inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and nuclear factor-κB (NF-κB) activity. We also measured tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) and immunoglobulin E (IgE) concentration in the blood of AD mice by enzyme-linked immunosorbent assay (ELISA). AST treatment attenuated the development of PA-induced AD. Histological analysis showed that AST inhibited hyperkeratosis, mast cells and infiltration of inflammatory cells. AST treatment inhibited expression of iNOS and COX-2, and NF-κB activity as well as release of TNF-α, IL-1β, IL-6 and IgE. In addition, AST (5, 10 and 20 μM) potently inhibited lipopolysaccharide (LPS) (1 μg/mL)-induced nitric oxide (NO) production, expression of iNOS and COX-2 and NF-κB DNA binding activities in RAW 264.7 macrophage cells. Our data demonstrated that AST could be a promising agent for AD by inhibition of NF-κB signalling.
Collapse
Affiliation(s)
- Ju Ho Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.,INIST ST CO., LTD., Eumseong-gun, Chungcheongbuk-do, Republic of Korea
| | - In Jun Yeo
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Ji Hye Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Jeong Won Suh
- GDE Ltd., Siheung-si, Gyeonggi-do, Republic of Korea
| | - Hee Pom Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| |
Collapse
|
25
|
Lee GR, Maarouf M, Hendricks AK, Lee DE, Shi VY. Current and emerging therapies for hand eczema. Dermatol Ther 2019; 32:e12840. [DOI: 10.1111/dth.12840] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/12/2019] [Accepted: 01/24/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Griffin R. Lee
- John A. Burns School of MedicineUniversity of Hawaii Honolulu Hawaii
| | | | - Aleksi K. Hendricks
- Division of Dermatology, Department of MedicineUniversity of Arizona Tucson Arizona
| | - Dylan E. Lee
- Department of MedicineJohn A. Burns School of Medicine, University of Hawaii Honolulu Hawaii
| | - Vivian Y. Shi
- Division of Dermatology, Department of MedicineUniversity of Arizona Tucson Arizona
| |
Collapse
|
26
|
Bao L, Chau C, Bao J, Tsoukas MM, Chan LS. IL-4 dysregulates microRNAs involved in inflammation, angiogenesis and apoptosis in epidermal keratinocytes. Microbiol Immunol 2018; 62:732-736. [DOI: 10.1111/1348-0421.12650] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/28/2018] [Accepted: 09/16/2018] [Indexed: 01/29/2023]
Affiliation(s)
- Lei Bao
- Department of Dermatology; University of Illinois; 808 S Wood St. Chicago, Illinois 60612 USA
| | - Cecilia Chau
- Research Resources Center; University of Illinois; 832 South Wolcott Avenue Chicago, Illinois 60612 USA
| | - Jeremy Bao
- Department of Dermatology; University of Illinois; 808 S Wood St. Chicago, Illinois 60612 USA
| | - Maria M. Tsoukas
- Department of Dermatology; University of Illinois; 808 S Wood St. Chicago, Illinois 60612 USA
| | - Lawrence S. Chan
- Department of Dermatology; University of Illinois; 808 S Wood St. Chicago, Illinois 60612 USA
- Medical Service; Jesse Brown Veterans Affairs Hospital; 820 S. Damen Avenue Chicago, Illinois 60612 USA
- Medical Service; Captain James A. Lovell Federal Health Care Center; 3001 Green Bay Road North Chicago, Illinois 60064 USA
| |
Collapse
|
27
|
Guttman-Yassky E, Bissonnette R, Ungar B, Suárez-Fariñas M, Ardeleanu M, Esaki H, Suprun M, Estrada Y, Xu H, Peng X, Silverberg JI, Menter A, Krueger JG, Zhang R, Chaudhry U, Swanson B, Graham NMH, Pirozzi G, Yancopoulos GD, D Hamilton JD. Dupilumab progressively improves systemic and cutaneous abnormalities in patients with atopic dermatitis. J Allergy Clin Immunol 2018; 143:155-172. [PMID: 30194992 DOI: 10.1016/j.jaci.2018.08.022] [Citation(s) in RCA: 400] [Impact Index Per Article: 66.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 07/19/2018] [Accepted: 08/14/2018] [Indexed: 01/16/2023]
Abstract
BACKGROUND Dupilumab is an IL-4 receptor α mAb inhibiting signaling of IL-4 and IL-13, key drivers of type 2-driven inflammation, as demonstrated by its efficacy in patients with atopic/allergic diseases. OBJECTIVE This placebo-controlled, double-blind trial (NCT01979016) evaluated the efficacy, safety, and effects of dupilumab on molecular/cellular lesional and nonlesional skin phenotypes and systemic type 2 biomarkers of patients with moderate-to-severe atopic dermatitis (AD). METHODS Skin biopsy specimens and blood were evaluated from 54 patients randomized 1:1 to weekly subcutaneous doses of 200 mg of dupilumab or placebo for 16 weeks. RESULTS Dupilumab (vs placebo) significantly improved clinical signs and symptoms of AD, was well tolerated, and progressively shifted the lesional transcriptome toward a nonlesional phenotype (weeks 4-16). Mean improvements in a meta-analysis-derived AD transcriptome (genes differentially expressed between lesional and nonlesional skin) were 68.8% and 110.8% with dupilumab and -10.5% and 55.0% with placebo (weeks 4 and 16, respectively; P < .001). Dupilumab significantly reduced expression of genes involved in type 2 inflammation (IL13, IL31, CCL17, CCL18, and CCL26), epidermal hyperplasia (keratin 16 [K16] and MKi67), T cells, dendritic cells (ICOS, CD11c, and CTLA4), and TH17/TH22 activity (IL17A, IL-22, and S100As) and concurrently increased expression of epidermal differentiation, barrier, and lipid metabolism genes (filaggrin [FLG], loricrin [LOR], claudins, and ELOVL3). Dupilumab reduced lesional epidermal thickness versus placebo (week 4, P = .001; week 16, P = .0002). Improvements in clinical and histologic measures correlated significantly with modulation of gene expression. Dupilumab also significantly suppressed type 2 serum biomarkers, including CCL17, CCL18, periostin, and total and allergen-specific IgEs. CONCLUSION Dupilumab-mediated inhibition of IL-4/IL-13 signaling through IL-4 receptor α blockade significantly and progressively improved disease activity, suppressed cellular/molecular cutaneous markers of inflammation and systemic measures of type 2 inflammation, and reversed AD-associated epidermal abnormalities.
Collapse
Affiliation(s)
- Emma Guttman-Yassky
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY; Laboratory for Investigative Dermatology, Rockefeller University, New York, NY.
| | | | - Benjamin Ungar
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY; Laboratory for Investigative Dermatology, Rockefeller University, New York, NY
| | - Mayte Suárez-Fariñas
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY; Laboratory for Investigative Dermatology, Rockefeller University, New York, NY; Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Hitokazu Esaki
- Department of Dermatology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Maria Suprun
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yeriel Estrada
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Hui Xu
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Xiangyu Peng
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jonathan I Silverberg
- Department of Dermatology, Preventive Medicine and Medical Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Alan Menter
- Department of Dermatology, Baylor University Medical Center, Dallas, Tex
| | - James G Krueger
- Laboratory for Investigative Dermatology, Rockefeller University, New York, NY
| | - Rick Zhang
- Regeneron Pharmaceuticals, Tarrytown, NY
| | | | | | | | | | | | | |
Collapse
|
28
|
Dong C, Fu T, Ji J, Li Z, Gu Z. The role of interleukin-4 in rheumatic diseases. Clin Exp Pharmacol Physiol 2018; 45:747-754. [PMID: 29655253 DOI: 10.1111/1440-1681.12946] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 03/31/2018] [Accepted: 04/04/2018] [Indexed: 01/10/2023]
Abstract
Rheumatism is a group of diseases, most of which are autoimmune diseases, that violate joints, bones, muscles, blood vessels and related soft tissue. As is well known, cytokines play a role in the pathogenesis of several rheumatic diseases, such as rheumatoid arthritis, spondyloarthritides, and systemic lupus erythematosus. Recently, the role of interleukin-4 (IL-4), which may participate in the mechanism of rheumatism, have been discovered. It is reported that IL-4 takes part in the regulation of T cell activation, differentiation, proliferation, and survival of different T cell types. IL-4 also has an immunomodulatory effect on B cells, mast cells, macrophages, and many cell types. A review of the literature on functions of IL-4 in rheumatic diseases is presented.
Collapse
Affiliation(s)
- Chen Dong
- School of Nursing, Nantong University, Nantong, Jiangsu Province, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Ting Fu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Juan Ji
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Zhenyu Li
- School of Nursing, Nantong University, Nantong, Jiangsu Province, China.,Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Zhifeng Gu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
29
|
Nakajima R, Miyagaki T, Hirakawa M, Oka T, Takahashi N, Suga H, Yoshizaki A, Fujita H, Asano Y, Sugaya M, Sato S. Interleukin-25 is involved in cutaneous T-cell lymphoma progression by establishing a T helper 2-dominant microenvironment. Br J Dermatol 2018; 178:1373-1382. [PMID: 29238954 DOI: 10.1111/bjd.16237] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND Interleukin (IL)-25 is a member of the IL-17 family, which can promote and augment T-helper (Th) type 2 responses. The expression of IL-25 and its cognate receptor, IL-25 receptor (IL-25R), is upregulated and correlated with disease activity in Th2-associated diseases. OBJECTIVES To examine the expression and function of IL-25 in cutaneous T-cell lymphoma (CTCL). METHODS Expression and location of IL-25 in lesional skin was investigated with immunohistochemistry. The effect of various cytokines on IL-25 production from normal human epidermal keratinocytes was assessed by quantitative reverse-transcription real-time polymerase chain reaction. Serum IL-25 levels were measured by enzyme-linked immunosorbent assay. The direct effect of IL-25 on tumour cells was also examined using CTCL cell lines and peripheral blood mononuclear cells in patients with Sézary syndrome. RESULTS IL-25 expression was increased in epidermal keratinocytes in lesional skin of CTCL. Th2 cytokines, IL-4 and IL-13, and periostin induced IL-25 expression by normal human epidermal keratinocytes. Serum IL-25 levels were increased in patients with advanced CTCL and correlated with serum lactate dehydrogenase levels. MyLa cells expressed IL-25R and its expression was augmented by stimulation with IL-25. IL-25 enhanced IL-13 production from MyLa cells via phosphorylation of signal transducer and activator of transcription 6. Peripheral blood mononuclear cells from one patient with Sézary syndrome expressed IL-25R and showed increase of IL-13 production by IL-25. CONCLUSIONS Th2 cytokines highly expressed in CTCL lesional skin induce IL-25 production by epidermal keratinocytes, which may, in turn, lead to formation of a Th2-dominant microenvironment through the direct induction of IL-13 by tumour cells.
Collapse
Affiliation(s)
- R Nakajima
- Department of Dermatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - T Miyagaki
- Department of Dermatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - M Hirakawa
- Department of Dermatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - T Oka
- Department of Dermatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - N Takahashi
- Department of Dermatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - H Suga
- Department of Dermatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - A Yoshizaki
- Department of Dermatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - H Fujita
- Department of Dermatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Y Asano
- Department of Dermatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - M Sugaya
- Department of Dermatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - S Sato
- Department of Dermatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| |
Collapse
|
30
|
Jin L, Liu WR, Tian MX, Jiang XF, Wang H, Zhou PY, Ding ZB, Peng YF, Dai Z, Qiu SJ, Zhou J, Fan J, Shi YH. CCL24 contributes to HCC malignancy via RhoB- VEGFA-VEGFR2 angiogenesis pathway and indicates poor prognosis. Oncotarget 2018; 8:5135-5148. [PMID: 28042950 PMCID: PMC5354897 DOI: 10.18632/oncotarget.14095] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 11/21/2016] [Indexed: 12/29/2022] Open
Abstract
CCL24 is one chemotactic factor extensively studied in airway inflammation and colorectal cancer but less studied in hepatocellular carcinoma (HCC) retrospectively. So HCC tissue microarray (TMA) was used to estimate relationship between CCL24 and prognosis, cell experiments were conducted to study its influence for HCC cell biological behavior. CCL24 was injected to nude mice to monitor tumor formation and pulmonary metastasis; qRT-PCR, western blot and Immunohistochemistry were used to explore potential mechanism. CCL24 plays roles in target cells via its downstream CCR3, or it is regulated by Type 2 helper T cells (Th2 cell) factors, so immune related experiments were conducted. Meanwhile, Rho GTPase family have close relation not only with T cell priming, but with neovascularization; CCL24 contributes to neovascularization in age-related macular degeneration via CCR3, so Rho GTPase family, Th2 cell factors, Human Umbilical Vein Endothelial Cells were used to uncover their trafficking. Ultimate validation was confirmed by small interfering RNA. Results showed CCL24 expression was higher in caner tissues than adjacent normal tissues, it could contribute to proliferation, migration, and invasion in HCCs, could accelerate pulmonary metastasis, promote HUVECs tube formation. Th2 cell factors were irrelevant with CCL24 in HCCs; and RhoB, VEGFA, and VEGFR2 correlated with CCL24 in both mRNA and protein level. Downstream RhoB-VEGFA signaling pathway was validated by siRhoB and siVEGFA inhibition. In a word, CCL24 contributes to HCC malignancy via RhoB-VEGFA-VEGFR2 angiogenesis pathway and indicates poor prognosis, which urges us to study further CCL24 effects on diagnosis and potential therapy for HCC.
Collapse
Affiliation(s)
- Lei Jin
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Wei-Ren Liu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Meng-Xin Tian
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Xi-Fei Jiang
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Han Wang
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Pei-Yun Zhou
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Zhen-Bin Ding
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Yuan-Fei Peng
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Zhi Dai
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Shuang-Jian Qiu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Jian Zhou
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Jia Fan
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Ying-Hong Shi
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| |
Collapse
|
31
|
Antipruritic Effect of Acupuncture in Patients with Atopic Dermatitis: Feasibility Study Protocol for a Randomised, Sham-Controlled Trial. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2017:1926806. [PMID: 29358961 PMCID: PMC5735323 DOI: 10.1155/2017/1926806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 09/27/2017] [Indexed: 12/03/2022]
Abstract
This study aims to test the feasibility of a randomised clinical trial to evaluate how acupuncture affects atopic dermatitis (AD) symptoms and quality of life and to explore potential biomarkers that may be associated with AD. It is a sham-controlled trial in which 30 eligible patients will be randomly allocated in a 1 : 1 : 1 ratio to one of three groups: verum acupuncture (VA) group 1 (3 times weekly for 4 weeks); VA group 2 (twice weekly for 4 weeks); or sham acupuncture group (SA; twice weekly for 4 weeks). SA will consist of nonpenetrating acupuncture. Outcome measures will include the Visual Analogue Scale for itch, SCORing Atopic Dermatitis, and Eczema Area and Severity Index to evaluate AD symptoms improvement along with the Patient Oriented Eczema Measure and Dermatology Life Quality Index to assess quality of life. Measures will be collected at baseline, once weekly during the treatment period, and after a 4-week follow-up period. Blood collection will be at baseline and 4 and 8 weeks after treatment and compared with healthy controls. Illumina sequencing will be used to profile microRNA expression in each group to explore candidate microRNA biomarkers for specific effects of acupuncture in patients with AD. This trial is registered via US National Institutes of Health Clinical Trials registry (ClinicalTrials.gov) on 15 July 2016, identifier: NCT02844452.
Collapse
|
32
|
Bao L, Mohan GC, Alexander JB, Doo C, Shen K, Bao J, Chan LS. A molecular mechanism for IL-4 suppression of loricrin transcription in epidermal keratinocytes: implication for atopic dermatitis pathogenesis. Innate Immun 2017; 23:641-647. [PMID: 28952836 DOI: 10.1177/1753425917732823] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Skin barrier defects play an important role in atopic dermatitis (AD) pathogenesis. Loricrin, an important barrier protein suppressed in human AD, is down-regulated by IL-4 in keratinocytes. However, the molecular mechanism is unknown. Since loricrin transcription requires p300/CBP, and Stat6 also recruits this common coactivator for its stimulated factors, we hypothesize that IL-4-activated Stat6 competes for the available endogenous p300/CBP, leading to loricrin transcription inhibition. First, we showed that loricrin is suppressed in the skin of IL-4 transgenic mice, an AD mouse model. In human keratinocytes, IL-4 down-regulation of loricrin is abrogated by a pan-Jak inhibitor, suggesting that the Jak-Stat pathway is involved. To further investigate the downstream molecular mechanism, we transfected HaCat cells with a loricrin promoter and then treated them with either IL-4 or vehicle. Not surprisingly, IL-4 greatly suppressed the promoter activity. Interestingly, this suppression was prevented when we knocked down Stat6, indicating that Stat6 participates in IL-4 regulation of loricrin. A Stat6-specific inhibitor confirmed the knockdown study. Finally, IL-4 suppression of loricrin was reversed with transfection of a CBP expression vector in a dose-dependent manner. Taken together, for the first time, we delineate a molecular mechanism for IL-4 down-regulation of loricin expression in human keratinocytes, which may play an important role in AD pathogenesis.
Collapse
Affiliation(s)
- Lei Bao
- 1 Department of Dermatology, University of Illinois at Chicago, IL, USA
| | - Girish C Mohan
- 1 Department of Dermatology, University of Illinois at Chicago, IL, USA
| | - Jaime B Alexander
- 1 Department of Dermatology, University of Illinois at Chicago, IL, USA
| | - Caroline Doo
- 1 Department of Dermatology, University of Illinois at Chicago, IL, USA
| | - Kui Shen
- 1 Department of Dermatology, University of Illinois at Chicago, IL, USA
| | - Jeremy Bao
- 1 Department of Dermatology, University of Illinois at Chicago, IL, USA
| | - Lawrence S Chan
- 1 Department of Dermatology, University of Illinois at Chicago, IL, USA.,2 Department of Microbiology/Immunology, University of Illinois at Chicago, IL, USA.,3 Jesse Brown VA Medical Center, Chicago, IL, USA.,4 Medicine Service, Captain James Lovell FHCC, North Chicago, IL, USA
| |
Collapse
|
33
|
Lee JH, Lee YJ, Lee JY, Park YM. Topical Application of Eupatilin Ameliorates Atopic Dermatitis-Like Skin Lesions in NC/Nga Mice. Ann Dermatol 2017; 29:61-68. [PMID: 28223748 PMCID: PMC5318529 DOI: 10.5021/ad.2017.29.1.61] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 05/16/2016] [Accepted: 06/17/2016] [Indexed: 12/20/2022] Open
Abstract
Background Atopic dermatitis (AD) is an inflammatory skin disorder with severe pruritus. Despite advancements in medicine, therapeutic treatments for AD are still limited. Eupatilin (5,7-dihydroxy-30,40,6-trimethoxyflavone) is one of the lipophilic flavonoids from Artemisia umbelliformis Lam. and Artemisia genipi Weber. Objective Although it has been reported to act a role in improving inflammation, its action on AD is uncertain. In this study, we examined the role of eupatilin on AD-like skin lesions in NC/Nga mice. Methods 2,4-dinitrochlorobenzene was repeatedly applied to the ear of NC/Nga mice to produce AD-like skin lesions. Eupatilin (1%, once a day for 5 consecutive days/week) was applied topically for four weeks for the evaluation of its therapeutic effects. Results 1% eupatilin cream significantly reduced the clinical severity score of AD-like lesions, compared to the vehicle (p<0.005). A histopathological analysis revealed that 1% eupatilin cream significantly decreased the mast cell infiltration as well as inflammatory cell infiltration, compared to the vehicle (p<0.005). We showed that 1% eupatilin cream significantly reduced the expression of thymic stromal lymphopoietin, tumor necrosis factor-α, interleukin-4, and interleukin-19, but not interferon-γ, compared to the vehicle (p<0.005). Conclusion Considering the therapeutic reaction of eupatilin on AD-like lesions as in this study, the substance has a promising to be an adjuvant topical agent for the control of AD.
Collapse
Affiliation(s)
- Ji Hyun Lee
- Department of Dermatology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ye Jin Lee
- Department of Dermatology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jun Young Lee
- Department of Dermatology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Young Min Park
- Department of Dermatology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
34
|
Blume-Peytavi U, Tan J, Tennstedt D, Boralevi F, Fabbrocini G, Torrelo A, Soares-Oliveira R, Haftek M, Rossi AB, Thouvenin MD, Mangold J, Galliano MF, Hernandez-Pigeon H, Aries MF, Rouvrais C, Bessou-Touya S, Duplan H, Castex-Rizzi N, Mengeaud V, Ferret PJ, Clouet E, Saint Aroman M, Carrasco C, Coutanceau C, Guiraud B, Boyal S, Herman A, Delga H, Biniek K, Dauskardt R. Fragility of epidermis in newborns, children and adolescents. J Eur Acad Dermatol Venereol 2016; 30 Suppl 4:3-56. [PMID: 27062556 DOI: 10.1111/jdv.13636] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/10/2016] [Accepted: 02/17/2016] [Indexed: 12/18/2022]
Abstract
Within their first days of life, newborns' skin undergoes various adaptation processes needed to accommodate the transition from the wet uterine environment to the dry atmosphere. The skin of newborns and infants is considered as a physiological fragile skin, a skin with lower resistance to aggressions. Fragile skin is divided into four categories up to its origin: physiological fragile skin (age, location), pathological fragile skin (acute and chronic), circumstantial fragile skin (due to environmental extrinsic factors or intrinsic factors such as stress) and iatrogenic fragile skin. Extensive research of the past 10 years have proven evidence that at birth albeit showing a nearly perfect appearance, newborn skin is structurally and functionally immature compared to adult skin undergoing a physiological maturation process after birth at least throughout the first year of life. This article is an overview of all known data about fragility of epidermis in 'fragile populations': newborns, children and adolescents. It includes the recent pathological, pathophysiological and clinical data about fragility of epidermis in various dermatological diseases, such as atopic dermatitis, acne, rosacea, contact dermatitis, irritative dermatitis and focus on UV protection.
Collapse
Affiliation(s)
- U Blume-Peytavi
- Department of Dermatology and Allergy, Clinical Research Center for Hair and Skin Science, Charité-Universitätsmedizin, Berlin, Germany
| | - J Tan
- Department of Medicine, Faculty of Medicine, Schulich School of Medicine and Dentistry, Western University, Windsor campus, Windsor, ON, Canada.,Windsor Clinical Research Inc., Windsor campus, Windsor, ON, Canada
| | - D Tennstedt
- Department of Dermatology, Saint-Luc University Clinics, Brussels, Belgium
| | - F Boralevi
- Pediatric Dermatology, Pellegrin Hospital, Bordeaux, France
| | - G Fabbrocini
- Department of Dermatology, University Hospital of Naples, Naples, Italy
| | - A Torrelo
- Pediatric Dermatology, Hospital del Niño Jesús, Madrid, Spain
| | | | - M Haftek
- University Lyon 1, Lyon, France.,University Lyon 1, EA4169, "Fundamental, clinical and therapeutic aspects of the skin barrier function", Lyon, France
| | - A B Rossi
- Pierre Fabre Dermo-Cosmétique Research & Development, Clinical Division, Toulouse, France.,Department of Dermatology, Toulouse University hospital, France
| | - M D Thouvenin
- Pierre Fabre Dermo-Cosmétique Research & Development, Clinical Division, Toulouse, France
| | - J Mangold
- Pierre Fabre Dermo-Cosmétique Research & Development, Clinical Division, Toulouse, France
| | - M F Galliano
- Pierre Fabre Dermo-Cosmétique Research & Development, Clinical Division, Toulouse, France.,Pierre Fabre Dermo-Cosmétique Research and Development Center, Pharmacology Division, Toulouse, France.,Pierre Fabre Dermo-Cosmétique, Pierre Fabre Research and Development Center, Pharmacology Division, Toulouse, France
| | - H Hernandez-Pigeon
- Pierre Fabre Dermo-Cosmétique Research & Development, Clinical Division, Toulouse, France.,Pierre Fabre Dermo-Cosmétique, Pierre Fabre Research and Development Center, Pharmacology Division, Toulouse, France
| | - M F Aries
- Pierre Fabre Dermo-Cosmétique Research and Development Center, Pharmacology Division, Toulouse, France.,Pierre Fabre Dermo-Cosmétique, Pierre Fabre Research and Development Center, Pharmacology Division, Toulouse, France
| | - C Rouvrais
- Pierre Fabre Dermo-Cosmétique Research & Development, Clinical Division, Toulouse, France
| | - S Bessou-Touya
- Pierre Fabre Dermo-Cosmétique Research & Development, Clinical Division, Toulouse, France.,Pierre Fabre Dermo-Cosmétique Research and Development Center, Pharmacology Division, Toulouse, France.,Medical Department, Pierre Fabre Research and Laboratoires Dermatologiques A-Derma, Lavaur, France.,Pierre Fabre Dermo-Cosmétique, Pierre Fabre Research and Development Center, Pharmacology Division, Toulouse, France
| | - H Duplan
- Pierre Fabre Dermo-Cosmétique Research & Development, Clinical Division, Toulouse, France.,Pierre Fabre Dermo-Cosmétique Research and Development Center, Pharmacology Division, Toulouse, France.,Pierre Fabre Dermo-Cosmétique, Pierre Fabre Research and Development Center, Pharmacology Division, Toulouse, France
| | - N Castex-Rizzi
- Pierre Fabre Dermo-Cosmétique Research & Development, Clinical Division, Toulouse, France.,Pierre Fabre Dermo-Cosmétique Research and Development Center, Pharmacology Division, Toulouse, France.,Pierre Fabre Dermo-Cosmétique, Pierre Fabre Research and Development Center, Pharmacology Division, Toulouse, France
| | - V Mengeaud
- Pierre Fabre Dermo-Cosmétique Research & Development, Clinical Division, Toulouse, France.,Pierre Fabre Dermo-Cosmétique Research and Development Center, Pharmacology Division, Toulouse, France
| | - P J Ferret
- Pierre Fabre Dermo-Cosmétique Research & Development, Toxicology Division, Vigoulet-Auzil, France.,Pierre Fabre Dermo-Cosmétique Research & Developement Center, Toxicology division, Vigoulet, France
| | - E Clouet
- Pierre Fabre Dermo-Cosmétique Research & Development, Toxicology Division, Vigoulet-Auzil, France.,Pierre Fabre Dermo-Cosmétique Research & Developement Center, Toxicology division, Vigoulet, France
| | | | - C Carrasco
- Pierre Fabre Dermo-Cosmétique Research & Development, Clinical Division, Toulouse, France.,Pierre Fabre Dermo-Cosmétique Research and Development Center, Pharmacology Division, Toulouse, France.,Pierre Fabre Dermo-Cosmétique, Pierre Fabre Research and Development Center, Pharmacology Division, Toulouse, France
| | - C Coutanceau
- Medical Department, Pierre Fabre Research and Laboratoires Dermatologiques A-Derma, Lavaur, France
| | - B Guiraud
- Pierre Fabre Dermo-Cosmétique Research & Development, Clinical Division, Toulouse, France
| | - S Boyal
- Windsor Clinical Research Inc., Windsor campus, Windsor, ON, Canada
| | - A Herman
- Department of Dermatology, Saint-Luc University Clinics, Brussels, Belgium
| | - H Delga
- Pierre Fabre Dermo-Cosmétique, Pierre Fabre Research and Development Center, Pharmacology Division, Toulouse, France
| | - K Biniek
- Department of Materials Science and Engineering, Stanford University hospital, Stanford, CA, USA
| | - R Dauskardt
- Department of Materials Science and Engineering, Stanford University hospital, Stanford, CA, USA
| |
Collapse
|
35
|
Lee H, Ryu WI, Kim HJ, Bae HC, Ryu HJ, Shin JJ, Song KH, Kim TW, Son SW. TSLP Down-Regulates S100A7 and ß-Defensin 2 Via the JAK2/STAT3-Dependent Mechanism. J Invest Dermatol 2016; 136:2427-2435. [DOI: 10.1016/j.jid.2016.07.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 07/07/2016] [Accepted: 07/25/2016] [Indexed: 12/21/2022]
|
36
|
Aries MF, Hernandez-Pigeon H, Vaissière C, Delga H, Caruana A, Lévêque M, Bourrain M, Ravard Helffer K, Chol B, Nguyen T, Bessou-Touya S, Castex-Rizzi N. Anti-inflammatory and immunomodulatory effects of Aquaphilus dolomiae extract on in vitro models. Clin Cosmet Investig Dermatol 2016; 9:421-434. [PMID: 27877060 PMCID: PMC5108493 DOI: 10.2147/ccid.s113180] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Atopic dermatitis (AD) is a common skin disease characterized by recurrent pruritic inflammatory skin lesions resulting from structural and immune defects of the skin barrier. Previous studies have shown the clinical efficacy of Avène thermal spring water in AD, and a new microorganism, Aquaphilus dolomiae was suspected to contribute to these unique properties. The present study evaluated the anti-inflammatory, antipruritic, and immunomodulatory properties of ES0, an original biological extract of A. dolomiae, in immune and inflammatory cell models in order to assess its potential use in the treatment of AD. Materials and methods An ES0 extract containing periplasmic and membrane proteins, peptides, lipopolysaccharides, and exopolysaccharides was obtained from A. dolomiae. The effects of the extract on pruritus and inflammatory mediators and immune mechanisms were evaluated by using various AD cell models and assays. Results In a keratinocyte model, ES0 inhibited the expression of the inflammatory mediators, thymic stromal lymphopoietin, interleukin (IL)-18, IL-4R, IL-8, monocyte chemoattractant protein-3, macrophage inflammatory protein-3α, and macrophage-derived chemokine and induced the expression of involucrin, which is involved in skin barrier keratinocyte terminal differentiation. In addition, ES0 inhibited protease-activated receptor-2 activation in HaCaT human keratinocytes stimulated by stratum corneum tryptic enzyme and T helper type (Th) 1, Th2, and Th17 cytokine production in Staphylococcal enterotoxin B–stimulated CD4+ lymphocytes. Lastly, ES0 markedly activated innate immunity through toll-like receptor (TLR) 2, TLR4, and TLR5 activation (in recombinant human embryonic kidney 293 cells) and through antimicrobial peptide induction (psoriasin, human beta-defensin-2, and cathelicidin), mainly through TLR5 activation (in normal human keratinocytes). Conclusion Overall, these in vitro results confirm the marked regulatory activity of this A. dolomiae extract on inflammatory and immune responses, which may be of value by virtue of its potential as an adjunctive treatment of AD inflammatory and pruritic lesions.
Collapse
Affiliation(s)
- Marie-Françoise Aries
- Pierre Fabre Dermo-Cosmétique, Centre de Recherche & Développement Pierre Fabre, Toulouse
| | | | - Clémence Vaissière
- Pierre Fabre Dermo-Cosmétique, Centre de Recherche & Développement Pierre Fabre, Toulouse
| | - Hélène Delga
- Pierre Fabre Dermo-Cosmétique, Centre de Recherche & Développement Pierre Fabre, Toulouse
| | - Antony Caruana
- Pierre Fabre Dermo-Cosmétique, Centre de Recherche & Développement Pierre Fabre, Toulouse
| | - Marguerite Lévêque
- Pierre Fabre Dermo-Cosmétique, Centre de Recherche & Développement Pierre Fabre, Toulouse
| | - Muriel Bourrain
- Pierre Fabre Dermo-Cosmétique, Centre de Recherche & Développement Pierre Fabre, Toulouse; Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique, Banyuls/Mer, France
| | - Katia Ravard Helffer
- Pierre Fabre Dermo-Cosmétique, Centre de Recherche & Développement Pierre Fabre, Toulouse
| | - Bertrand Chol
- Centre d'Immunologie Pierre Fabre, Saint-Julien-en-Genevois, France
| | - Thien Nguyen
- Pierre Fabre Dermo-Cosmétique, Centre de Recherche & Développement Pierre Fabre, Toulouse
| | - Sandrine Bessou-Touya
- Pierre Fabre Dermo-Cosmétique, Centre de Recherche & Développement Pierre Fabre, Toulouse
| | - Nathalie Castex-Rizzi
- Pierre Fabre Dermo-Cosmétique, Centre de Recherche & Développement Pierre Fabre, Toulouse
| |
Collapse
|
37
|
May RD, Fung M. Strategies targeting the IL-4/IL-13 axes in disease. Cytokine 2016; 75:89-116. [PMID: 26255210 DOI: 10.1016/j.cyto.2015.05.018] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 05/15/2015] [Indexed: 02/07/2023]
Abstract
IL-4 and IL-13 are pleiotropic Th2 cytokines produced by a wide variety of different cell types and responsible for a broad range of biology and functions. Physiologically, Th2 cytokines are known to mediate host defense against parasites but they can also trigger disease if their activities are dysregulated. In this review we discuss the rationale for targeting the IL-4/IL-13 axes in asthma, atopic dermatitis, allergic rhinitis, COPD, cancer, inflammatory bowel disease, autoimmune disease and fibrotic disease as well as evaluating the associated clinical data derived from blocking IL-4, IL-13 or IL-4 and IL-13 together.
Collapse
|
38
|
Bao L, Alexander JB, Zhang H, Shen K, Chan LS. Interleukin-4 Downregulation of Involucrin Expression in Human Epidermal Keratinocytes Involves Stat6 Sequestration of the Coactivator CREB-Binding Protein. J Interferon Cytokine Res 2016; 36:374-81. [PMID: 26918372 DOI: 10.1089/jir.2015.0056] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Skin barrier defects play an important role in atopic dermatitis (AD). Involucrin, an important barrier protein suppressed in human AD, is downregulated by interleukin-4 (IL-4). However, the molecular mechanism for IL-4 downregulation of involucrin has not been delineated, and especially how Stat6, a transcriptional activator, represses involucrin expression is unknown. Since Stats usually recruit p300/CBP in the general transcription machinery of their target genes and involucrin expression also involves p300/CBP, we hypothesize that Stat6 activated by IL-4 may sequestrate p300/CBP from the involucrin transcription complex, thus suppressing involucrin expression in keratinocytes. Using IL-4 transgenic mice, an AD mouse model, we find that involucrin expression is similarly downregulated as in human AD. In HaCat cells, the Jak inhibitor and dominant negative studies indicate that the Jaks-Stat6 pathway is involved in IL-4 downregulation of involucrin. Next, we transfected HaCat cells with an involucrin promoter-luciferase construct and then treated them with IL-4. IL-4 greatly suppresses the promoter activity, which is totally abolished by cotransfecting the CREB-binding protein (CBP) expression vector, indicating that IL-4 cannot downregulate involucrin in the presence of excess CBP. Finally, chromatin immunoprecipitation assay demonstrates that IL-4 decreases CBP binding to the involucrin transcription complex. For the first time, we defined a molecular mechanism for IL-4 downregulation of involucrin in keratinocytes, which may play an important role in the pathogenesis of AD.
Collapse
Affiliation(s)
- Lei Bao
- 1 Department of Dermatology, University of Illinois at Chicago , Chicago, Illinois
| | - Jaime B Alexander
- 1 Department of Dermatology, University of Illinois at Chicago , Chicago, Illinois
| | - Huayi Zhang
- 1 Department of Dermatology, University of Illinois at Chicago , Chicago, Illinois
| | - Kui Shen
- 1 Department of Dermatology, University of Illinois at Chicago , Chicago, Illinois
| | - Lawrence S Chan
- 1 Department of Dermatology, University of Illinois at Chicago , Chicago, Illinois.,2 Department of Microbiology & Immunology, University of Illinois at Chicago , Chicago, Illinois.,3 Medical Service, Jesse Brown VA Med Center , Chicago, Illinois
| |
Collapse
|
39
|
Zhao Y, Bao L, Chan LS, DiPietro LA, Chen L. Aberrant Wound Healing in an Epidermal Interleukin-4 Transgenic Mouse Model of Atopic Dermatitis. PLoS One 2016; 11:e0146451. [PMID: 26752054 PMCID: PMC4709197 DOI: 10.1371/journal.pone.0146451] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/17/2015] [Indexed: 01/13/2023] Open
Abstract
Wound healing in a pre-existing Th2-dominated skin milieu was assessed by using an epidermal specific interleukin-4 (IL-4) transgenic (Tg) mouse model, which develops a pruritic inflammatory skin condition resembling human atopic dermatitis. Our results demonstrated that IL-4 Tg mice had delayed wound closure and re-epithelialization even though these mice exhibited higher degrees of epithelial cell proliferation. Wounds in IL-4 Tg mice also showed a marked enhancement in expression of inflammatory cytokines/chemokines, elevated infiltration of inflammatory cells including neutrophils, macrophages, CD3+ lymphocytes, and epidermal dendritic T lymphocytes. In addition, these mice exhibited a significantly higher level of angiogenesis as compared to wild type mice. Furthermore, wounds in IL-4 Tg mice presented with larger amounts of granulation tissue, but had less expression and deposition of collagen. Taken together, an inflamed skin condition induced by IL-4 has a pronounced negative influence on the healing process. Understanding more about the pathogenesis of wound healing in a Th2- dominated environment may help investigators explore new potential therapeutic strategies.
Collapse
Affiliation(s)
- Yan Zhao
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Lei Bao
- Departments of Dermatology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Lawrence S. Chan
- Departments of Dermatology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Departments of Immunology and Microbiology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Medicine Service, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, United States of America
| | - Luisa A. DiPietro
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Lin Chen
- Center for Wound Healing and Tissue Regeneration, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
40
|
Bao L, Zhang H, Mohan GC, Shen K, Chan LS. Differential expression of inflammation-related genes in IL-4 transgenic mice before and after the onset of atopic dermatitis skin lesions. Mol Cell Probes 2015; 30:30-8. [PMID: 26585782 DOI: 10.1016/j.mcp.2015.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/04/2015] [Accepted: 11/04/2015] [Indexed: 01/13/2023]
Abstract
IL-4 plays an important role in the pathogenesis of atopic dermatitis (AD), a common chronic inflammatory skin disease. We have generated IL-4 transgenic (Tg) mice by over-expressing IL-4 in the epidermis. These mice spontaneously develop chronic pruritic inflammatory skin lesions, which meet the clinical and histological diagnostic criteria for human AD. Systemic survey of immune-related genes in this mouse model, however, has not been performed. In this study, we utilize PCR array technique to examine hundreds of inflammation-related genes in the IL-4 Tg mice before and after the onset of skin lesions as well as in their wild type (WT) littermates. Only those genes with at least 2-fold up-regulation or down-regulation and with a P-value of less than 0.05 in comparison to WT controls were identified and analyzed. In the skin lesions, many chemokines, pro-inflammatory cytokines, and other AD-related factors are dysregulated compared to the wild type mice. Particularly, CXCL5, IL-1β, IL-24, IL-6, oncostatin M, PTGS2, FPR1 and REG3γ are up-regulated several hundred-fold. In the pre-lesional group that shows no obvious skin abnormality on clinical observation, 30 dysregulated genes are nevertheless identified though the fold changes are much less than that of the lesional group, including CCL6, CCL8, CCL11, CCL17, CXCL13, CXCL14, CXCR3 and IL-12Rβ2. Finally using ELISA, we demonstrate that 4 most dramatically up-regulated factors in the skin are also elevated in the peripheral blood of the IL-4 Tg mice. Taken together, our data have identified hundreds of dysregulated factors in the IL-4 Tg mice before and after the onset of skin lesions. Future detailed examination of these factors will shed light on our understanding of the development and progression of AD and help to discover important biomarkers for clinical AD diagnosis and treatment.
Collapse
Affiliation(s)
- Lei Bao
- Department of Dermatology, University of Illinois, Chicago, IL, USA.
| | - Huayi Zhang
- Department of Dermatology, University of Illinois, Chicago, IL, USA
| | - Girish C Mohan
- Department of Dermatology, University of Illinois, Chicago, IL, USA
| | - Kui Shen
- Department of Dermatology, University of Illinois, Chicago, IL, USA
| | - Lawrence S Chan
- Department of Dermatology, University of Illinois, Chicago, IL, USA; Department of Microbiology/Immunology, University of Illinois, Chicago, IL, USA; Medical Service, Jesse Brown VA Med Center, Chicago, IL, USA.
| |
Collapse
|
41
|
Asahina R, Kamishina H, Kamishina H, Maeda S. Gene transcription of pro-inflammatory cytokines and chemokines induced by IL-17A in canine keratinocytes. Vet Dermatol 2015; 26:426-31, e100. [DOI: 10.1111/vde.12244] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2015] [Indexed: 12/24/2022]
Affiliation(s)
- Ryota Asahina
- The United Graduate School of Veterinary Sciences ; Faculty of Applied Biological Sciences; Gifu University; 1-1 Yanagido Gifu 501-1193 Japan
| | - Harumi Kamishina
- Department of Veterinary Medicine; Faculty of Applied Biological Sciences; Gifu University; 1-1 Yanagido Gifu 501-1193 Japan
| | - Hiroaki Kamishina
- Department of Veterinary Medicine; Faculty of Applied Biological Sciences; Gifu University; 1-1 Yanagido Gifu 501-1193 Japan
| | - Sadatoshi Maeda
- Department of Veterinary Medicine; Faculty of Applied Biological Sciences; Gifu University; 1-1 Yanagido Gifu 501-1193 Japan
| |
Collapse
|
42
|
van Drongelen V, Haisma EM, Out-Luiting JJ, Nibbering PH, El Ghalbzouri A. Reduced filaggrin expression is accompanied by increased Staphylococcus aureus colonization of epidermal skin models. Clin Exp Allergy 2015; 44:1515-24. [PMID: 25352374 DOI: 10.1111/cea.12443] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/11/2014] [Accepted: 08/19/2014] [Indexed: 12/29/2022]
Abstract
BACKGROUND Atopic dermatitis is an inflammatory skin disease that is characterized by a reduced skin barrier function, reduced filaggrin (FLG) expression as well as increased colonization by Staphylococcus aureus. OBJECTIVE This study focused on the possible involvement of FLG in epidermal colonization by S. aureus and/or whether it affects the epidermal defence mechanisms, including the expression of antimicrobial peptides (AMPs) and enzymes involved in stratum corneum barrier lipid synthesis. Furthermore, IL-31 has been shown to reduce FLG expression, but its effects on bacterial colonization and on the expression of AMPs and enzymes involved in the barrier lipid synthesis are not known. MATERIAL AND METHODS We established N/TERT-based epidermal models (NEMs), after FLG knockdown (FLG-KD) and/or cultured with IL-31, that were colonized with S. aureus for 24 h. RESULTS Both FLG-KD and IL-31 supplementation resulted in significantly increased epidermal S. aureus colonization, as well as in an up-regulation of S. aureus-induced IL-8 expression. IL-31, but not FLG-KD, prevented S. aureus-induced up-regulation of mRNA expression for the AMPs human β-defensin 2 and -3 and RNAse7, whereas psoriasin expression remained unchanged. Furthermore, the S. aureus colonization induced changes in mRNA expression of ELOVL4 was not affected by FLG-KD, but was blocked by IL-31. Expression of SCD-1 and Gcase mRNA was reduced by IL-31, but not by FLG-KD. CONCLUSION This study shows that NEMs, with FLG-KD and/or cultured in the presence of IL-31, mimic the skin of patients with atopic dermatitis in several aspects, including enhanced bacterial colonization, increased inflammatory and reduced protective responses.
Collapse
Affiliation(s)
- V van Drongelen
- Gorlaeus Laboratories, Department of Drug Delivery Technology, Leiden Academy Centre for Drug Research, Leiden University, Leiden, The Netherlands; Department of Dermatology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
43
|
The danger model approach to the pathogenesis of the rheumatic diseases. J Immunol Res 2015; 2015:506089. [PMID: 25973436 PMCID: PMC4417989 DOI: 10.1155/2015/506089] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 12/12/2014] [Indexed: 12/19/2022] Open
Abstract
The danger model was proposed by Polly Matzinger as complement to the traditional self-non-self- (SNS-) model to explain the immunoreactivity. The danger model proposes a central role of the tissular cells' discomfort as an element to prime the immune response processes in opposition to the traditional SNS-model where foreignness is a prerequisite. However recent insights in the proteomics of diverse tissular cells have revealed that under stressful conditions they have a significant potential to initiate, coordinate, and perpetuate autoimmune processes, in many cases, ruling over the adaptive immune response cells; this ruling potential can also be confirmed by observations in several genetically manipulated animal models. Here, we review the pathogenesis of rheumatic diseases such as systemic lupus erythematous, rheumatoid arthritis, spondyloarthritis including ankylosing spondylitis, psoriasis, and Crohn's disease and provide realistic approaches based on the logic of the danger model. We assume that tissular dysfunction is a prerequisite for chronic autoimmunity and propose two genetically conferred hypothetical roles for the tissular cells causing the disease: (A) the Impaired cell and (B) the paranoid cell. Both roles are not mutually exclusive. Some examples in human disease and in animal models are provided based on current evidence.
Collapse
|
44
|
Bao L, Alexander JB, Shi VY, Mohan GC, Chan LS. Interleukin-4 up-regulation of epidermal interleukin-19 expression in keratinocytes involves the binding of signal transducer and activator of transcription 6 (Stat6) to the imperfect Stat6 sites. Immunology 2015; 143:601-8. [PMID: 24943510 DOI: 10.1111/imm.12339] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 06/12/2014] [Accepted: 06/13/2014] [Indexed: 01/21/2023] Open
Abstract
Interleukin-19 (IL-19) plays an important role in asthma by stimulating T helper type 2 (Th2) cytokine production. Interestingly, IL-4, a key Th2 cytokine, in turn up-regulates IL-19 expression in bronchial epithelial cells, so forming a positive feedback loop. In atopic dermatitis (AD), another Th2 disease closely related to asthma, IL-19 is up-regulated in the skin. We propose to use IL-4 transgenic (Tg) mice and human keratinocyte culture to delineate the molecular mechanisms involved in the up-regulation of IL-19 in AD. IL-19 is similarly up-regulated in the skin of IL-4 Tg mice as in human AD. Next we show that IL-4 up-regulates IL-19 expression in keratinocytes. Interestingly, the up-regulation was suppressed by a pan-Janus kinase (Jak) inhibitor, suggesting that the Jak-signal transducer and activator of transcription (Jak-STAT) pathway may be involved. Dominant negative studies further indicate that STAT6, but not other STATs, mediates the up-regulation. Serial 5' deletion of the IL-19 promoter and mutagenesis studies demonstrate that IL-4 up-regulation of IL-19 in keratinocytes involves two imperfect STAT6 response elements. Finally, chromatin immunoprecipitation assay studies indicate that IL-4 increases the binding of STAT6 to its response elements in the IL-19 promoter. Taken together, we delineate the detailed molecular pathway for IL-4 up-regulation of IL-19 in keratinocytes, which may play an important role in AD pathogenesis.
Collapse
Affiliation(s)
- Lei Bao
- Department of Dermatology, University of Illinois, Chicago, IL, USA
| | | | | | | | | |
Collapse
|
45
|
Dupilumab improves the molecular signature in skin of patients with moderate-to-severe atopic dermatitis. J Allergy Clin Immunol 2014; 134:1293-1300. [DOI: 10.1016/j.jaci.2014.10.013] [Citation(s) in RCA: 310] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/13/2014] [Accepted: 10/14/2014] [Indexed: 01/25/2023]
|
46
|
Di Lernia V. Therapeutic strategies in extrinsic atopic dermatitis: focus on inhibition of IL-4 as a new pharmacological approach. Expert Opin Ther Targets 2014; 19:87-96. [PMID: 25283256 DOI: 10.1517/14728222.2014.965682] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Recent data about atopic dermatitis (AD) pathogenesis postulate that T cells and their related cytokines and chemokines are primarily responsible for the inflammatory responses. AREAS COVERED AD, the primary complex disease associated with filaggrin deficiency, is characterized by cutaneous inflammation driven by type 2 helper T (TH2) cells. TH2-related molecules, such as IL-4, IL-13, dominate the immune infiltrate. Experimental evidences suggest that these cytokines may be considered attractive therapeutic targets in AD, particularly in extrinsic AD with IgE overproduction. Recently, a fully human monoclonal antibody directed against the IL-4 receptor α subunit blocking IL-4 and IL-13 signaling has been evaluated in Phase I and Phase II clinical trials in patients with moderate-to-severe AD with significant improvement in disease severity. Phase III trials are ongoing. EXPERT OPINION Treatment of AD represents a therapeutic challenge. TH2 cytokine-targeted therapies represent promising treatment options that could improve the therapeutic armamentarium for AD. These therapies are likely to become future therapeutic options in AD, particularly in the extrinsic AD.
Collapse
Affiliation(s)
- Vito Di Lernia
- Arcispedale Santa Maria Nuova-IRCCS, Dermatology Unit , viale Risorgimento 68, 42123 Reggio Emilia , Italy
| |
Collapse
|
47
|
Bao L, Zhang H, Chan LS. The involvement of the JAK-STAT signaling pathway in chronic inflammatory skin disease atopic dermatitis. JAKSTAT 2013; 2:e24137. [PMID: 24069552 PMCID: PMC3772104 DOI: 10.4161/jkst.24137] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 02/26/2013] [Accepted: 02/27/2013] [Indexed: 12/18/2022] Open
Abstract
Atopic dermatitis (AD), a common chronic inflammatory skin disease, is characterized by inflammatory cell skin infiltration. The JAK-STAT pathway has been shown to play an essential role in the dysregulation of immune responses in AD, including the exaggeration of Th2 cell response, the activation of eosinophils, the maturation of B cells, and the suppression of regulatory T cells (Tregs). In addition, the JAK-STAT pathway, activated by IL-4, also plays a critical role in the pathogenesis of AD by upregulating epidermal chemokines, pro-inflammatroy cytokines, and pro-angiogenic factors as well as by downregulating antimicrobial peptides (AMPs) and factors responsible for skin barrier function. In this review, we will highlight the recent advances in our understanding of the JAK-STAT pathway in the pathogenesis of AD.
Collapse
Affiliation(s)
- Lei Bao
- Department of Dermatology; University of Illinois; Chicago, IL USA
| | | | | |
Collapse
|