1
|
Chen F, Chu CN, Ding WW. Mechanisms and prevention of intestinal barrier function damage in traumatic hemorrhagic shock. Shijie Huaren Xiaohua Zazhi 2022; 30:547-554. [DOI: 10.11569/wcjd.v30.i12.547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The intestinal barrier is composed of mechanical barrier, chemical barrier, immune barrier, and microbial barrier, which has an important role in defense against microbial invasion. The components of intestinal barrier coordinate with each other under physiological conditions to maintain the homeostasis of intestinal internal and external environment. In traumatic hemorrhagic shock, intestinal barrier function is prone to be impaired by intestinal hypoperfusion, intestinal ischemia-reperfusion injury, and many other factors. Bacterial translocation and endotoxin entry into the blood may occur, leading to enterogenic infection, multiple organ dysfunction, and even death. At present, there are many conceptual updates and technical progress on the mechanisms, prevention, and treatment of intestinal barrier function injury in traumatic hemorrhagic shock both at home and abroad. This paper intends to make a literature review in this field based on the previous research of our team, in order to provide a systematic and comprehensive theoretical system for the clinical prevention and treatment of post-traumatic intestinal dysfunction related diseases.
Collapse
Affiliation(s)
- Fang Chen
- Research Institute of General Surgery, Jinling Hospital, School of Medicine, Southeast University, Nanjing 210002, Jiangsu Province, China
| | - Cheng-Nan Chu
- Research Institute of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Wei-Wei Ding
- Research Institute of General Surgery, Jinling Hospital, School of Medicine, Southeast University, Nanjing 210002, Jiangsu Province, China
| |
Collapse
|
2
|
Motta JP, Deraison C, Le Grand S, Le Grand B, Vergnolle N. PAR-1 Antagonism to Promote Gut Mucosa Healing in Crohn's Disease Patients: A New Avenue for CVT120165. Inflamm Bowel Dis 2021; 27:S33-S37. [PMID: 34791291 DOI: 10.1093/ibd/izab244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Indexed: 12/17/2022]
Abstract
A new paradigm has been added for the treatment of inflammatory bowel diseases such as Crohn's disease and ulcerative colitis. In addition to resolving symptoms and inflammatory cell activation, the objective of tissue repair and mucosal healing is also now considered a primary goal. In the search of mediators that would be responsible for delayed mucosal healing, protease-activated receptor-1 (PAR-1) has emerged as a most interesting target. Indeed, in Crohn's disease, the endogenous PAR-1 agonist thrombin is drastically activated. Activation of PAR-1 is known to be associated with epithelial dysfunctions that hamper mucosal homeostasis. This review gathers the scientific evidences of a potential role for PAR-1 in mucosal damage and mucosal dysfunctions associated with chronic intestinal inflammation. The potential clinical benefits of PAR-1 antagonism to promote mucosal repair in CD patients are discussed. Targeted local delivery of a PAR-1 antagonist molecule such as CVT120165, a formulated version of the FDA-approved PAR-1 antagonist vorapaxar, at the mucosa of Crohn's disease patients could be proposed as a new indication for IBD that could be rapidly tested in clinical trials.
Collapse
Affiliation(s)
- Jean-Paul Motta
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRA, ENVT, UPS, U1220, CHU Purpan, CS60039, Toulouse, France.,CVasThera, Arobase Castres-Mazamet, Castres, France
| | - Celine Deraison
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRA, ENVT, UPS, U1220, CHU Purpan, CS60039, Toulouse, France
| | | | | | - Nathalie Vergnolle
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRA, ENVT, UPS, U1220, CHU Purpan, CS60039, Toulouse, France.,Departments of Physiology & Pharmacology, and Medicine, University of Calgary Cumming School of Medicine, 3330 Hospital Drive NW, Calgary, Alberta, Canada
| |
Collapse
|
3
|
Lambertini C, Zannoni A, Romagnoli N, Bombardi C, Morini M, Dondi F, Bernardini C, Forni M, Rinnovati R, Spadari A. Expression of Proteinase-Activated Receptor 2 During Colon Volvulus in the Horse. Front Vet Sci 2020; 7:589367. [PMID: 33330716 PMCID: PMC7728609 DOI: 10.3389/fvets.2020.589367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/27/2020] [Indexed: 11/16/2022] Open
Abstract
Large colon volvulus in horses is associated with a poor prognosis, especially when ischemic-reperfusion injury of the affected intestinal tract develops. Proteinase-activated receptor 2 (PAR2) plays an important role in the pathogenesis of inflammation in the gastrointestinal tract. The aim of this study was to evaluate the distribution and expression of PAR2 in colonic pelvic flexure of horses spontaneously affected by large colon volvulus (CVH group). Eight horses admitted for severe abdominal colon volvolus and which underwent surgery were included. Colon samples were collected after enterotomy. Data previously obtained from healthy horses were used as a control group. Histologic evaluation was carried out to grade the severity of the colon lesions. Immunofluorescence, western blot and quantitative polymerase chain reaction (RT-qPCR) were carried out on colon samples to evaluate PAR2 expression. In addition, the transcriptional profile of cytokines and chemokines was evaluated using RT2 Profiler™ PCR Array Horse Cytokines & Chemokines. Three out of the eight patients were euthanised due to clinical deterioration. Immunostaining for PAR2 was observed in the enterocytes, intestinal glands and neurons of the submucosal and myenteric plexi. In the CVH horses, the expression of PAR2 mesenger RNA (mRNA) did not differ significantly from that of the healthy animals; western blots of the mucosa of the colon tracts showed a clear band of the expected molecular weight for PAR2 (~44 kDa) and a band smaller than the expected molecular weight for PAR2 (25kDa), suggesting its activation. The gene expressions for C-X-C motif ligand 1 (CXCL1); interleukin 8 (IL8), macrophage inflammatory protein 2 beta (MIP-2BETA) were upregulated in the colic horses as compared with the colons of the healthy horses. Therefore, in the present study, the expression and activation of PAR2 in the colons of horses in the presence of an inflammatory reaction like that occurring in those with spontaneous colon volvulus was confirmed.
Collapse
Affiliation(s)
- Carlotta Lambertini
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Augusta Zannoni
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Noemi Romagnoli
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Cristiano Bombardi
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Maria Morini
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Francesco Dondi
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Chiara Bernardini
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Monica Forni
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Riccardo Rinnovati
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Alessandro Spadari
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
4
|
Tomuschat C, O'Donnell AM, Coyle D, Puri P. Increased protease activated receptors in the colon of patients with Hirschsprung's disease. J Pediatr Surg 2020; 55:1488-1494. [PMID: 31859043 DOI: 10.1016/j.jpedsurg.2019.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 11/12/2019] [Accepted: 11/21/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE The pathophysiology of Hirschsprung's associated enterocolitis (HAEC) is not understood. Abnormal intestinal motility and altered intestinal epithelial barrier function have been suggested to play a key role in the causation of HAEC. Protease-activated receptors (PARs) 1 and 2, have been implicated in inflammatory reactions, intestinal permeability and modulation of motility in the gut. METHODS We investigated PAR-1 and PAR-2 protein expression in aganglionic and ganglionic regions of patients with Hirschsprung's Disease (HSCR) (n = 10) versus normal control colon (n = 10). Protein distribution was assessed by using immunofluorescence and confocal microscopy. Gene and protein expression were quantified using quantitative real-time polymerase chain reaction (qPCR), western blot analysis, and densitometry. RESULTS qPCR and Western blot analysis revealed that PAR-1 and PAR-2 expression was significantly increased in ganglionic and aganglionic bowel in HSCR compared to controls (p < 0.003). Confocal microscopy revealed strong PAR-1 and PAR-2 expression in smooth muscles, interstitial cells of Cajal (ICCs), platelet-derived growth factor-alpha receptor-positive (PDGFRα+) cells, enteric neurons and epithelium in the ganglionic and aganglionic bowel compared to controls. CONCLUSION Increased PAR-1 and PAR-2 expression in the colon of patients with HSCR suggests that excessive local release of PAR activating proteases may trigger inflammatory responses leading to HAEC.
Collapse
Affiliation(s)
- Christian Tomuschat
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland.
| | - Anne Marie O'Donnell
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - David Coyle
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - Prem Puri
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland; School of Medicine and Medical Science and Conway Institute of Biomedical Research, University College Dublin, Ireland
| |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW Gastrointestinal toxicities are commonly reported following treatment with proteasome inhibitors. The first-generation proteasome inhibitor, bortezomib, induces significant gastrointestinal side effects including nausea, vomiting, diarrhoea, and constipation, occurring in up to 84% of patients. Despite the development of safer proteasome inhibitors, such as carfilzomib, gastrointestinal toxicities remain some of the most common side effects. This review aims to summarize the previous literature on proteasome inhibitor-induced gastrointestinal toxicities, report on recent updates in the field, and investigate possible mechanisms of this toxicity. RECENT FINDINGS Updates in the literature have included a direct comparison of the safety of approved proteasome inhibitors, bortezomib and carfilzomib, reporting less neurotoxicity and similar gastrointestinal toxicity, from carfilzomib when compared with bortezomib. Many recent studies have investigated the safety of orally bioavailable proteasome inhibitors, such as ixazomib and oprozomib. However, little progress has been made in understanding the possible mechanisms of proteasome inhibitor-induced gastrointestinal toxicities. SUMMARY Although recent studies have continued to report gastrointestinal toxicities resulting from proteasome inhibitor treatment, particularly when combined with other agents or when administered orally, the mechanisms of proteasome inhibitor-induced gut toxicity remain largely unexplored. Further studies are needed to investigate the pathophysiology of this toxicity to improve the safety of existing and novel proteasome inhibitors.
Collapse
|