1
|
Safi R, Sánchez-Álvarez M, Bosch M, Demangel C, Parton RG, Pol A. Defensive-lipid droplets: Cellular organelles designed for antimicrobial immunity. Immunol Rev 2023; 317:113-136. [PMID: 36960679 DOI: 10.1111/imr.13199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Microbes have developed many strategies to subvert host organisms, which, in turn, evolved several innate immune responses. As major lipid storage organelles of eukaryotes, lipid droplets (LDs) are an attractive source of nutrients for invaders. Intracellular viruses, bacteria, and protozoan parasites induce and physically interact with LDs, and the current view is that they "hijack" LDs to draw on substrates for host colonization. This dogma has been challenged by the recent demonstration that LDs are endowed with a protein-mediated antibiotic activity, which is upregulated in response to danger signals and sepsis. Dependence on host nutrients could be a generic "Achilles' heel" of intracellular pathogens and LDs a suitable chokepoint harnessed by innate immunity to organize a front-line defense. Here, we will provide a brief overview of the state of the conflict and discuss potential mechanisms driving the formation of the 'defensive-LDs' functioning as hubs of innate immunity.
Collapse
Affiliation(s)
- Rémi Safi
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Miguel Sánchez-Álvarez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Instituto de Investigaciones Biomédicas Alberto Sols (IIB), Madrid, Spain
| | - Marta Bosch
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Caroline Demangel
- Immunobiology and Therapy Unit, Institut Pasteur, Université Paris Cité, INSERM U1224, Paris, France
| | - Robert G Parton
- Institute for Molecular Bioscience (IMB), Brisbane, Queensland, Australia
- Centre for Microscopy and Microanalysis (CMM), University of Queensland, Brisbane, Queensland, Australia
| | - Albert Pol
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
2
|
Hüsler D, Stauffer P, Hilbi H. Tapping lipid droplets: A rich fat diet of intracellular bacterial pathogens. Mol Microbiol 2023; 120:194-209. [PMID: 37429596 DOI: 10.1111/mmi.15120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/12/2023]
Abstract
Lipid droplets (LDs) are dynamic and versatile organelles present in most eukaryotic cells. LDs consist of a hydrophobic core of neutral lipids, a phospholipid monolayer coat, and a variety of associated proteins. LDs are formed at the endoplasmic reticulum and have diverse roles in lipid storage, energy metabolism, membrane trafficking, and cellular signaling. In addition to their physiological cellular functions, LDs have been implicated in the pathogenesis of several diseases, including metabolic disorders, cancer, and infections. A number of intracellular bacterial pathogens modulate and/or interact with LDs during host cell infection. Members of the genera Mycobacterium, Legionella, Coxiella, Chlamydia, and Salmonella exploit LDs as a source of intracellular nutrients and membrane components to establish their distinct intracellular replicative niches. In this review, we focus on the biogenesis, interactions, and functions of LDs, as well as on their role in lipid metabolism of intracellular bacterial pathogens.
Collapse
Affiliation(s)
- Dario Hüsler
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Pia Stauffer
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Arbaizar-Rovirosa M, Pedragosa J, Lozano JJ, Casal C, Pol A, Gallizioli M, Planas AM. Aged lipid-laden microglia display impaired responses to stroke. EMBO Mol Med 2023; 15:e17175. [PMID: 36541061 PMCID: PMC9906381 DOI: 10.15252/emmm.202217175] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
Microglial cells of the aged brain manifest signs of dysfunction that could contribute to the worse neurological outcome of stroke in the elderly. Treatment with colony-stimulating factor 1 receptor antagonists enables transient microglia depletion that is followed by microglia repopulation after treatment interruption, causing no known harm to mice. We tested whether this strategy restored microglia function and ameliorated stroke outcome in old mice. Cerebral ischemia/reperfusion induced innate immune responses in microglia highlighted by type I interferon and metabolic changes involving lipid droplet biogenesis. Old microglia accumulated lipids under steady state and displayed exacerbated innate immune responses to stroke. Microglia repopulation in old mice reduced lipid-laden microglia, and the cells exhibited reduced inflammatory responses to ischemia. Moreover, old mice with renewed microglia showed improved motor function 2 weeks after stroke. We conclude that lipid deposits in aged microglia impair the cellular responses to ischemia and worsen functional recovery in old mice.
Collapse
Affiliation(s)
- Maria Arbaizar-Rovirosa
- Department of Neuroscience and Experimental Therapeutics, Instituto de Investigaciones Biomédicas de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Jordi Pedragosa
- Department of Neuroscience and Experimental Therapeutics, Instituto de Investigaciones Biomédicas de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Juan J Lozano
- Bioinformatics Platform, Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Carme Casal
- Microscopy Service, Instituto de Investigaciones Biomédicas de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Albert Pol
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Mattia Gallizioli
- Department of Neuroscience and Experimental Therapeutics, Instituto de Investigaciones Biomédicas de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Anna M Planas
- Department of Neuroscience and Experimental Therapeutics, Instituto de Investigaciones Biomédicas de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
4
|
Bosch M, Pol A. Eukaryotic lipid droplets: metabolic hubs, and immune first responders. Trends Endocrinol Metab 2022; 33:218-229. [PMID: 35065875 DOI: 10.1016/j.tem.2021.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 12/18/2022]
Abstract
As major eukaryotic lipid storage organelles, lipid droplets (LDs) are metabolic hubs coordinating energy flux and building block distribution. Infectious pathogens often promote accumulation and physically interact with LDs. The most accepted view is that host LDs are hijacked by invaders to draw on nutrients for host colonisation. However, unique traits such as biogenesis plasticity, dynamic proteome, signalling capacity, and ability to interact with other organelles endow LDs with competencies to face complex biological challenges. Here, we focus on published data suggesting that LDs are not usurped organelles but innate immunity first responders. By comparison with analogous mechanisms activated on LDs in nutrient-poor environments, our review supports the hypothesis that host LDs actively participate in immunometabolism, immune signalling, and microbial killing.
Collapse
Affiliation(s)
- Marta Bosch
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain.
| | - Albert Pol
- Lipid Trafficking and Disease Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, 08036 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona
| |
Collapse
|
5
|
Saravanan S, Guleria N, Ranjitha HB, Sreenivasa BP, Hosamani M, Prieto C, Umapathi V, Santosh HK, Behera S, Dhanesh VV, Krishna GS, Gopinath S, Kolte A, Bayry J, Sanyal A, Basagoudanavar SH. Induction of antiviral and cell mediated immune responses significantly reduce viral load in an acute foot-and-mouth disease virus infection in cattle. Genomics 2021; 113:4254-4266. [PMID: 34757126 DOI: 10.1016/j.ygeno.2021.10.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/22/2021] [Accepted: 10/27/2021] [Indexed: 11/27/2022]
Abstract
Foot-and-mouth disease virus (FMDV) causes a severe infection in ruminant animals. Here we present an in-depth transcriptional analysis of soft-palate tissue from cattle experimentally infected with FMDV. The differentially expressed genes from two Indian cattle (Bos indicus) breeds (Malnad Gidda and Hallikar) and Holstein Friesian (HF) crossbred calves, highlighted the activation of metabolic processes, mitochondrial functions and significant enrichment of innate antiviral immune response pathways in the indigenous calves. The results of RT-qPCR based validation of 12 genes was in alignment with the transcriptome data. The indigenous calves showing lesser virus load, elicited early neutralizing antibodies and IFN-γ immune responses. This study revealed that induction of potent innate antiviral response and cell mediated immunity in indigenous cattle, especially Malnad Gidda, significantly restricted FMDV replication during acute infection. These data highlighting the molecular processes associated with host-pathogen interactions, could aid in the conception of novel strategies to prevent and control FMDV infection in cattle.
Collapse
Affiliation(s)
- S Saravanan
- ICAR-Indian Veterinary Research Institute, Hebbal, Bengaluru 560024, India
| | - Neha Guleria
- ICAR-Indian Veterinary Research Institute, Hebbal, Bengaluru 560024, India
| | - H B Ranjitha
- ICAR-Indian Veterinary Research Institute, Hebbal, Bengaluru 560024, India
| | - B P Sreenivasa
- ICAR-Indian Veterinary Research Institute, Hebbal, Bengaluru 560024, India
| | | | - Carlos Prieto
- Bioinformatics Service, Nucleus, University of Salamanca, Spain
| | - V Umapathi
- ICAR-Indian Veterinary Research Institute, Hebbal, Bengaluru 560024, India
| | - H K Santosh
- Department of Animal Husbandry and Veterinary Services Karnataka, India
| | - Subhasmita Behera
- ICAR-Indian Veterinary Research Institute, Hebbal, Bengaluru 560024, India
| | - V V Dhanesh
- ICAR-Indian Veterinary Research Institute, Hebbal, Bengaluru 560024, India
| | | | - Shreya Gopinath
- ICAR-Indian Veterinary Research Institute, Hebbal, Bengaluru 560024, India
| | - Atul Kolte
- ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru 560030, India
| | - Jagadeesh Bayry
- Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Palakkad 678623, India
| | - Aniket Sanyal
- ICAR-Indian Veterinary Research Institute, Hebbal, Bengaluru 560024, India
| | | |
Collapse
|
6
|
Bosch M, Sweet MJ, Parton RG, Pol A. Lipid droplets and the host-pathogen dynamic: FATal attraction? J Cell Biol 2021; 220:e202104005. [PMID: 34165498 PMCID: PMC8240858 DOI: 10.1083/jcb.202104005] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
In the ongoing conflict between eukaryotic cells and pathogens, lipid droplets (LDs) emerge as a choke point in the battle for nutrients. While many pathogens seek the lipids stored in LDs to fuel an expensive lifestyle, innate immunity rewires lipid metabolism and weaponizes LDs to defend cells and animals. Viruses, bacteria, and parasites directly and remotely manipulate LDs to obtain substrates for metabolic energy, replication compartments, assembly platforms, membrane blocks, and tools for host colonization and/or evasion such as anti-inflammatory mediators, lipoviroparticles, and even exosomes. Host LDs counterattack such advances by synthesizing bioactive lipids and toxic nucleotides, organizing immune signaling platforms, and recruiting a plethora of antimicrobial proteins to provide a front-line defense against the invader. Here, we review the current state of this conflict. We will discuss why, when, and how LDs efficiently coordinate and precisely execute a plethora of immune defenses. In the age of antimicrobial resistance and viral pandemics, understanding innate immune strategies developed by eukaryotic cells to fight and defeat dangerous microorganisms may inform future anti-infective strategies.
Collapse
Affiliation(s)
- Marta Bosch
- Lipid Trafficking and Disease Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Matthew J. Sweet
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Australia
| | - Robert G. Parton
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
- Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Australia
| | - Albert Pol
- Lipid Trafficking and Disease Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
7
|
Negi CK, Khan S, Dirven H, Bajard L, Bláha L. Flame Retardants-Mediated Interferon Signaling in the Pathogenesis of Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2021; 22:ijms22084282. [PMID: 33924165 PMCID: PMC8074384 DOI: 10.3390/ijms22084282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a growing concern worldwide, affecting 25% of the global population. NAFLD is a multifactorial disease with a broad spectrum of pathology includes steatosis, which gradually progresses to a more severe condition such as nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and eventually leads to hepatic cancer. Several risk factors, including exposure to environmental toxicants, are involved in the development and progression of NAFLD. Environmental factors may promote the development and progression of NAFLD by various biological alterations, including mitochondrial dysfunction, reactive oxygen species production, nuclear receptors dysregulation, and interference in inflammatory and immune-mediated signaling. Moreover, environmental contaminants can influence immune responses by impairing the immune system’s components and, ultimately, disease susceptibility. Flame retardants (FRs) are anthropogenic chemicals or mixtures that are being used to inhibit or delay the spread of fire. FRs have been employed in several household and outdoor products; therefore, human exposure is unavoidable. In this review, we summarized the potential mechanisms of FRs-associated immune and inflammatory signaling and their possible contribution to the development and progression of NAFLD, with an emphasis on FRs-mediated interferon signaling. Knowledge gaps are identified, and emerging pharmacotherapeutic molecules targeting the immune and inflammatory signaling for NAFLD are also discussed.
Collapse
Affiliation(s)
- Chander K. Negi
- Faculty of Science, RECETOX, Masaryk University, Kamenice 5, CZ62500 Brno, Czech Republic; (L.B.); (L.B.)
- Correspondence: or
| | - Sabbir Khan
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA;
| | - Hubert Dirven
- Department of Environmental Health, Section for Toxicology and Risk Assessment, Norwegian Institute of Public Health, 0456 Oslo, Norway;
| | - Lola Bajard
- Faculty of Science, RECETOX, Masaryk University, Kamenice 5, CZ62500 Brno, Czech Republic; (L.B.); (L.B.)
| | - Luděk Bláha
- Faculty of Science, RECETOX, Masaryk University, Kamenice 5, CZ62500 Brno, Czech Republic; (L.B.); (L.B.)
| |
Collapse
|
8
|
Elesela S, Lukacs NW. Role of Mitochondria in Viral Infections. Life (Basel) 2021; 11:life11030232. [PMID: 33799853 PMCID: PMC7998235 DOI: 10.3390/life11030232] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/15/2022] Open
Abstract
Viral diseases account for an increasing proportion of deaths worldwide. Viruses maneuver host cell machinery in an attempt to subvert the intracellular environment favorable for their replication. The mitochondrial network is highly susceptible to physiological and environmental insults, including viral infections. Viruses affect mitochondrial functions and impact mitochondrial metabolism, and innate immune signaling. Resurgence of host-virus interactions in recent literature emphasizes the key role of mitochondria and host metabolism on viral life processes. Mitochondrial dysfunction leads to damage of mitochondria that generate toxic compounds, importantly mitochondrial DNA, inducing systemic toxicity, leading to damage of multiple organs in the body. Mitochondrial dynamics and mitophagy are essential for the maintenance of mitochondrial quality control and homeostasis. Therefore, metabolic antagonists may be essential to gain a better understanding of viral diseases and develop effective antiviral therapeutics. This review briefly discusses how viruses exploit mitochondrial dynamics for virus proliferation and induce associated diseases.
Collapse
Affiliation(s)
- Srikanth Elesela
- Department of Pathology, Michigan Medicine, Ann Arbor, MI 48109, USA
- Correspondence:
| | - Nicholas W. Lukacs
- Mary H. Weiser Food Allergy Center, Michigan Medicine, Ann Arbor, MI 48109, USA;
| |
Collapse
|