1
|
Bagnasco D, De Ferrari L, Bondi B, Candeliere MG, Mincarini M, Riccio AM, Braido F. Thymic Stromal Lymphopoietin and Tezepelumab in Airway Diseases: From Physiological Role to Target Therapy. Int J Mol Sci 2024; 25:5972. [PMID: 38892164 PMCID: PMC11172531 DOI: 10.3390/ijms25115972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Thymic stromal lymphopoietin (TSLP), is a protein belonging to a class of epithelial cytokines commonly called alarmins, which also includes IL-25 and IL-33. Functionally, TSLP is a key player in the immune response to environmental insults, initiating a number of downstream inflammatory pathways. TSLP performs its role by binding to a high-affinity heteromeric complex composed of the thymic stromal lymphopoietin receptor (TSLPR) chain and IL-7Rα. In recent years, the important role of proinflammatory cytokines in the etiopathogenesis of various chronic diseases such as asthma, chronic rhinosinusitis with nasal polyposis (CRSwNP), chronic obstructive pulmonary diseases (COPDs), and chronic spontaneous urticaria has been studied. Although alarmins have been found to be mainly implicated in the mechanisms of type 2 inflammation, studies on monoclonal antibodies against TSLP demonstrate partial efficacy even in patients whose inflammation is not definable as T2 and the so-called low T2. Tezepelumab is a human anti-TSLP antibody that prevents TSLP-TSLPR interactions. Several clinical trials are evaluating the safety and efficacy of Tezepelumab in various inflammatory disorders. In this review, we will highlight major recent advances in understanding the functional role of TSLP, its involvement in Th2-related diseases, and its suitability as a target for biological therapies.
Collapse
Affiliation(s)
- Diego Bagnasco
- Allergy and Respiratory Diseases, IRCCS Policlinico San Martino, University of Genoa, 16132 Genoa, Italy; (L.D.F.); (B.B.); (M.G.C.); (M.M.); (A.M.R.); (F.B.)
- Department of Internal Medicine (DIMI), University of Genoa, 16132 Genoa, Italy
| | - Laura De Ferrari
- Allergy and Respiratory Diseases, IRCCS Policlinico San Martino, University of Genoa, 16132 Genoa, Italy; (L.D.F.); (B.B.); (M.G.C.); (M.M.); (A.M.R.); (F.B.)
- Department of Internal Medicine (DIMI), University of Genoa, 16132 Genoa, Italy
| | - Benedetta Bondi
- Allergy and Respiratory Diseases, IRCCS Policlinico San Martino, University of Genoa, 16132 Genoa, Italy; (L.D.F.); (B.B.); (M.G.C.); (M.M.); (A.M.R.); (F.B.)
- Department of Internal Medicine (DIMI), University of Genoa, 16132 Genoa, Italy
| | - Maria Giulia Candeliere
- Allergy and Respiratory Diseases, IRCCS Policlinico San Martino, University of Genoa, 16132 Genoa, Italy; (L.D.F.); (B.B.); (M.G.C.); (M.M.); (A.M.R.); (F.B.)
- Department of Internal Medicine (DIMI), University of Genoa, 16132 Genoa, Italy
| | - Marcello Mincarini
- Allergy and Respiratory Diseases, IRCCS Policlinico San Martino, University of Genoa, 16132 Genoa, Italy; (L.D.F.); (B.B.); (M.G.C.); (M.M.); (A.M.R.); (F.B.)
- Department of Internal Medicine (DIMI), University of Genoa, 16132 Genoa, Italy
| | - Anna Maria Riccio
- Allergy and Respiratory Diseases, IRCCS Policlinico San Martino, University of Genoa, 16132 Genoa, Italy; (L.D.F.); (B.B.); (M.G.C.); (M.M.); (A.M.R.); (F.B.)
- Department of Internal Medicine (DIMI), University of Genoa, 16132 Genoa, Italy
| | - Fulvio Braido
- Allergy and Respiratory Diseases, IRCCS Policlinico San Martino, University of Genoa, 16132 Genoa, Italy; (L.D.F.); (B.B.); (M.G.C.); (M.M.); (A.M.R.); (F.B.)
- Department of Internal Medicine (DIMI), University of Genoa, 16132 Genoa, Italy
| |
Collapse
|
2
|
Nedeva D, Kowal K, Mihaicuta S, Guidos Fogelbach G, Steiropoulos P, Jose Chong-Neto H, Tiotiu A. Epithelial alarmins: a new target to treat chronic respiratory diseases. Expert Rev Respir Med 2023; 17:773-786. [PMID: 37746733 DOI: 10.1080/17476348.2023.2262920] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
INTRODUCTION In response to injury, epithelial cells release alarmins including thymic stromal lymphopoietin (TSLP), high mobility group-box-1 (HMGB1), interleukin (IL)-33 and -25 that can initiate innate immune responses. These alarmins are recognized as activators of T2-immune responses characteristic for asthma, but recent evidence highlighted their role in non-T2 inflammation, airway remodeling, and pulmonary fibrosis making them an attractive therapeutic target for chronic respiratory diseases (CRD). AREAS COVERED In this review, firstly we discuss the role of TSLP, IL-33, IL-25, and HMGB1 in the pathogenesis of asthma, COPD, idiopathic pulmonary fibrosis, and cystic fibrosis according to the published data. In the second part, we summarize the current evidence concerning the efficacy of the antialarmin therapies in CRD. Recent clinical trials showed that anti-TSLP and IL-33/R antibodies can improve severe asthma outcomes. Blocking the IL-33-mediated pathway decreased the exacerbation rate in COPD patients with more important benefit for former-smokers. EXPERT OPINION Despite progress in the understanding of the alarmins' role in the pathogenesis of CRD, all their mechanisms of action are not yet identified. Blocking IL-33 and TSLP pathways offers an interesting option to treat severe asthma and COPD, but future investigations are needed to establish their place in the treatment strategies.
Collapse
Affiliation(s)
- Denislava Nedeva
- Clinic of Asthma and Allergology, UMBAL Alexandrovska, Medical University Sofia, Sofia, Bulgaria
| | - Krzysztof Kowal
- Department of Experimental Allergology and Immunology, Department of Internal Medicine and Allergology, Medical University of Bialystok, Bialystok, Poland
| | - Stefan Mihaicuta
- Center for Research and Innovation in Precision Medicine and Pharmacy, University of Medicine and Pharmacy, Timisoara, Romania
- Department of Pulmonology, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | | | - Paschalis Steiropoulos
- Department of Respiratory Medicine, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Herberto Jose Chong-Neto
- Division of Allergy and Immunology, Complexo Hospital de Clinicas Federal University of Paraná, Curitiba, PR, Brazil
| | - Angelica Tiotiu
- Department of Pulmonology, University Hospital of Nancy, Vandœuvre-lès-Nancy, France
- Development, Adaptation and Disadvantage. Cardiorespiratory regulations and motor control (EA 3450 DevAH), University of Lorraine, Vandœuvre-lès-Nancy, France
| |
Collapse
|
3
|
Choi JY, Kim TH, Kang SY, Park HJ, Lim SY, Kim SH, Jung KS, Yoo KH, Yoon HK, Rhee CK. Association between Serum Levels of Interleukin-25/Thymic Stromal Lymphopoietin and the Risk of Exacerbation of Chronic Obstructive Pulmonary Disease. Biomolecules 2023; 13:biom13030564. [PMID: 36979498 PMCID: PMC10045988 DOI: 10.3390/biom13030564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/09/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Th2 inflammation is associated with various characteristics of patients with chronic obstructive pulmonary disease (COPD). In this study, we analyzed the COPD exacerbation risk associated with serum levels of interleukin (IL)-25/thymic stromal lymphopoietin (TSLP) and eosinophils. We studied the KOCOSS cohort, a multicenter COPD cohort created by 54 medical centers in South Korea. We extracted data collected between April 2012 and August 2020. We measured serum levels of TSLP and IL-25 in those who agreed to provide blood, and assessed exacerbation risk according to each. In all, 562 patients were enrolled. The IL-25-high group had a lower St. George's Respiratory Questionnaire score than others, and the TSLP-high group had a poorer exercise capacity than the TSLP-low group. There were no significant differences in the forced expiratory volume in 1 s (FEV1), the levels of Th2 inflammatory biomarkers, or the exacerbation histories between the two groups. The 3-year decline in FEV1 was not significantly affected by IL-25 or TSLP levels. In terms of 1-year exacerbation risk, individuals in the IL-25-high group were at lower risk for moderate-to-severe exacerbation than others. A high TSLP level was associated with a lower risk of severe exacerbation but only in the eosinophil-low group. Serum levels of IL-25 are negatively correlated with moderate-to-severe exacerbation risk in this cohort. A negative correlation between severe exacerbation risk and TSLP level was apparent only in the eosinophil-low group.
Collapse
Affiliation(s)
- Joon Young Choi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Incheon St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Tae-Hyung Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri 11923, Republic of Korea
| | - Sung-Yoon Kang
- Division of Pulmonology and Allergy, Department of Internal Medicine, Gachon University Gil Medical Center, Incheon 22318, Republic of Korea
| | - Hye Jung Park
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Seong Yong Lim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
| | - Sang Hyuk Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Dongguk University Gyeongju Hospital, Dongguk University College of Medicine, Gyeongju 38067, Republic of Korea
| | - Ki-Suck Jung
- Department of Internal Medicine, College of Medicine, Hallym University Sacred Heart Hospital, Anyang 14068, Republic of Korea
| | - Kwang Ha Yoo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05029, Republic of Korea
| | - Hyoung Kyu Yoon
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Chin Kook Rhee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
4
|
Dong H, Hao Y, Li W, Yang W, Gao P. IL-36 Cytokines: Their Roles in Asthma and Potential as a Therapeutic. Front Immunol 2022; 13:921275. [PMID: 35903102 PMCID: PMC9314646 DOI: 10.3389/fimmu.2022.921275] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Interleukin (IL)-36 cytokines are members of the IL-1 superfamily, which consists of three agonists (IL-36α, IL-36β and IL-36γ) and an IL-36 receptor antagonist (IL-36Ra). IL-36 cytokines are crucial for immune and inflammatory responses. Abnormal levels of IL-36 cytokine expression are involved in the pathogenesis of inflammation, autoimmunity, allergy and cancer. The present study provides a summary of recent reports on IL-36 cytokines that participate in the pathogenesis of inflammatory diseases, and the potential mechanisms underlying their roles in asthma. Abnormal levels of IL-36 cytokines are associated with the pathogenesis of different types of asthma through the regulation of the functions of different types of cells. Considering the important role of IL-36 cytokines in asthma, these may become a potential therapeutic target for asthma treatment. However, existing evidence is insufficient to fully elucidate the specific mechanism underlying the action of IL-36 cytokines during the pathological process of asthma. The possible mechanisms and functions of IL-36 cytokines in different types of asthma require further studies.
Collapse
Affiliation(s)
- Hongna Dong
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Yuqiu Hao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Wei Li
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Peng Gao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Peng Gao,
| |
Collapse
|
5
|
Baker JR, Fenwick PS, Koss CK, Owles HB, Elkin SL, Fine JS, Thomas M, Kasmi KC, Barnes PJ, Donnelly LE. Imbalance between IL-36 receptor agonist and antagonist drives neutrophilic inflammation in COPD. JCI Insight 2022; 7:155581. [PMID: 35763349 PMCID: PMC9462491 DOI: 10.1172/jci.insight.155581] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Current treatments fail to modify the underlying pathophysiology and disease progression of chronic obstructive pulmonary disease (COPD), necessitating alternative therapies. Here, we show that COPD subjects have increased IL-36γ and decreased IL-36 receptor antagonist (IL-36Ra) in bronchoalveolar and nasal fluid compared to control subjects. IL-36γ is derived from small airway epithelial cells (SAEC) and further induced by a viral mimetic, whereas IL-36RA is derived from macrophages. IL-36γ stimulates release of the neutrophil chemoattractants CXCL1 and CXCL8, as well as elastolytic matrix metalloproteinases (MMPs) from small airway fibroblasts (SAF). Proteases released from COPD neutrophils cleave and activate IL-36γ thereby perpetuating IL-36 inflammation. Transfer of culture media from SAEC to SAF stimulated release of CXCL1, that was inhibited by exogenous IL-36RA. The use of a therapeutic antibody that inhibits binding to the IL-36 receptor (IL-36R) attenuated IL-36γ driven inflammation and cellular cross talk. We have demonstrated a mechanism for the amplification and propagation of neutrophilic inflammation in COPD and that blocking this cytokine family via a IL-36R neutralizing antibody could be a promising new therapeutic strategy in the treatment of COPD.
Collapse
Affiliation(s)
- Jonathan R Baker
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Peter S Fenwick
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Carolin K Koss
- Boehringer Ingelheim Pharma GmbH & Co KG,, Biberach an der Riß, Germany
| | - Harriet B Owles
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Sarah L Elkin
- Department of Respiratory Medicine, Imperial College Healthcare Trust, London, United Kingdom
| | - Jay S Fine
- Immunology and Respiratory Diseases, Boehringer Ingelheim Pharmaceuticals Inc., Ridgefield, United States of America
| | - Matthew Thomas
- Department of Immunology and Respiratory, Boehringer Ingelheim Pharma GmbH & Co KG,, Biberach an der Riß, Germany
| | - Karim C Kasmi
- Department of Immunology and Respiratory, Boehringer Ingelheim Pharma GmbH & Co KG,, Biberach an der Riß, Germany
| | - Peter J Barnes
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Louise E Donnelly
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
6
|
Matarazzo L, Hernandez Santana YE, Walsh PT, Fallon PG. The IL-1 cytokine family as custodians of barrier immunity. Cytokine 2022; 154:155890. [DOI: 10.1016/j.cyto.2022.155890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/31/2022] [Accepted: 04/13/2022] [Indexed: 12/12/2022]
|
7
|
Huang S, Feng T, Wang J, Dong L. IL-36 is Closely Related to Neutrophilic Inflammation in Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2022; 17:1339-1347. [PMID: 35698471 PMCID: PMC9188371 DOI: 10.2147/copd.s357151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/01/2022] [Indexed: 11/24/2022] Open
Abstract
Background Interleukin (IL)-36α, IL-36β, and IL-36γ belong to the IL-36 family and play an important role in the pathogenesis of many diseases. Chronic obstructive pulmonary disease (COPD) may be correlated with IL-36; however, the specific role of IL-36 in COPD is unclear. In this study, we aimed to clarify whether IL-36 could be an indicator for determining COPD severity and the specific nature of the pro-inflammatory effects of IL-36 in COPD. Methods A total of 70 patients with COPD and 20 control subjects were included in this study. We collected peripheral blood samples from both the groups, analyzed the blood cell fractions by routine blood examination, and measured the serum levels of IL-36α, IL-36β, and IL-36γ by performing polymerase chain reaction and enzyme-linked immunosorbent assay. In addition, the correlation between the number of neutrophils and eosinophils and the level of IL-36 was also analyzed. Results We found that level of IL-36 in patients with COPD was positively correlated with the number of neutrophils but not with eosinophils, whereas the correlation was not found in the control group. Moreover, the level of IL-36 was negatively correlated with the level of lung function of patients with COPD, and the levels of IL-36α, IL-36β, and IL-36γ increased with advancing disease severity. Conclusion In COPD, the pro-inflammatory effect of IL-36 is closely related to neutrophils, and hence, IL-36 might be considered a novel biomarker for determining COPD severity.
Collapse
Affiliation(s)
- Siyuan Huang
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Tao Feng
- Department of Respiratory Medicine, Shengli Oilfield Central Hospital, Dongying, People’s Republic of China
| | - Jing Wang
- Department of Respiratory, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Liang Dong
- Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Respiratory Diseases, Jinan, People’s Republic of China
- Correspondence: Liang Dong, Department of Respiratory, Shandong Provincial Qianfoshan Hospital, Shandong University, The First Affiliated Hospital of Shandong First Medical University, Shandong Institute of Respiratory Diseases, Jinan, 250014, People’s Republic of China, Tel +86-13505401207, Email
| |
Collapse
|
8
|
Fricker M, Qin L, Sánchez‐Ovando S, Simpson JL, Baines KJ, Riveros C, Scott HA, Wood LG, Wark PAB, Kermani NZ, Chung KF, Gibson PG. An altered sputum macrophage transcriptome contributes to the neutrophilic asthma endotype. Allergy 2022; 77:1204-1215. [PMID: 34510493 PMCID: PMC9541696 DOI: 10.1111/all.15087] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/21/2021] [Indexed: 12/11/2022]
Abstract
Background Neutrophilic asthma (NA) is a clinically important asthma phenotype, the cellular and molecular basis of which is not completely understood. Airway macrophages are long‐lived immune cells that exert important homeostatic and inflammatory functions which are dysregulated in asthma. Unique transcriptomic programmes reflect varied macrophage phenotypes in vitro. We aimed to determine whether airway macrophages are transcriptomically altered in NA. Methods We performed RNASeq analysis on flow cytometry‐isolated sputum macrophages comparing NA (n = 7) and non‐neutrophilic asthma (NNA, n = 13). qPCR validation of RNASeq results was performed (NA n = 13, NNA n = 23). Pathway analysis (PANTHER, STRING) of differentially expressed genes (DEGs) was performed. Gene set variation analysis (GSVA) was used to test for enrichment of NA macrophage transcriptomic signatures in whole sputum microarray (cohort 1 ‐ controls n = 16, NA n = 29, NNA n = 37; cohort 2 U‐BIOPRED ‐ controls n = 16, NA n = 47, NNA n = 57). Results Flow cytometry‐sorting significantly enriched sputum macrophages (99.4% post‐sort, 44.9% pre‐sort, p < .05). RNASeq analysis confirmed macrophage purity and identified DEGs in NA macrophages. Selected DEGs (SLAMF7, DYSF, GPR183, CSF3, PI3, CCR7, all p < .05 NA vs. NNA) were confirmed by qPCR. Pathway analysis of NA macrophage DEGs was consistent with responses to bacteria, contribution to neutrophil recruitment and increased expression of phagocytosis and efferocytosis factors. GSVA demonstrated neutrophilic macrophage gene signatures were significantly enriched in whole sputum microarray in NA vs. NNA and controls in both cohorts. Conclusions We demonstrate a pathophysiologically relevant sputum macrophage transcriptomic programme in NA. The finding that there is transcriptional activation of inflammatory programmes in cell types other than neutrophils supports the concept of NA as a specific endotype.
Collapse
Affiliation(s)
- Michael Fricker
- School of Medicine and Public Health Faculty of Health and Medicine and Priority Research Centre for Healthy Lungs The University of Newcastle Callaghan NSW Australia
- National Health and Medical Research Council Centre for Excellence in Severe Asthma Newcastle NSW Australia
- Hunter Medical Research Institute Newcastle NSW Australia
| | - Ling Qin
- Department of Respiratory Medicine Department of Pulmonary and Critical Care Medicine Xiangya Hospital Central South University Changsha China
| | - Stephany Sánchez‐Ovando
- School of Medicine and Public Health Faculty of Health and Medicine and Priority Research Centre for Healthy Lungs The University of Newcastle Callaghan NSW Australia
- Hunter Medical Research Institute Newcastle NSW Australia
| | - Jodie L. Simpson
- School of Medicine and Public Health Faculty of Health and Medicine and Priority Research Centre for Healthy Lungs The University of Newcastle Callaghan NSW Australia
- Hunter Medical Research Institute Newcastle NSW Australia
- Department of Respiratory and Sleep Medicine John Hunter Hospital Newcastle NSW Australia
| | - Katherine J. Baines
- School of Medicine and Public Health Faculty of Health and Medicine and Priority Research Centre for Healthy Lungs The University of Newcastle Callaghan NSW Australia
- Hunter Medical Research Institute Newcastle NSW Australia
| | - Carlos Riveros
- Statistical services (CReDITSS) Hunter Medical Research Institute Newcastle NSW Australia
| | - Hayley A. Scott
- Hunter Medical Research Institute Newcastle NSW Australia
- School of Biomedical Sciences and Pharmacy Faculty of Health and Medicine Priority Research Centre for Healthy Lungs The University of Newcastle Newcastle NSW Australia
| | - Lisa G. Wood
- Hunter Medical Research Institute Newcastle NSW Australia
- School of Biomedical Sciences and Pharmacy Faculty of Health and Medicine Priority Research Centre for Healthy Lungs The University of Newcastle Newcastle NSW Australia
| | - Peter AB. Wark
- School of Medicine and Public Health Faculty of Health and Medicine and Priority Research Centre for Healthy Lungs The University of Newcastle Callaghan NSW Australia
- Hunter Medical Research Institute Newcastle NSW Australia
- Department of Respiratory and Sleep Medicine John Hunter Hospital Newcastle NSW Australia
| | - Nazanin Z. Kermani
- Data Science Institute Imperial College London London UK
- National Heart and Lung Institute Imperial College London London UK
| | - Kian Fan Chung
- Data Science Institute Imperial College London London UK
- National Heart and Lung Institute Imperial College London London UK
| | - Peter G. Gibson
- School of Medicine and Public Health Faculty of Health and Medicine and Priority Research Centre for Healthy Lungs The University of Newcastle Callaghan NSW Australia
- National Health and Medical Research Council Centre for Excellence in Severe Asthma Newcastle NSW Australia
- Hunter Medical Research Institute Newcastle NSW Australia
- Department of Respiratory and Sleep Medicine John Hunter Hospital Newcastle NSW Australia
| |
Collapse
|
9
|
Uwagboe I, Adcock IM, Lo Bello F, Caramori G, Mumby S. New drugs under development for COPD. Minerva Med 2022; 113:471-496. [PMID: 35142480 DOI: 10.23736/s0026-4806.22.08024-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The characteristic features of chronic obstructive pulmonary disease (COPD) include inflammation and remodelling of the lower airways and lung parenchyma together with activation of inflammatory and immune processes. Due to the increasing habit of cigarette smoking worldwide COPD prevalence is increasing globally. Current therapies are unable to prevent COPD progression in many patients or target many of its hallmark characteristics which may reflect the lack of adequate biomarkers to detect the heterogeneous clinical and molecular nature of COPD. In this chapter we review recent molecular data that may indicate novel pathways that underpin COPD subphenotypes and indicate potential improvements in the classes of drugs currently used to treat COPD. We also highlight the evidence for new drugs or approaches to treat COPD identified using molecular and other approaches including kinase inhibitors, cytokine- and chemokine-directed biologicals and small molecules, antioxidants and redox signalling pathway inhibitors, inhaled anti-infectious agents and senolytics. It is important to consider the phenotypes/molecular endotypes of COPD patients together with specific outcome measures to target new therapies to particular COPD subtypes. This will require greater understanding of COPD molecular pathologies and a focus on biomarkers of predicting disease subsets and responder/non-responder populations.
Collapse
Affiliation(s)
- Isabel Uwagboe
- Airways Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| | - Ian M Adcock
- Airways Disease Section, National Heart and Lung Institute, Imperial College, London, UK -
| | - Federica Lo Bello
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Sharon Mumby
- Airways Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|