1
|
Chen J, Ji C, Liu S, Wang J, Wang C, Pan J, Qiao J, Liang Y, Cai M, Ma J. Transforming growth factor-β (TGF-β) signaling pathway-related genes in predicting the prognosis of colon cancer and guiding immunotherapy. CANCER PATHOGENESIS AND THERAPY 2024; 2:299-313. [PMID: 39371100 PMCID: PMC11447362 DOI: 10.1016/j.cpt.2023.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 10/08/2024]
Abstract
Background Colon cancer is a malignant tumor with high malignancy and a low survival rate whose heterogeneity limits systemic immunotherapy. Transforming growth factor-β (TGF-β) signaling pathway-related genes are associated with multiple tumors, but their role in prognosis prediction and tumor microenvironment (TME) regulation in colon cancer is poorly understood. Using bioinformatics, this study aimed to construct a risk prediction signature for colon cancer, which may provide a means for developing new effective treatment strategies. Methods Using consensus clustering, patients in The Cancer Genome Atlas (TCGA) with colon adenocarcinoma were classified into several subtypes based on the expression of TGF-β signaling pathway-related genes, and differences in survival, molecular, and immunological TME characteristics and drug sensitivity were examined in each subtype. Ten genes that make up a TGF-β-related predictive signature were found by least absolute shrinkage and selector operation (LASSO) regression using colon cancer data from the TCGA database and confirmed using a Gene Expression Omnibus (GEO) dataset. A nomogram incorporating risk scores and clinicopathologic factors was developed to stratify the prognosis of patients with colon cancer for accurate clinical diagnosis and therapy. Results Two TGF-β subtypes were identified, with the TGF-β-high subtype being associated with a poorer prognosis and superior sensitivity to immunotherapy. Mutation analyses showed a high incidence of gene mutations in the TGF-β-high subtype. After completing signature construction, patients with colon cancer were categorized into high- and low-risk subgroups based on the median risk score of the TGF-β-related predictive signature. The risk score exhibited superior predictive performance relative to age, gender, and stage, as evidenced by its AUC of 0.686. Patients in the high-risk subgroup had higher levels of immunosuppressive cell infiltration and immune checkpoints in the TME, suggesting that these patients had better responses to immunotherapy. Conclusions Patients with colon cancer were divided into two subtypes with different survival and immune characteristics using consensus clustering analysis based on TGF-β signaling pathway-related genes. The constructed risk prediction signature may show promise as a biomarker for evaluating the prognosis of colon cancer, with potential utility for screening individuals for immunotherapy.
Collapse
Affiliation(s)
- Jie Chen
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Chao Ji
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Silin Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jin Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Che Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jue Pan
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jinyu Qiao
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yu Liang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Mengjiao Cai
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jinlu Ma
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| |
Collapse
|
2
|
Zhang D, Sun B, Wang J, Chen SPR, Bobrin VA, Gu Y, Ng CK, Gu W, Monteiro MJ. RGD Density on Tadpole Nanostructures Regulates Cancer Stem Cell Proliferation and Stemness. Biomacromolecules 2024; 25:5260-5272. [PMID: 39056889 DOI: 10.1021/acs.biomac.4c00645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Cancer stem cells (CSCs) make up a small population of cancer cells, primarily responsible for tumor initiation, metastasis, and drug resistance. They overexpress Arg-Gly-Asp (RGD) binding integrin receptors that play crucial roles in cell proliferation and stemness through interaction with the extracellular matrix. Here, we showed that monodisperse polymeric tadpole nanoparticles covalently coupled with different RGD densities regulated colon CSC proliferation and stemness in a RGD density-dependent manner. These tadpoles penetrated deeply and evenly into tumor spheroids and specifically entered cells with cancer stem markers CD24 and CD133. Low RGD density tadpoles triggered integrin α5 expression that further activated TGF-β3 and TGF-β2 signaling pathways, confirmed by the increase of pERK and Bcl-2 protein levels. This process is associated with the RGD cluster presentation controlled by the RGD density on the tadpole surface.
Collapse
Affiliation(s)
- Dayong Zhang
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang 310015, China
| | - Bing Sun
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Jingyi Wang
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Sung-Po R Chen
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Valentin A Bobrin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Yushu Gu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Chun Ki Ng
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Wenyi Gu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Michael J Monteiro
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
3
|
Horvat Mercnik M, Schliefsteiner C, Sanchez-Duffhues G, Wadsack C. TGFβ signalling: a nexus between inflammation, placental health and preeclampsia throughout pregnancy. Hum Reprod Update 2024; 30:442-471. [PMID: 38519450 PMCID: PMC11215164 DOI: 10.1093/humupd/dmae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/16/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND The placenta is a unique and pivotal organ in reproduction, controlling crucial growth and cell differentiation processes that ensure a successful pregnancy. Placental development is a tightly regulated and dynamic process, in which the transforming growth factor beta (TGFβ) superfamily plays a central role. This family of pleiotropic growth factors is heavily involved in regulating various aspects of reproductive biology, particularly in trophoblast differentiation during the first trimester of pregnancy. TGFβ signalling precisely regulates trophoblast invasion and the cell transition from cytotrophoblasts to extravillous trophoblasts, which is an epithelial-to-mesenchymal transition-like process. Later in pregnancy, TGFβ signalling ensures proper vascularization and angiogenesis in placental endothelial cells. Beyond its role in trophoblasts and endothelial cells, TGFβ signalling contributes to the polarization and function of placental and decidual macrophages by promoting maternal tolerance of the semi-allogeneic foetus. Disturbances in early placental development have been associated with several pregnancy complications, including preeclampsia (PE) which is one of the severe complications. Emerging evidence suggests that TGFβ is involved in the pathogenesis of PE, thereby offering a potential target for intervention in the human placenta. OBJECTIVE AND RATIONALE This comprehensive review aims to explore and elucidate the roles of the major members of the TGFβ superfamily, including TGFβs, bone morphogenetic proteins (BMPs), activins, inhibins, nodals, and growth differentiation factors (GDFs), in the context of placental development and function. The review focusses on their interactions within the major cell types of the placenta, namely trophoblasts, endothelial cells, and immune cells, in both normal pregnancies and pregnancies complicated by PE throughout pregnancy. SEARCH METHODS A literature search was carried out using PubMed and Google Scholar, searching terms: 'TGF signalling preeclampsia', 'pregnancy TGF signalling', 'preeclampsia tgfβ', 'preeclampsia bmp', 'preeclampsia gdf', 'preeclampsia activin', 'endoglin preeclampsia', 'endoglin pregnancy', 'tgfβ signalling pregnancy', 'bmp signalling pregnancy', 'gdf signalling pregnancy', 'activin signalling pregnancy', 'Hofbauer cell tgfβ signalling', 'placental macrophages tgfβ', 'endothelial cells tgfβ', 'endothelium tgfβ signalling', 'trophoblast invasion tgfβ signalling', 'trophoblast invasion Smad', 'trophoblast invasion bmp', 'trophoblast invasion tgfβ', 'tgfβ preeclampsia', 'tgfβ placental development', 'TGFβ placental function', 'endothelial dysfunction preeclampsia tgfβ signalling', 'vascular remodelling placenta TGFβ', 'inflammation pregnancy tgfβ', 'immune response pregnancy tgfβ', 'immune tolerance pregnancy tgfβ', 'TGFβ pregnancy NK cells', 'bmp pregnancy NK cells', 'bmp pregnancy tregs', 'tgfβ pregnancy tregs', 'TGFβ placenta NK cells', 'TGFβ placenta tregs', 'NK cells preeclampsia', 'Tregs preeclampsia'. Only articles published in English until 2023 were used. OUTCOMES A comprehensive understanding of TGFβ signalling and its role in regulating interconnected cell functions of the main placental cell types provides valuable insights into the processes essential for successful placental development and growth of the foetus during pregnancy. By orchestrating trophoblast invasion, vascularization, immune tolerance, and tissue remodelling, TGFβ ligands contribute to the proper functioning of a healthy maternal-foetal interface. However, dysregulation of TGFβ signalling has been implicated in the pathogenesis of PE, where the shallow trophoblast invasion, defective vascular remodelling, decreased uteroplacental perfusion, and endothelial cell and immune dysfunction observed in PE, are all affected by an altered TGFβ signalling. WIDER IMPLICATIONS The dysregulation of TGFβ signalling in PE has important implications for research and clinical practice. Further investigation is required to understand the underlying mechanisms, including the role of different ligands and their regulation under pathophysiological conditions, in order to discover new therapeutic targets. Distinguishing between clinically manifested subtypes of PE and studying TGFβ signalling in different placental cell types holistically is an important first step. To put this knowledge into practice, pre-clinical animal models combined with new technologies are needed. This may also lead to improved human research models and identify potential therapeutic targets, ultimately improving outcomes for affected pregnancies and reducing the burden of PE.
Collapse
Affiliation(s)
| | | | - Gonzalo Sanchez-Duffhues
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Tissue-Specific BMP Signalling ISPA-HUCA, Oviedo, Spain
| | - Christian Wadsack
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
4
|
Poulet S, Dai M, Wang N, Yan G, Boudreault J, Daliah G, Guillevin A, Nguyen H, Galal S, Ali S, Lebrun JJ. Genome-wide in vivo CRISPR screen identifies TGFβ3 as actionable biomarker of palbociclib resistance in triple negative breast cancer. Mol Cancer 2024; 23:118. [PMID: 38831405 PMCID: PMC11145857 DOI: 10.1186/s12943-024-02029-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 05/22/2024] [Indexed: 06/05/2024] Open
Abstract
Triple negative breast cancer (TNBC) remains exceptionally challenging to treat. While CDK4/6 inhibitors have revolutionized HR + breast cancer therapy, there is limited understanding of their efficacy in TNBC and meaningful predictors of response and resistance to these drugs remain scarce. We conducted an in vivo genome-wide CRISPR screen using palbociclib as a selection pressure in TNBC. Hits were prioritized using microarray data from a large panel of breast cancer cell lines to identify top palbociclib sensitizers. Our study defines TGFβ3 as an actionable determinant of palbociclib sensitivity that potentiates its anti-tumor effects. Mechanistically, we show that chronic palbociclib exposure depletes p21 levels, contributing to acquired resistance, and that TGFβ3 treatment can overcome this. This study defines TGFβ3 as an actionable biomarker that can be used to improve patient stratification for palbociclib treatment and exploits the synergistic interaction between CDK4/6 and TGFβ3 to propose a new combinatorial treatment for TNBC.
Collapse
Affiliation(s)
- Sophie Poulet
- Department of Medicine, Cancer Research Program, McGill University Health Centre, Montreal, QC, Canada
| | - Meiou Dai
- Department of Medicine, Cancer Research Program, McGill University Health Centre, Montreal, QC, Canada
| | - Ni Wang
- Department of Medicine, Cancer Research Program, McGill University Health Centre, Montreal, QC, Canada
| | - Gang Yan
- Department of Medicine, Cancer Research Program, McGill University Health Centre, Montreal, QC, Canada
| | - Julien Boudreault
- Department of Medicine, Cancer Research Program, McGill University Health Centre, Montreal, QC, Canada
| | - Girija Daliah
- Department of Medicine, Cancer Research Program, McGill University Health Centre, Montreal, QC, Canada
| | - Alan Guillevin
- Department of Medicine, Cancer Research Program, McGill University Health Centre, Montreal, QC, Canada
| | - Huong Nguyen
- Department of Medicine, Cancer Research Program, McGill University Health Centre, Montreal, QC, Canada
| | - Soaad Galal
- Department of Medicine, Cancer Research Program, McGill University Health Centre, Montreal, QC, Canada
| | - Suhad Ali
- Department of Medicine, Cancer Research Program, McGill University Health Centre, Montreal, QC, Canada
| | - Jean-Jacques Lebrun
- Department of Medicine, Cancer Research Program, McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
5
|
Muhuitijiang B, Zhou J, Zhou R, Zhang Z, Yan G, Zheng Z, Zeng X, Zhu Y, Wu H, Gao R, Zhu T, Shi X, Tan W. Development and experimental validation of an M2 macrophage and platelet-associated gene signature to predict prognosis and immunotherapy sensitivity in bladder cancer. Cancer Sci 2024; 115:1417-1432. [PMID: 38422408 DOI: 10.1111/cas.16113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/20/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Platelets and M2 macrophages both play crucial roles in tumorigenesis, but their relationship and the prognosis value of the relative genes in bladder cancer (BLCA) remain obscure. In the present study, we found that platelets stimulated by BLCA cell lines could promote M2 macrophage polarization, and platelets were significantly associated with the infiltration of M2 macrophages in BLCA samples. Through the bioinformatic analyses, A2M, TGFB3, and MYLK, which were associated with platelets and M2 macrophages, were identified and verified in vitro and then included in the predictive model. A platelet and M2 macrophage-related gene signature was constructed to evaluate the prognosis and immunotherapeutic sensitivity, helping to guide personalized treatment and to disclose the underlying mechanisms.
Collapse
Affiliation(s)
| | - Jiawei Zhou
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ranran Zhou
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiyong Zhang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guang Yan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zaosong Zheng
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiangbo Zeng
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuanchao Zhu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haowei Wu
- The First Clinical Medical College of Southern Medical University, Guangzhou, Guangdong, China
| | - Ruxi Gao
- The First Clinical Medical College of Southern Medical University, Guangzhou, Guangdong, China
| | - Tianhang Zhu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaojun Shi
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wanlong Tan
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Danielpour D. Advances and Challenges in Targeting TGF-β Isoforms for Therapeutic Intervention of Cancer: A Mechanism-Based Perspective. Pharmaceuticals (Basel) 2024; 17:533. [PMID: 38675493 PMCID: PMC11054419 DOI: 10.3390/ph17040533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The TGF-β family is a group of 25 kDa secretory cytokines, in mammals consisting of three dimeric isoforms (TGF-βs 1, 2, and 3), each encoded on a separate gene with unique regulatory elements. Each isoform plays unique, diverse, and pivotal roles in cell growth, survival, immune response, and differentiation. However, many researchers in the TGF-β field often mistakenly assume a uniform functionality among all three isoforms. Although TGF-βs are essential for normal development and many cellular and physiological processes, their dysregulated expression contributes significantly to various diseases. Notably, they drive conditions like fibrosis and tumor metastasis/progression. To counter these pathologies, extensive efforts have been directed towards targeting TGF-βs, resulting in the development of a range of TGF-β inhibitors. Despite some clinical success, these agents have yet to reach their full potential in the treatment of cancers. A significant challenge rests in effectively targeting TGF-βs' pathological functions while preserving their physiological roles. Many existing approaches collectively target all three isoforms, failing to target just the specific deregulated ones. Additionally, most strategies tackle the entire TGF-β signaling pathway instead of focusing on disease-specific components or preferentially targeting tumors. This review gives a unique historical overview of the TGF-β field often missed in other reviews and provides a current landscape of TGF-β research, emphasizing isoform-specific functions and disease implications. The review then delves into ongoing therapeutic strategies in cancer, stressing the need for more tools that target specific isoforms and disease-related pathway components, advocating mechanism-based and refined approaches to enhance the effectiveness of TGF-β-targeted cancer therapies.
Collapse
Affiliation(s)
- David Danielpour
- Case Comprehensive Cancer Center Research Laboratories, The Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, OH 44106, USA; ; Tel.: +1-216-368-5670; Fax: +1-216-368-8919
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
- Institute of Urology, University Hospitals, Cleveland, OH 44106, USA
| |
Collapse
|
7
|
Hanson I, Juvkam IS, Zlygosteva O, Søland TM, Galtung HK, Malinen E, Edin NFJ. TGF-β3 increases the severity of radiation-induced oral mucositis and salivary gland fibrosis in a mouse model. Int J Radiat Biol 2024; 100:767-776. [PMID: 38442208 DOI: 10.1080/09553002.2024.2324476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 02/06/2024] [Indexed: 03/07/2024]
Abstract
PURPOSE Toxicities from head and neck (H&N) radiotherapy (RT) may affect patient quality of life and can be dose-limiting. Proteins from the transforming growth factor beta (TGF-β) family are key players in the fibrotic response. While TGF-β1 is known to be pro-fibrotic, TGF-β3 has mainly been considered anti-fibrotic. Moreover, TGF-β3 has been shown to act protective against acute toxicities after radio- and chemotherapy. In the present study, we investigated the effect of TGF-β3 treatment during fractionated H&N RT in a mouse model. MATERIALS AND METHODS 30 C57BL/6J mice were assigned to three treatment groups. The RT + TGF-β3 group received local fractionated H&N RT with 66 Gy over five days, combined with TGF-β3-injections at 24-hour intervals. Animals in the RT reference group received identical RT without TGF-β3 treatment. The non-irradiated control group was sham-irradiated according to the same RT schedule. In the follow-up period, body weight and symptoms of oral mucositis and lip dermatitis were monitored. Saliva was sampled at five time points. The experiment was terminated 105 d after the first RT fraction. Submandibular and sublingual glands were preserved, sectioned, and stained with Masson's trichrome to visualize collagen. RESULTS A subset of mice in the RT + TGF-β3 group displayed increased severity of oral mucositis and increased weight loss, resulting in a significant increase in mortality. Collagen content was significantly increased in the submandibular and sublingual glands for the surviving RT + TGF-β3 mice, compared with non-irradiated controls. In the RT reference group, collagen content was significantly increased in the submandibular gland only. Both RT groups displayed lower saliva production after treatment compared to controls. TGF-β3 treatment did not impact saliva production. CONCLUSIONS When repeatedly administered during fractionated RT at the current dose, TGF-β3 treatment increased acute H&N radiation toxicities and increased mortality. Furthermore, TGF-β3 treatment may increase the severity of radiation-induced salivary gland fibrosis.
Collapse
Affiliation(s)
- Ingunn Hanson
- Department of Physics, University of Oslo, Oslo, Norway
| | | | | | - Tine Merete Søland
- Institute of Oral Biology, University of Oslo, Oslo, Norway
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | | | - Eirik Malinen
- Department of Physics, University of Oslo, Oslo, Norway
- Department of Medical Physics, Cancer Clinic, Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|
8
|
Peyvandi S, Bulliard M, Yilmaz A, Kauzlaric A, Marcone R, Haerri L, Coquoz O, Huang YT, Duffey N, Gafner L, Lorusso G, Fournier N, Lan Q, Rüegg C. Tumor-educated Gr1+CD11b+ cells drive breast cancer metastasis via OSM/IL-6/JAK-induced cancer cell plasticity. J Clin Invest 2024; 134:e166847. [PMID: 38236642 PMCID: PMC10940099 DOI: 10.1172/jci166847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/17/2024] [Indexed: 03/16/2024] Open
Abstract
Cancer cell plasticity contributes to therapy resistance and metastasis, which represent the main causes of cancer-related death, including in breast cancer. The tumor microenvironment drives cancer cell plasticity and metastasis, and unraveling the underlying cues may provide novel strategies for managing metastatic disease. Using breast cancer experimental models and transcriptomic analyses, we show that stem cell antigen-1 positive (SCA1+) murine breast cancer cells enriched during tumor progression and metastasis had higher in vitro cancer stem cell-like properties, enhanced in vivo metastatic ability, and generated tumors rich in Gr1hiLy6G+CD11b+ cells. In turn, tumor-educated Gr1+CD11b+ (Tu-Gr1+CD11b+) cells rapidly and transiently converted low metastatic SCA1- cells into highly metastatic SCA1+ cells via secreted oncostatin M (OSM) and IL-6. JAK inhibition prevented OSM/IL-6-induced SCA1+ population enrichment, while OSM/IL-6 depletion suppressed Tu-Gr1+CD11b+-induced SCA1+ population enrichment in vitro and metastasis in vivo. Moreover, chemotherapy-selected highly metastatic 4T1 cells maintained high SCA1+ positivity through autocrine IL-6 production, and in vitro JAK inhibition blunted SCA1 positivity and metastatic capacity. Importantly, Tu-Gr1+CD11b+ cells invoked a gene signature in tumor cells predicting shorter overall survival (OS), relapse-free survival (RFS), and lung metastasis in breast cancer patients. Collectively, our data identified OSM/IL-6/JAK as a clinically relevant paracrine/autocrine axis instigating breast cancer cell plasticity and triggering metastasis.
Collapse
Affiliation(s)
- Sanam Peyvandi
- Pathology Unit, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Manon Bulliard
- Pathology Unit, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Alev Yilmaz
- Pathology Unit, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Annamaria Kauzlaric
- Translational Data Science Group, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Rachel Marcone
- Translational Data Science Group, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Lisa Haerri
- Pathology Unit, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Oriana Coquoz
- Pathology Unit, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Yu-Ting Huang
- Pathology Unit, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Nathalie Duffey
- Pathology Unit, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Laetitia Gafner
- Pathology Unit, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Girieca Lorusso
- Pathology Unit, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Nadine Fournier
- Translational Data Science Group, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Qiang Lan
- Pathology Unit, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Curzio Rüegg
- Pathology Unit, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
9
|
Boudreault J, Wang N, Ghozlan M, Lebrun JJ. Transforming Growth Factor-β/Smad Signaling Inhibits Melanoma Cancer Stem Cell Self-Renewal, Tumor Formation and Metastasis. Cancers (Basel) 2024; 16:224. [PMID: 38201651 PMCID: PMC10778361 DOI: 10.3390/cancers16010224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/20/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
The secreted protein transforming growth factor-beta (TGFβ) plays essential roles, ranging from cell growth regulation and cell differentiation in both normal and cancer cells. In melanoma, TGFβ acts as a potent tumor suppressor in melanoma by blocking cell cycle progression and inducing apoptosis. In the present study, we found TGFβ to regulate cancer stemness in melanoma through the Smad signaling pathway. We discovered that TGFβ/Smad signaling inhibits melanosphere formation in multiple melanoma cell lines and reduces expression of the CD133+ cancer stem cell subpopulation in a Smad3-dependent manner. Using preclinical models of melanoma, we further showed that preventing Smad3/4 signaling, by means of CRISPR knockouts, promoted both tumorigenesis and lung metastasis in vivo. Collectively, our results define new functions for the TGFβ/Smad signaling axis in melanoma stem-cell maintenance and open avenues for new therapeutic approaches to this disease.
Collapse
Affiliation(s)
| | | | | | - Jean-Jacques Lebrun
- Cancer Research Program, Department of Medicine, Research Institute of McGill University Health Center, Montreal, QU H4A 3J1, Canada; (J.B.); (N.W.); (M.G.)
| |
Collapse
|
10
|
Miley DR, Andrews-Pfannkoch CM, Pulido JS, Erickson SA, Vile RG, Fautsch MP, Marmorstein AD, Dalvin LA. Direct early growth response-1 knockdown decreases melanoma viability independent of mitogen-activated extracellular signal-related kinase inhibition. Melanoma Res 2023; 33:482-491. [PMID: 37650708 PMCID: PMC10615778 DOI: 10.1097/cmr.0000000000000921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
To investigate downstream molecular changes caused by mitogen-activated protein kinase (MEK) inhibitor treatment and further explore the impact of direct knockdown of early growth response-1 ( EGR1 ) in melanoma cell culture. RNA-sequencing (RNA-Seq) was performed to determine gene expression changes with MEK inhibitor treatment. Treatment with MEK inhibitor (trametinib) was then assessed in two cutaneous (MEL888, MEL624) and one conjunctival (YUARGE 13-3064) melanoma cell line. Direct knockdown of EGR1 was accomplished using lentiviral vectors containing shRNA. Cell viability was measured using PrestoBlueHS Cell Viability Reagent. Total RNA and protein were assessed by qPCR and SimpleWestern. RNA-Seq demonstrated a profound reduction in EGR1 with MEK inhibitor treatment, prompting further study of melanoma cell lines. Following trametinib treatment of melanoma cells, viability was reduced in both cutaneous (MEL888 26%, P < 0.01; MEL624 27%, P < 0.001) and conjunctival (YUARGE 13-3064 33%, P < 0.01) melanoma compared with DMSO control, with confirmed EGR1 knockdown to 0.04-, 0.01-, and 0.16-fold DMSO-treated levels (all P < 0.05) in MEL888, MEL624, and YUARGE 13-3064, respectively. Targeted EGR1 knockdown using shRNA reduced viability in both cutaneous (MEL624 78%, P = 0.05) and conjunctival melanoma (YUARGE-13-3064 67%, P = 0.02). RNA-Sequencing in MEK inhibitor-treated cells identified EGR1 as a candidate effector molecule of interest. In a malignant melanoma cell population, MEK inhibition reduced viability in both cutaneous and conjunctival melanoma with a profound downstream reduction in EGR1 expression. Targeted knockdown of EGR1 reduced both cutaneous and conjunctival melanoma cell viability independent of MEK inhibition, suggesting a key role for EGR1 in melanoma pathobiology.
Collapse
Affiliation(s)
- David R Miley
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota
| | | | - Jose S Pulido
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota
- Wills Eye Hospital, Philadelphia, Pennsylvania
| | | | - Richard G Vile
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Lauren A Dalvin
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
11
|
Bansal S, Pereira T, Desai RS, Jena A, Bobade PP, Patil M. Interplay of Transforming Growth Factor-Beta 1 and 3 in the Pathogenesis of Oral Submucous Fibrosis and Its Malignant Transformation: An Immunohistochemical Study. Cureus 2023; 15:e42412. [PMID: 37637625 PMCID: PMC10448117 DOI: 10.7759/cureus.42412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Oral submucous fibrosis (OSF) is a chronic and potentially malignant oral condition that poses a significant public health issue due to its insidious nature. Transforming growth factor-beta (TGF-β) is a key player in the pathogenesis of OSF and is responsible for fibrosis. This study aims to investigate the relationship between the expression of TGF-β1 and TGF-β3 in OSF and its malignant transformation by using immunohistochemistry. Materials and method The present study comprised of 120 formalin-fixed paraffin-embedded tissue samples, which included 20 normal oral mucosa (NOM), 80 OSF (20 each of stage 1- 4), and 20 oral squamous cell carcinoma (OSCC) (10 each of OSCC with and without OSF), and were stained for TGF-β1 and TGF-β3 by immunohistochemistry. Data were analyzed using R software version 4.1.2, GraphPad Prism 9.3.1 (GraphPad Software, San Diego, CA, USA) and Excel (Microsoft Corp., Redmond, WA). Results TGF-β1 immunoexpression was negative in NOM with no significant difference among OSF and OSCC (with or without OSF). TGF-β3 was significantly higher in OSCC (with or without OSF) than in OSF, and no significant difference was noted between OSF and NOM and between OSCC and NOM. A significant increase was seen in TGF-β3 compared to TGF-β1 in NOM, OSF (stage 1- 4), and OSCC with and without OSF. Conclusion TGF-β3 has higher immunoexpression levels than TGF-β1 in NOM, OSF, and OSCC. We speculate that quantitative or qualitative TGF- β3 may be inadequate to prevent or attenuate fibrosis in OSF patients. There is also a modicum of probability that TGF-β3 has a preventive rather than causative role in OSF pathogenesis. The role of TGF-β3 in OSF needs further clarification.
Collapse
Affiliation(s)
- Shivani Bansal
- Department of Oral Pathology and Microbiology, Nair Hospital Dental College, Mumbai, Mumbai, IND
| | - Treville Pereira
- Department of Oral Pathology and Microbiology, School of Dentistry, D. Y. Patil University, Mumbai, IND
| | - Rajiv S Desai
- Department of Oral Pathology and Microbiology, Nair Hospital Dental College, Mumbai, Mumbai, IND
| | - Abinashi Jena
- Department of Oral Pathology and Microbiology, Nair Hospital Dental College, Mumbai, Mumbai, IND
| | - Poorvashree P Bobade
- Department of Oral Pathology and Microbiology, Nair Hospital Dental College, Mumbai, Mumbai, IND
| | - Madhura Patil
- Department of Oral Pathology and Microbiology, Nair Hospital Dental College, Mumbai, Mumbai, IND
| |
Collapse
|
12
|
Hanson I, Pitman KE, Edin NFJ. The Role of TGF-β3 in Radiation Response. Int J Mol Sci 2023; 24:ijms24087614. [PMID: 37108775 PMCID: PMC10141893 DOI: 10.3390/ijms24087614] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Transforming growth factor-beta 3 (TGF-β3) is a ubiquitously expressed multifunctional cytokine involved in a range of physiological and pathological conditions, including embryogenesis, cell cycle regulation, immunoregulation, and fibrogenesis. The cytotoxic effects of ionizing radiation are employed in cancer radiotherapy, but its actions also influence cellular signaling pathways, including that of TGF-β3. Furthermore, the cell cycle regulating and anti-fibrotic effects of TGF-β3 have identified it as a potential mitigator of radiation- and chemotherapy-induced toxicity in healthy tissue. This review discusses the radiobiology of TGF-β3, its induction in tissue by ionizing radiation, and its potential radioprotective and anti-fibrotic effects.
Collapse
Affiliation(s)
- Ingunn Hanson
- Department of Physics, University of Oslo, 0371 Oslo, Norway
| | | | - Nina F J Edin
- Department of Physics, University of Oslo, 0371 Oslo, Norway
| |
Collapse
|
13
|
Uckun FM, Qazi S, Trieu V. High Intra-Tumor Transforming Growth Factor Beta 2 Level as a Predictor of Poor Treatment Outcomes in Pediatric Diffuse Intrinsic Pontine Glioma. Cancers (Basel) 2023; 15:cancers15061676. [PMID: 36980562 PMCID: PMC10046593 DOI: 10.3390/cancers15061676] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Here, we report that tumor samples from newly diagnosed pediatric diffuse intrinsic pontine glioma (DIPG) patients express significantly higher levels of transforming growth factor beta 2 (TGFB2) messenger ribonucleic acid (mRNA) than control pons samples, which correlated with augmented expression of transcription factors that upregulate TGFB2 gene expression. Our study also demonstrated that RNA sequencing (RNAseq)-based high TGFB2 mRNA level is an indicator of poor prognosis for DIPG patients, but not for pediatric glioblastoma (GBM) patients or pediatric diffuse midline glioma (DMG) patients with tumor locations outside of the pons/brainstem. Notably, DIPG patients with high levels of TGFB2 mRNA expression in their tumor samples had significantly worse overall survival (OS) and progression-free survival (PFS). By comparison, high levels of transforming growth factor beta 3 (TGFB3) mRNA expression in tumor samples was associated with significantly better survival outcomes of DIPG patients, whereas high levels of transforming growth factor beta 1 (TGFB1) expression was not prognostic. Our study fills a significant gap in our understanding of the clinical significance of high TGFB2 expression in pediatric high-grade gliomas.
Collapse
Affiliation(s)
- Fatih M. Uckun
- Ares Pharmaceuticals, Immuno-Oncology Program, St. Paul, MN 55110, USA
- Oncotelic Therapeutics, 29397 Agoura Road, Suite 107, Agoura Hills, CA 91301, USA
- Correspondence:
| | - Sanjive Qazi
- Ares Pharmaceuticals, Immuno-Oncology Program, St. Paul, MN 55110, USA
- Oncotelic Therapeutics, 29397 Agoura Road, Suite 107, Agoura Hills, CA 91301, USA
| | - Vuong Trieu
- Oncotelic Therapeutics, 29397 Agoura Road, Suite 107, Agoura Hills, CA 91301, USA
| |
Collapse
|
14
|
Yang L, Wang H, Hao W, Li T, Fang H, Bai H, Yan P, Wei S. TGFβ3 regulates adipogenesis of bovine subcutaneous preadipocytes via typical Smad and atypical MAPK signaling pathways. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
15
|
Anti-TGF-β1 aptamer enhances therapeutic effect of tyrosine kinase inhibitor, gefitinib, on non-small cell lung cancer in xenograft model. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:969-978. [PMID: 36189081 PMCID: PMC9481871 DOI: 10.1016/j.omtn.2022.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 06/07/2022] [Indexed: 11/30/2022]
Abstract
Transforming growth factor β (TGF-β) is a multifunctional cytokine that plays crucial pathophysiological roles in various diseases, such as cancer and fibrosis. However, the disease modulation by targeting TGF-β1 isoform remains to be established, regardless of several studies employed with limited antibodies. Here, we developed an RNA aptamer to human active TGF-β1, named APT-β1, and characterized its properties in vitro and in vivo. APT-β1 bound to human and mouse active TGF-β1 proteins with high affinity and specificity and strongly inhibited TGF-β1-induced downstream signaling and cell morphology with 50% inhibition concentration (IC50) values at picomolar concentrations. In a xenograft mouse model of non-small cell lung cancer, APT-β1 alone showed no appreciable effect on tumor growth, while it greatly enhanced the anti-tumor effect of gefitinib, an approved tyrosine kinase inhibitor. These findings strongly suggest that the anti-TGF-β1 medication may be a promising cancer therapy to suppress repopulation of lung cancer in combination with certain anti-cancer drugs, such as gefitinib.
Collapse
|
16
|
BMP2 as a promising anticancer approach: functions and molecular mechanisms. Invest New Drugs 2022; 40:1322-1332. [PMID: 36040572 DOI: 10.1007/s10637-022-01298-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/22/2022] [Indexed: 10/14/2022]
Abstract
Bone morphogenetic protein 2 (BMP2), a pluripotent factor, is a member of the transforming growth factor-beta (TGF-β) superfamily and is implicated in embryonic development and postnatal homeostasis in tissues and organs. Experimental research in the contexts of physiology and pathology has indicated that BMP2 can induce macrophages to differentiate into osteoclasts and accelerate the osteolytic mechanism, aggravating cancer cell bone metastasis. Emerging studies have stressed the potent regulatory effect of BMP2 in cancer cell differentiation, proliferation, survival, and apoptosis. Complicated signaling networks involving multiple regulatory proteins imply the significant biological functions of BMP2 in cancer. In this review, we comprehensively summarized and discussed the current evidence related to the modulation of BMP2 in tumorigenesis and development, including evidence related to the roles and molecular mechanisms of BMP2 in regulating cancer stem cells (CSCs), epithelial-mesenchymal transition (EMT), cancer angiogenesis and the tumor microenvironment (TME). All these findings suggest that BMP2 may be an effective therapeutic target for cancer and a new marker for assessing treatment efficacy.
Collapse
|
17
|
Jiang R, Wang J, Liang J, Lin D, Mao Q, Cheng S, Huang S, Tong S, lyu Y, Wei R, Lian Q, Chen H. HIPPO signaling-related signature for predicting prognosis and therapeutic response in gastric cancer. Front Pharmacol 2022; 13:1096055. [PMID: 36712672 PMCID: PMC9873967 DOI: 10.3389/fphar.2022.1096055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/30/2022] [Indexed: 01/12/2023] Open
Abstract
Background: Gastric cancer (GC) is a multifactorial progressive disease with high mortality and heterogeneous prognosis. Effective prognostic biomarkers for GC were critically needed. Hippo signaling pathway is one of the critical mechanisms regulating the occurrence and development of GC, and has potential clinical application value for the prognosis and treatment of GC patients. However, there is no effective signature based on Hippo signaling pathway-related genes (HSPRGs) to predict the prognosis and treatment response of GC patients. Our study aimed to build a HSPRGs signature and explore its performance in improving prognostic assessment and drug therapeutic response in GC. Methods: Based on gene expression profiles obtained from The Cancer Genome Atlas (TCGA) database, we identified differentially expressed HSPRGs and conducted univariate and the least absolute shrinkage and selection operator (LASSO) Cox regression analysis to construct a multigene risk signature. Subsequently, the Kaplan-Meier curve and receiver operating characteristic (ROC) were performed to evaluate the predictive value of the risk signature in both training and validation cohort. Furthermore, we carried out univariate and multivariate Cox regression analysis to investigate the independent prognostic factors and establish a predictive nomogram. The enriched signaling pathways in risk signature were analyzed by gene set enrichment analysis (GSEA). Tumor immune dysfunction and exclusion (TIDE) and drug sensitivity analysis were performed to depict therapeutic response in GC. Results: In total, 38 differentially expressed HSPRGs were identified, and final four genes (DLG3, TGFB3, TGFBR1, FZD6) were incorporated to build the signature. The ROC curve with average 1-, 3-, and 5-year areas under the curve (AUC) equal to .609, .634, and .639. Clinical ROC curve revealed that risk signature was superior to other clinicopathological factors in predicting prognosis. Calibration curves and C-index (.655) of nomogram showed excellent consistency. Besides, in the immunotherapy analysis, exclusion (p < 2.22 × 10-16) and microsatellite instability (p = .0058) performed significantly differences. Finally, our results suggested that patients in the high-risk group were more sensitive to specific chemotherapeutic agents. Conclusion: Results support the hypothesis that Hippo-related signature is a novel prognostic biomarker and predictor, which could help optimize GC prognostic stratification and inform clinical medication decisions.
Collapse
Affiliation(s)
- Rui Jiang
- Department of Gastroenterology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jinghua Wang
- Department of Hematology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jun Liang
- Department of Critical Care Medicine, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Daihua Lin
- Prenatal Diagnostic Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Qiuxian Mao
- Prenatal Diagnostic Center, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Siyi Cheng
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Shengjun Huang
- School of Medicine, South China University of Technologyy, Guangzhou, China
| | | | - Yanlin lyu
- Shantou University Medical College, Shantou, China
| | - Rui Wei
- Department of Gastroenterology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Qizhou Lian
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
- *Correspondence: Qizhou Lian, ; Hao Chen,
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- School of Medicine, South China University of Technologyy, Guangzhou, China
- Shantou University Medical College, Shantou, China
- *Correspondence: Qizhou Lian, ; Hao Chen,
| |
Collapse
|
18
|
Benjamin DJ, Lyou Y. Advances in Immunotherapy and the TGF-β Resistance Pathway in Metastatic Bladder Cancer. Cancers (Basel) 2021; 13:cancers13225724. [PMID: 34830879 PMCID: PMC8616345 DOI: 10.3390/cancers13225724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary Bladder cancer accounts for a significant burden to global public health. Despite advances in therapeutics with the advent of immunotherapy, only a small subset of patients benefit from immunotherapy. In this review, we examine the evidence that suggests that the TGF-β pathway may present a resistance mechanism to immunotherapy. In addition, we present possible therapies that may overcome the TGF-β resistance pathway in the treatment of bladder cancer. Abstract Bladder cancer accounts for nearly 200,000 deaths worldwide yearly. Urothelial carcinoma (UC) accounts for nearly 90% of cases of bladder cancer. Cisplatin-based chemotherapy has remained the mainstay of treatment in the first-line setting for locally advanced or metastatic UC. More recently, the treatment paradigm in the second-line setting was drastically altered with the approval of several immune checkpoint inhibitors (ICIs). Given that only a small subset of patients respond to ICI, further studies have been undertaken to understand potential resistance mechanisms to ICI. One potential resistance mechanism that has been identified in the setting of metastatic UC is the TGF-β signaling pathway. Several pre-clinical and ongoing clinical trials in multiple advanced tumor types have evaluated several therapies that target the TGF-β pathway. In addition, there are ongoing and planned clinical trials combining TGF-β inhibition with ICI, which may provide a promising therapeutic approach for patients with advanced and metastatic UC.
Collapse
Affiliation(s)
- David J. Benjamin
- Chao Family Comprehensive Cancer Center, Division of Hematology/Oncology, Department of Medicine, UC Irvine Medical Center, Orange, CA 92868, USA;
| | - Yung Lyou
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
- Correspondence: ; Tel.: +1-626-256-2805; Fax: +1-625-301-8233
| |
Collapse
|
19
|
Proteomic Research on the Antitumor Properties of Medicinal Mushrooms. Molecules 2021; 26:molecules26216708. [PMID: 34771120 PMCID: PMC8588050 DOI: 10.3390/molecules26216708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022] Open
Abstract
Medicinal mushrooms are increasingly being recognized as an important therapeutic modality in complementary oncology. Until now, more than 800 mushroom species have been known to possess significant pharmacological properties, of which antitumor and immunomodulatory properties have been the most researched. Besides a number of medicinal mushroom preparations being used as dietary supplements and nutraceuticals, several isolates from mushrooms have been used as official antitumor drugs in clinical settings for several decades. Various proteomic approaches allow for the identification of a large number of differentially regulated proteins serendipitously, thereby providing an important platform for a discovery of new potential therapeutic targets and approaches as well as biomarkers of malignant disease. This review is focused on the current state of proteomic research into antitumor mechanisms of some of the most researched medicinal mushroom species, including Phellinus linteus, Ganoderma lucidum, Auricularia auricula, Agrocybe aegerita, Grifola frondosa, and Lentinus edodes, as whole body extracts or various isolates, as well as of complex extract mixtures.
Collapse
|
20
|
Zhang T, Chen X, Sun L, Guo X, Cai T, Wang J, Zeng Y, Ma J, Ding X, Xie Z, Niu L, Zhang M, Tao N, Yang F. Proteomics reveals the function reverse of MPSSS-treated prostate cancer-associated fibroblasts to suppress PC-3 cell viability via the FoxO pathway. Cancer Med 2021; 10:2509-2522. [PMID: 33704935 PMCID: PMC7982613 DOI: 10.1002/cam4.3825] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/21/2021] [Indexed: 01/10/2023] Open
Abstract
Prostate cancer‐associated fibroblasts (prostate CAFs) are essential components of the tumor microenvironment and can promote tumor progression through their immunosuppressive functions. MPSSS, a novel polysaccharide purified from Lentinus edodes, has been reported to have anti‐tumor activity. MPSSS could also inhibit the immunosuppressive function of prostate CAFs, which has been demonstrated through that the secretome of MPSSS‐treated prostate CAFs could inhibit the proliferation of T cells. However, how the secretome of MPSSS‐treated prostate CAFs influence prostate cancer progression is still unclear. Interestingly, we found that the low molecular weight (3–100kD) secretome of prostate CAFs (lmwCAFS) could promote the growth of PC‐3 cells, while that of MPSSS‐treated prostate CAFs (MT‐lmwCAFS) could inhibit their growth. We carried out comparative secretomic analysis of lmwCAFS and MT‐lmwCAFS to identify functional molecules that inhibit the growth of PC‐3 cells, and proteomic analysis of lmwCAFS‐treated PC‐3 cells and MT‐lmwCAFS‐treated PC‐3 cells to investigate the underlying molecular mechanism. These analyses suggest that TGF‐β3 from MT‐lmwCAFS may inhibit the growth of PC‐3 cells. The validated experiments revealed that TGF‐β3 from MT‐lmwCAFS activated p21 expression in PC‐3 cells by regulating the FoxO pathway thereby inducing G0/G1 cell cycle arrest of PC‐3 cells. Overall, our data demonstrated that MPSSS reversed the ability of prostate CAFs to suppress the cell viability of PC‐3 cells, which might provide a potential therapeutic strategy to prevent prostate cancer progression.
Collapse
Affiliation(s)
- Tingting Zhang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiulan Chen
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lang Sun
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiaojing Guo
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Tanxi Cai
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jifeng Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yanqiong Zeng
- School of Basic Medical Sciences of Southwest Medical University, Luzhou, China
| | - Jing Ma
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiang Ding
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhensheng Xie
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lili Niu
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mengmeng Zhang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ning Tao
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Fuquan Yang
- Key Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Liu F, Li Y, Ying D, Qiu S, He Y, Li M, Liu Y, Zhang Y, Zhu Q, Hu Y, Liu L, Li G, Pan W, Jin W, Mu J, Cao Y, Liu Y. Whole-exome mutational landscape of neuroendocrine carcinomas of the gallbladder. Signal Transduct Target Ther 2021; 6:55. [PMID: 33563892 PMCID: PMC7873252 DOI: 10.1038/s41392-020-00412-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/14/2020] [Accepted: 10/28/2020] [Indexed: 12/23/2022] Open
Abstract
Neuroendocrine carcinoma (NEC) of the gallbladder (GB-NEC) is a rare but extremely malignant subtype of gallbladder cancer (GBC). The genetic and molecular signatures of GB-NEC are poorly understood; thus, molecular targeting is currently unavailable. In the present study, we applied whole-exome sequencing (WES) technology to detect gene mutations and predicted somatic single-nucleotide variants (SNVs) in 15 cases of GB-NEC and 22 cases of general GBC. In 15 GB-NECs, the C > T mutation was predominant among the 6 types of SNVs. TP53 showed the highest mutation frequency (73%, 11/15). Compared with neuroendocrine carcinomas of other organs, significantly mutated genes (SMGs) in GB-NECs were more similar to those in pulmonary large-cell neuroendocrine carcinomas (LCNECs), with driver roles for TP53 and RB1. In the COSMIC database of cancer-related genes, 211 genes were mutated. Strikingly, RB1 (4/15, 27%) and NAB2 (3/15, 20%) mutations were found specifically in GB-NECs; in contrast, mutations in 29 genes, including ERBB2 and ERBB3, were identified exclusively in GBC. Mutations in RB1 and NAB2 were significantly related to downregulation of the RB1 and NAB2 proteins, respectively, according to immunohistochemical (IHC) data (p values = 0.0453 and 0.0303). Clinically actionable genes indicated 23 mutated genes, including ALK, BRCA1, and BRCA2. In addition, potential somatic SNVs predicted by ISOWN and SomVarIUS constituted 6 primary COSMIC mutation signatures (1, 3, 30, 6, 7, and 13) in GB-NEC. Genes carrying somatic SNVs were enriched mainly in oncogenic signaling pathways involving the Notch, WNT, Hippo, and RTK-RAS pathways. In summary, we have systematically identified the mutation landscape of GB-NEC, and these findings may provide mechanistic insights into the specific pathogenesis of this deadly disease.
Collapse
Affiliation(s)
- Fatao Liu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease, Yangpu District, Shanghai, 200092, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Yangpu District, Shanghai, 200092, China
| | - Yongsheng Li
- Shanghai Key Laboratory of Biliary Tract Disease, Yangpu District, Shanghai, 200092, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Yangpu District, Shanghai, 200092, China
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongjian Ying
- Department of Minimal Invasive Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, 315040, China
| | - Shimei Qiu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease, Yangpu District, Shanghai, 200092, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Yangpu District, Shanghai, 200092, China
| | - Yong He
- Department of hepatopancreatobiliary surgery, Ganzhou hospital affiliated to Nanchang university, Jiangxi, 341000, China
| | - Maolan Li
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease, Yangpu District, Shanghai, 200092, China
- Shanghai Research Center of Biliary Tract Disease, Yangpu District, Shanghai, 200092, China
| | - Yun Liu
- Shanghai Key Laboratory of Biliary Tract Disease, Yangpu District, Shanghai, 200092, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Yangpu District, Shanghai, 200092, China
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yijian Zhang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease, Yangpu District, Shanghai, 200092, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Yangpu District, Shanghai, 200092, China
| | - Qin Zhu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease, Yangpu District, Shanghai, 200092, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Yangpu District, Shanghai, 200092, China
| | - Yunping Hu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease, Yangpu District, Shanghai, 200092, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Yangpu District, Shanghai, 200092, China
| | - Liguo Liu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease, Yangpu District, Shanghai, 200092, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Yangpu District, Shanghai, 200092, China
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoqiang Li
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease, Yangpu District, Shanghai, 200092, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China
- Shanghai Research Center of Biliary Tract Disease, Yangpu District, Shanghai, 200092, China
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weihua Pan
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai, 200092, China
- Information and Big Data Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai, 200092, China
| | - Wei Jin
- Information and Big Data Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai, 200092, China
| | - Jiasheng Mu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai, 200092, China.
- Information and Big Data Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yangpu District, Shanghai, 200092, China.
| | - Yang Cao
- Department of Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China.
- Department of Gastric Surgery, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.
| | - Yingbin Liu
- Shanghai Key Laboratory of Biliary Tract Disease, Yangpu District, Shanghai, 200092, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, China.
- Shanghai Research Center of Biliary Tract Disease, Yangpu District, Shanghai, 200092, China.
- Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
22
|
van Dorst DCH, de Wagenaar NP, van der Pluijm I, Roos-Hesselink JW, Essers J, Danser AHJ. Transforming Growth Factor-β and the Renin-Angiotensin System in Syndromic Thoracic Aortic Aneurysms: Implications for Treatment. Cardiovasc Drugs Ther 2020; 35:1233-1252. [PMID: 33283255 PMCID: PMC8578102 DOI: 10.1007/s10557-020-07116-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/18/2020] [Indexed: 12/12/2022]
Abstract
Thoracic aortic aneurysms (TAAs) are permanent pathological dilatations of the thoracic aorta, which can lead to life-threatening complications, such as aortic dissection and rupture. TAAs frequently occur in a syndromic form in individuals with an underlying genetic predisposition, such as Marfan syndrome (MFS) and Loeys-Dietz syndrome (LDS). Increasing evidence supports an important role for transforming growth factor-β (TGF-β) and the renin-angiotensin system (RAS) in TAA pathology. Eventually, most patients with syndromic TAAs require surgical intervention, as the ability of present medical treatment to attenuate aneurysm growth is limited. Therefore, more effective medical treatment options are urgently needed. Numerous clinical trials investigated the therapeutic potential of angiotensin receptor blockers (ARBs) and β-blockers in patients suffering from syndromic TAAs. This review highlights the contribution of TGF-β signaling, RAS, and impaired mechanosensing abilities of aortic VSMCs in TAA formation. Furthermore, it critically discusses the most recent clinical evidence regarding the possible therapeutic benefit of ARBs and β-blockers in syndromic TAA patients and provides future research perspectives and therapeutic implications.
Collapse
Affiliation(s)
- Daan C H van Dorst
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Nathalie P de Wagenaar
- Department of Molecular Genetics, Erasmus University Medical Center, Room Ee702b, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands.,Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ingrid van der Pluijm
- Department of Molecular Genetics, Erasmus University Medical Center, Room Ee702b, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands.,Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jolien W Roos-Hesselink
- Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jeroen Essers
- Department of Molecular Genetics, Erasmus University Medical Center, Room Ee702b, Erasmus MC, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands. .,Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands. .,Department of Radiation Oncology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - A H Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
23
|
Hao F, Zhu Q, Lu L, Sun S, Huang Y, Zhang J, Liu Z, Miao Y, Jiao X, Chen D. EIF5A2 Is Highly Expressed in Anaplastic Thyroid Carcinoma and Is Associated With Tumor Growth by Modulating TGF- Signals. Oncol Res 2020; 28:345-355. [PMID: 32138807 PMCID: PMC7851513 DOI: 10.3727/096504020x15834065061807] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is resistant to standard therapies and has no effective treatment. Eukaryotic translation initiation factor 5A2 (EIF5A2) has shown to be upregulated in many malignant tumors and proposed to be a critical gene involved in tumor metastasis. In this study, we aimed to investigate the expression status of EIF5A2 in human ATC tissues and to study the role and mechanisms of EIF5A2 in ATC tumorigenesis in vitro and in vivo. Expression of EIF5A2 protein was analyzed in paraffin-embedded human ATC tissues and adjacent nontumorous tissues (ANCT) (n=24) by immunochemistry. Expressions of EIF5A2 mRNA and protein were analyzed in fresh-matched ATC and ANCT (n=23) and ATC cell lines by real-time polymerase chain reaction (PCR) and Western blotting. The effect of targeting EIF5A2 with short hairpin RNA (shRNA) or EIF5A2 overexpression on the ATC tumorigenesis and TGF-/Smad2/3 signals in vitro and in vivo was investigated. Expression of EIF5A2 was significantly upregulated in ATC tissues and cell lines compared with ANCT and normal follicular epithelial cell line. Functional studies found that targeting EIF5A2 induced SW1736 cell death in vitro and in vivo, followed by significantly downregulated phosphorylation of Smad2/3 (p-Smad2/3) in SW1736 cells at the protein level. Ectopic expression of EIF5A2 could promote 8505C cell growth in vitro and in vivo, followed by significantly upregulated p-Smad3 at the protein level. Recombinant human TGF-1 (hTGF-1) treatment decreased the antiproliferative activity of the EIF5A2 downexpressing 8505C cells through reversing pSmad2/3. Using the specific inhibitor SB431542 to block TGF- pathway or Smad3 siRNA to knock down Smad3 increased the antiproliferative activity of the EIF5A2-overexpressing 8505C cells through inhibiting pSmad2/3. Our findings indicated that EIF5A2 controled cell growth in ATC cells, and EIF5A/TGF-/Smad2/3 signal may be a potential therapeutic target for ATC treatment.
Collapse
Affiliation(s)
- Fengyun Hao
- *Department of Pathology, the Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Qingli Zhu
- †Department of Thyroid Surgery, the Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Lingwei Lu
- †Department of Thyroid Surgery, the Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Shukai Sun
- ‡Department of Clinical Lab, the Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Yichuan Huang
- §Department of Otolaryngology, the Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Jinna Zhang
- ¶Department of Medical Experiment Center, the Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Zhaohui Liu
- †Department of Thyroid Surgery, the Affiliated Hospital of Qingdao University, Qingdao, P.R. China
- #Department of Molecular Biochemistry and Genetic Engineering, Shenzhen University, Shenzhen, P.R. China
| | - Yuanqing Miao
- **Department of Medical Network Information Center, the Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Xuelong Jiao
- ††Department of General Surgery, the Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Dong Chen
- ††Department of General Surgery, the Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| |
Collapse
|
24
|
Derynck R, Turley SJ, Akhurst RJ. TGFβ biology in cancer progression and immunotherapy. Nat Rev Clin Oncol 2020; 18:9-34. [DOI: 10.1038/s41571-020-0403-1] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2020] [Indexed: 02/07/2023]
|
25
|
Dawn A, Khatri KS, Karmakar S, Deep S. Interaction of TGFβ3 ligand with its receptors type II (TβRII) and type I (TβRI): A unique mechanism of protein-protein association. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140485. [PMID: 32652126 DOI: 10.1016/j.bbapap.2020.140485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/18/2020] [Accepted: 07/01/2020] [Indexed: 11/18/2022]
Abstract
The proper orchestration of transforming growth factor beta (TGFβ) mediated signal transduction depends upon a delicate set of interactions between specific ligands and their receptors. Here we present an in-depth profiling of the binding mechanism of TGFβ3 ligand with its type II and type I receptors (TβRII and TβRI) using isothermal titration calorimetry (ITC). Studies were carried out in acidic pH as it has great physiological relevance for TGFβ3 activity. Our findings reveal an unusual positive enthalpy (∆H) compensated by a large favourable entropy (∆S) during TGFβ3-TβRII interaction. In addition to the hydrophobic effect, we propose that a distinct conformational switch from "closed" to "open" form as experienced by TGFβ3 on binding to TβRII is contributing significantly to the increase in overall entropy of the system. Binding studies of TGFβ3 and TβRII were carried out at different pH values and salt concentrations to gain further insight into the thermodynamics of the interaction. Furthermore, the importance of hydrophobic interactions on the binding affinity of TβRII with TGFβ3 was confirmed by two TβRII variants (interfacial). Finally, a distinct shift from entropy to enthalpy dominated interaction was observed upon recruitment of TβRI to the binary complex forming the ternary complex.
Collapse
Affiliation(s)
- Amrita Dawn
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, India
| | - Komal S Khatri
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, India
| | - Sandip Karmakar
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, India
| | - Shashank Deep
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, India.
| |
Collapse
|
26
|
O'Meara T, Marczyk M, Qing T, Yaghoobi V, Blenman K, Cole K, Pelekanou V, Rimm DL, Pusztai L. Immunological Differences Between Immune-Rich Estrogen Receptor-Positive and Immune-Rich Triple-Negative Breast Cancers. JCO Precis Oncol 2020; 4:1900350. [PMID: 32923897 PMCID: PMC7446500 DOI: 10.1200/po.19.00350] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2020] [Indexed: 12/20/2022] Open
Abstract
PURPOSE A subset of estrogen receptor–positive (ER-positive) breast cancer (BC) contains high levels of tumor-infiltrating lymphocytes (TILs), similar to triple-negative BC (TNBC). The majority of immuno-oncology trials target TNBCs because of the greater proportion of TIL-rich TNBCs. The extent to which the immune microenvironments of immune-rich ER-positive BC and TNBC differ is unknown. PATIENTS AND METHODS RNA sequencing data from The Cancer Genome Atlas (TCGA; n = 697 ER-positive BCs; n = 191 TNBCs) were used for discovery; microarray expression data from Molecular Taxonomy of Breast Cancer International Consortium (METABRIC; n = 1,186 ER-positive BCs; n = 297 TNBCs) was used for validation. Patients in the top 25th percentile of a previously published total TIL metagene score distribution were considered immune rich. We compared expression of immune cell markers, immune function metagenes, and immuno-oncology therapeutic targets among immune-rich subtypes. RESULTS Relative fractions of resting mast cells (TCGA Padj = .009; METABRIC Padj = 4.09E-15), CD8+ T cells (TCGA Padj = .015; METABRIC Padj = 0.390), and M2-like macrophages (TCGA Padj= 4.68E-05; METABRIC Padj = .435) were higher in immune-rich ER-positive BCs, but M0-like macrophages (TCGA Padj = 0.015; METABRIC Padj = .004) and M1-like macrophages (TCGA Padj = 9.39E-08; METABRIC Padj = 6.24E-11) were higher in immune-rich TNBCs. Ninety-one immune-related genes (eg, CXCL14, CSF3R, TGF-B3, LRRC32/GARP, TGFB-R2) and a transforming growth factor β (TGF-β) response metagene were significantly overexpressed in immune-rich ER-positive BCs, whereas 41 immune-related genes (eg, IFNG, PD-L1, CTLA4, MAGEA4) were overexpressed in immune-rich TNBCs in both discovery and validation data sets. TGF-β pathway member genes correlated negatively with expression of immune activation markers (IFNG, granzyme-B, perforin) and positively with M2-like macrophages (IL4, IL10, and MMP9) and regulatory T-cell (FOXP3) markers in both subtypes. CONCLUSION Different immunotherapy strategies may be optimal in immune-rich ER-positive BC and TNBC. Drugs targeting the TGF-β pathway and M2-like macrophages are promising strategies in immune-rich ER-positive BCs to augment antitumor immunity.
Collapse
Affiliation(s)
- Tess O'Meara
- Department of Medical Oncology, Yale School of Medicine, New Haven, CT
| | - Michal Marczyk
- Department of Medical Oncology, Yale School of Medicine, New Haven, CT.,Data Mining Division, Silesian University of Technology, Gliwice, Poland
| | - Tao Qing
- Department of Medical Oncology, Yale School of Medicine, New Haven, CT
| | - Vesal Yaghoobi
- Department of Pathology, Yale School of Medicine, New Haven, CT
| | - Kim Blenman
- Department of Medical Oncology, Yale School of Medicine, New Haven, CT
| | - Kimberly Cole
- Department of Pathology, Yale School of Medicine, New Haven, CT
| | - Vasiliki Pelekanou
- Department of Pathology, Yale School of Medicine, New Haven, CT.,Sanofi, Oncology and Translational Medicine, Bridgewater Township, NJ
| | - David L Rimm
- Department of Pathology, Yale School of Medicine, New Haven, CT
| | - Lajos Pusztai
- Department of Medical Oncology, Yale School of Medicine, New Haven, CT
| |
Collapse
|
27
|
Kaminska B, Cyranowski S. Recent Advances in Understanding Mechanisms of TGF Beta Signaling and Its Role in Glioma Pathogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1202:179-201. [PMID: 32034714 DOI: 10.1007/978-3-030-30651-9_9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Transforming growth factor beta (TGF-β) signaling is involved in the regulation of proliferation, differentiation and survival/or apoptosis of many cells, including glioma cells. TGF-β acts via specific receptors activating multiple intracellular pathways resulting in phosphorylation of receptor-regulated Smad2/3 proteins that associate with the common mediator, Smad4. Such complex translocates to the nucleus, binds to DNA and regulates transcription of many genes. Furthermore, TGF-β-activated kinase-1 (TAK1) is a component of TGF-β signaling and activates mitogen-activated protein kinase (MAPK) cascades. Negative regulation of TGF-β/Smad signaling may occur through the inhibitory Smad6/7. While genetic alterations in genes related to TGF-β signaling are relatively rare in gliomas, the altered expression of those genes is a frequent event. The increased expression of TGF-β1-3 correlates with a degree of malignancy of human gliomas. TGF-β may contribute to tumor pathogenesis in many ways: by direct support of tumor growth, by maintaining self-renewal of glioma initiating stem cells and inhibiting anti-tumor immunity. Glioma initiating cells are dedifferentiated cells that retain many stem cell-like properties, play a role in tumor initiation and contribute to its recurrence. TGF-β1,2 stimulate expression of the vascular endothelial growth factor as well as the plasminogen activator inhibitor and some metalloproteinases that are involved in vascular remodeling, angiogenesis and degradation of the extracellular matrix. Inhibitors of TGF-β signaling reduce viability and invasion of gliomas in animal models and show a great promise as novel, potential anti-tumor therapeutics.
Collapse
Affiliation(s)
- Bozena Kaminska
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland. .,Postgraduate School of Molecular Medicine, Warsaw Medical University, Warsaw, Poland.
| | - Salwador Cyranowski
- Laboratory of Molecular Neurobiology, Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Warsaw Medical University, Warsaw, Poland
| |
Collapse
|
28
|
Meaburn KJ, Misteli T. Assessment of the Utility of Gene Positioning Biomarkers in the Stratification of Prostate Cancers. Front Genet 2019; 10:1029. [PMID: 31681438 PMCID: PMC6812139 DOI: 10.3389/fgene.2019.01029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/25/2019] [Indexed: 12/24/2022] Open
Abstract
There is a pressing need for additional clinical biomarkers to predict the aggressiveness of individual cancers. Here, we examine the potential usefulness of spatial genome organization as a prognostic tool for prostate cancer. Using fluorescence in situ hybridization on formalin-fixed, paraffin embedded human prostate tissue specimens, we compared the nuclear positions of four genes between clinically relevant subgroups of prostate tissues. We find that directional repositioning of SP100 and TGFB3 gene loci stratifies prostate cancers of differing Gleason scores. A more peripheral position of SP100 and TGFB3 in the nucleus, compared to benign tissues, is associated with low Gleason score cancers, whereas more internal positioning correlates with higher Gleason scores. Conversely, LMNA is more internally positioned in many non-metastatic prostate cancers, while its position is indistinguishable from benign tissue in metastatic cancer. The false positive rates were relatively low, whereas, the false negative rates of single or combinations of genes were high, limiting the clinical utility of this assay in its current form. Nevertheless, our findings of subtype-specific gene positioning patterns in prostate cancer provides proof-of-concept for the potential usefulness of spatial gene positioning for prognostic applications, and encourage further exploration of spatial gene positioning patterns to identify novel clinically relevant molecular biomarkers, which may aid treatment decisions for cancer patients.
Collapse
Affiliation(s)
- Karen J Meaburn
- Cell Biology of Genomes Group, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Tom Misteli
- Cell Biology of Genomes Group, National Cancer Institute, NIH, Bethesda, MD, United States
| |
Collapse
|
29
|
Elliott B, Zackery DL, Eaton VA, Jones RT, Abebe F, Ragin CC, Khan SA. Ethnic differences in TGFβ-signaling pathway may contribute to prostate cancer health disparity. Carcinogenesis 2018; 39:546-555. [PMID: 29474521 DOI: 10.1093/carcin/bgy020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 02/02/2018] [Indexed: 11/13/2022] Open
Abstract
Epidemiological studies show that the incidence and mortality rates of prostate cancer (PCa) are significantly higher in African-American (AA) men when compared with Caucasian (CA) men in the United States. Transforming growth factor β (TGFβ) signaling pathway is linked to health disparities in AAs. Recent studies suggest a role of TGFβ3 in cancer metastases and its effect on the migratory and invasive behavior; however, its role in PCa in AA men has not been studied. We determined the circulating levels of TGFβ3 in AA and CA men diagnosed with PCa using ELISA. We analyzed serum samples from both AA and CA men diagnosed with and without PCa. We show that AA PCa patients had higher levels of TGFβ3 protein compared with AA controls and CA patients. In fact, TGFβ3 protein levels in serum were higher in AA men without PCa compared with the CA population, which may correlate with more aggressive disease seen in AA men. Studies on AA-derived PCa cell lines revealed that TGFβ3 protein levels were also higher in these cells compared with CA-derived PCa cell lines. Our studies also reveal that TGFβ does not inhibit cell proliferation in AA-derived PCa cell lines, but it does induce migration and invasion through activation of PI3K pathway. We suggest that increased TGFβ3 levels are responsible for development of aggressive PCa in AA patients as a consequence of development of resistance to inhibitory effects of TGFβ on cell proliferation and induction of invasive metastatic behavior.
Collapse
Affiliation(s)
- Bethtrice Elliott
- Center for Cancer Research and Therapeutic Development, Atlanta, GA, USA
| | - DeAdra L Zackery
- Center for Cancer Research and Therapeutic Development, Atlanta, GA, USA
| | - Vanessa A Eaton
- Center for Cancer Research and Therapeutic Development, Atlanta, GA, USA
| | - Re'Josef T Jones
- Center for Cancer Research and Therapeutic Development, Atlanta, GA, USA
| | - Fisseha Abebe
- Center for Cancer Research and Therapeutic Development, Atlanta, GA, USA.,Department of Mathematical Sciences, Clark Atlanta University, Atlanta, GA, USA
| | - Camille C Ragin
- Fox Chase Cancer Center-Temple Health, Philadelphia, PA, USA
| | - Shafiq A Khan
- Center for Cancer Research and Therapeutic Development, Atlanta, GA, USA
| |
Collapse
|
30
|
Naorem LD, Muthaiyan M, Venkatesan A. Integrated network analysis and machine learning approach for the identification of key genes of triple-negative breast cancer. J Cell Biochem 2018; 120:6154-6167. [PMID: 30302816 DOI: 10.1002/jcb.27903] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 09/24/2018] [Indexed: 12/11/2022]
Abstract
Triple-negative breast cancer (TNBC) has attracted more attention compared with other breast cancer subtypes due to its aggressive nature, poor prognosis, and chemotherapy remains the mainstay of treatment with no other approved targeted therapy. Therefore, the study aimed to discover more promising therapeutic targets and investigating new insights of biological mechanism of TNBC. Six microarray data sets consisting of 463 non-TNBC and 405 TNBC samples were mined from Gene Expression Omnibus. The data sets were integrated by meta-analysis and identified 1075 differentially expressed genes. Protein-protein interaction network was constructed which consists of 486 nodes and 1932 edges, where 29 hub genes were obtained with high topological measures. Further, 16 features (hub genes), 12 upregulated (AURKB, CCNB2, CDC20, DDX18, EGFR, ENO1, MYC, NUP88, PLK1, PML, POLR2F, and SKP2) and four downregulated ( CCND1, GLI3, SKP1, and TGFB3) were selected through machine learning correlation based feature selection method on training data set. A naïve Bayes based classifier built using the expression profiles of 16 features (hub genes) accurately and reliably classify TNBC from non-TNBC samples in the validation test data set with a receiver operating curve of 0.93 to 0.98. Subsequently, Gene Ontology analysis revealed that the hub genes were enriched in mitotic cell cycle processes and Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that they were enriched in cell cycle pathways. Thus, the identified key hub genes and pathways highlighted in the study would enhance the understanding of molecular mechanism of TNBC which may serve as potential therapeutic target.
Collapse
Affiliation(s)
- Leimarembi Devi Naorem
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Mathavan Muthaiyan
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Amouda Venkatesan
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| |
Collapse
|
31
|
Petrus P, Mejhert N, Corrales P, Lecoutre S, Li Q, Maldonado E, Kulyté A, Lopez Y, Campbell M, Acosta JR, Laurencikiene J, Douagi I, Gao H, Martínez-Álvarez C, Hedén P, Spalding KL, Vidal-Puig A, Medina-Gomez G, Arner P, Rydén M. Transforming Growth Factor-β3 Regulates Adipocyte Number in Subcutaneous White Adipose Tissue. Cell Rep 2018; 25:551-560.e5. [DOI: 10.1016/j.celrep.2018.09.069] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 08/31/2018] [Accepted: 09/21/2018] [Indexed: 11/15/2022] Open
|
32
|
Improving knowledge on the activation of bone marrow fibroblasts in MGUS and MM disease through the automatic extraction of genes via a nonnegative matrix factorization approach on gene expression profiles. J Transl Med 2018; 16:217. [PMID: 30075788 PMCID: PMC6076394 DOI: 10.1186/s12967-018-1589-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/24/2018] [Indexed: 11/24/2022] Open
Abstract
Background Multiple myeloma (MM) is a cancer of terminally differentiated plasma that is part of a spectrum of blood diseases. The role of the micro-environment is crucial for MM clonal evolution. Methods This paper describes the analysis carried out on a limited number of genes automatically extracted by a nonnegative matrix factorization (NMF) based approach from gene expression profiles of bone marrow fibroblasts of patients with monoclonal gammopathy of undetermined significance (MGUS) and MM. Results Automatic exploration through NMF, combined with a motivated post-processing procedure and a pathways analysis of extracted genes, allowed to infer that a functional switch is required to lead fibroblasts to acquire pro-tumorigenic activity in the progression of the disease from MGUS to MM. Conclusion The extracted biologically relevant genes may be representative of the considered clinical conditions and may contribute to a deeper understanding of tumor behavior. Electronic supplementary material The online version of this article (10.1186/s12967-018-1589-1) contains supplementary material, which is available to authorized users.
Collapse
|
33
|
Sarper SE, Kurosaka H, Inubushi T, Ono Minagi H, Kuremoto KI, Sakai T, Taniuchi I, Yamashiro T. Runx1-Stat3-Tgfb3 signaling network regulating the anterior palatal development. Sci Rep 2018; 8:11208. [PMID: 30046048 PMCID: PMC6060112 DOI: 10.1038/s41598-018-29681-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 06/15/2018] [Indexed: 02/07/2023] Open
Abstract
Runx1 deficiency results in an anteriorly specific cleft palate at the boundary between the primary and secondary palates and in the first rugae area of the secondary palate in mice. However, the cellular and molecular pathogenesis underlying such regional specificity remain unknown. In this study, Runx1 epithelial-specific deletion led to the failed disintegration of the contacting palatal epithelium and markedly downregulated Tgfb3 expression in the primary palate and nasal septum. In culture, TGFB3 protein rescued the clefting of the mutant. Furthermore, Stat3 phosphorylation was disturbed in the corresponding cleft regions in Runx1 mutants. The Stat3 function was manifested by palatal fusion defects in culture following Stat3 inhibitor treatment with significant downregulation of Tgfb3. Tgfb3 is therefore a critical target of Runx1 signaling, and this signaling axis could be mediated by Stat3 activation. Interestingly, the expression of Socs3, an inhibitor of Stat3, was specific in the primary palate and upregulated by Runx1 deficiency. Thus, the involvement of Socs3 in Runx1-Tgfb3 signaling might explain, at least in part, the anteriorly specific downregulation of Tgfb3 expression and Stat3 activity in Runx1 mutants. This is the first study to show that the novel Runx1-Stat3-Tgfb3 axis is essential in anterior palatogenesis.
Collapse
Affiliation(s)
- Safiye E Sarper
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Hiroshi Kurosaka
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Toshihiro Inubushi
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Hitomi Ono Minagi
- Department of Oral-facial Disorders, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Koh-Ichi Kuremoto
- Department of Advanced Prosthodontics, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takayoshi Sakai
- Department of Oral-facial Disorders, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Research Center for Allergy and Immunology, Yokohama, Japan
| | - Takashi Yamashiro
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Osaka, Japan.
| |
Collapse
|
34
|
Fushimi S, Nohno T, Nagatsuka H, Katsuyama H. Involvement of miR-140-3p in Wnt3a and TGFβ3 signaling pathways during osteoblast differentiation in MC3T3-E1 cells. Genes Cells 2018; 23:517-527. [PMID: 29740905 DOI: 10.1111/gtc.12591] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 04/02/2018] [Indexed: 12/21/2022]
Abstract
The Wnt/β-catenin signaling and TGFβ signaling pathways play a key role in osteoblast differentiation. The miRNAs play important roles in regulating gene expression at the post-transcriptional level through fine-tuning of protein-encoding gene expression. However, involvement of miRNAs is not established for Wnt3a and TGFβ signaling pathways in osteoblast differentiation. Here, we examined the role of miRNAs expressed differentially after Wnt3a expression during osteoblast differentiation. Over-expression of the Wnt3a gene increased ALP transcription, but decreased Col1, Runx2, and OCN transcription in osteoblastic MC3T3-E1 cells. Expression profiling and quantitative PCR for miRNAs showed that miR-140-3p decreased in Wnt3a-over-expressing osteoblastic cells. Wnt3a over-expression increased TGFβ3 expression, whereas transfection of the miR-140-3p mimic into MC3T3-E1 cells significantly inhibited TGFβ3 expression. Luciferase assay for the TGFβ3 transcript showed that TGFβ3 was a direct target of miR-140-3p. miR-140-3p mimic transfection resulted in significantly increased OCN transcription, but did not affect ALP, Col1, and Runx2 transcription in MC3T3-E1 cells. rTGFβ3 treatment decreased OCN transcription in MC3T3-E1 cells. These results suggest that the miR-140-3p is involved in osteoblast differentiation as a critical regulatory factor between Wnt3a and TGFβ3 signaling pathways.
Collapse
Affiliation(s)
- Shigeko Fushimi
- Department of Public Health, Kawasaki Medical School, Kurashiki, Japan.,Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Tsutomu Nohno
- Department of Public Health, Kawasaki Medical School, Kurashiki, Japan.,Department of Molecular and Developmental Biology, Kawasaki Medical School, Kurashiki, Japan
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | | |
Collapse
|
35
|
Kimbrough-Allah MN, Millena AC, Khan SA. Differential role of PTEN in transforming growth factor β (TGF-β) effects on proliferation and migration in prostate cancer cells. Prostate 2018; 78:377-389. [PMID: 29341212 PMCID: PMC5820153 DOI: 10.1002/pros.23482] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 12/21/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Transforming growth factor-β (TGF-β) acts as a tumor suppressor in normal epithelial cells but as a tumor promoter in advanced prostate cancer cells. PI3-kinase pathway mediates TGF-β effects on prostate cancer cell migration and invasion. PTEN inhibits PI3-kinase pathway and is frequently mutated in prostate cancers. We investigated possible role(s) of PTEN in TGF-β effects on proliferation and migration in prostate cancer cells. METHODS Expression of PTEN mRNA and proteins were determined using RT-PCR and Western blotting in RWPE1 and DU145 cells. We also studied the role of PTEN in TGF-β effects on cell proliferation and migration in DU145 cells after transient silencing of endogenous PTEN. Conversely, we determined the role of PTEN in cell proliferation and migration after over-expression of PTEN in PC3 cells which lack endogenous PTEN. RESULTS TGF-β1 and TGF-β3 had no effect on PTEN mRNA levels but both isoforms increased PTEN protein levels in DU145 and RWPE1 cells indicating that PTEN may mediate TGF-β effects on cell proliferation. Knockdown of PTEN in DU145 cells resulted in significant increase in cell proliferation which was not affected by TGF-β isoforms. PTEN overexpression in PC3 cells inhibited cell proliferation. Knockdown of endogenous PTEN enhanced cell migration in DU145 cells, whereas PTEN overexpression reduced migration in PC3 cells and reduced phosphorylation of AKT in response to TGF-β. CONCLUSION We conclude that PTEN plays a role in inhibitory effects of TGF-β on cell proliferation whereas its absence may enhance TGF-β effects on activation of PI3-kinase pathway and cell migration.
Collapse
Affiliation(s)
| | - Ana C Millena
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia
| | - Shafiq A Khan
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia
| |
Collapse
|
36
|
Wu F, Ye H, Lin J, Xu Y, Zhang Z, Xiong H, Laing M, Zhen Y, Chen S. TGF-β3 reduces apoptosis in ischemia-induced adipose-derived stem cells by enhancing DNA repair. Exp Ther Med 2018; 15:4400-4408. [PMID: 29725380 PMCID: PMC5920353 DOI: 10.3892/etm.2018.5980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/16/2018] [Indexed: 12/26/2022] Open
Abstract
Adipose-derived stem cells (ADSCs) possess good proliferative and differentiative abilities, making then a promising candidate for the treatment of cartilage defects. However, local ischemia often causes apoptosis in ADSCs. Transforming growth factor-β3 (TGF-β3) is often used as a chondrogenic differentiation cytokine whose function in apoptosis is unclear. The aim of the present study was to investigate the role of TGF-β3 in ischemia-induced ADSC apoptosis. In the present study, the phenotypes and multipotent differentiation properties of human ADSCs at passage 3 were analyzed using flow cytometry and cytochemical staining. ADSCs were cultured in a serum- and glucose-free medium under hypoxic conditions with or without exogenous TGF-β3 treatment. The apoptosis rate was measured using a TUNEL array and Annexin V/propidium iodide staining. The expression of apoptosis-associated proteins was measured using western blotting. The results revealed ADSCs cultured in normal condition have multi-lineage differentiation potential and high levels of cluster of differentiation (CD)29, CD44 and CD105 expression. Furthermore, ADSCs weakly express CD14, CD34 and CD45, with strong clone formation and migration abilities. Serum deprivation under hypoxic conditions resulted in mitochondria-mediated apoptosis in ADSCs, which was attenuated by exogenous TGF-β3 treatment via upregulation of poly ADP-ribose polymerase (PARP). The results of the present study indicate that TGF-β3 is able to protect ADSCs from ischemia-induced apoptosis via PARP-associated DNA damage repair.
Collapse
Affiliation(s)
- Fan Wu
- Department of Otorhinolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China.,The Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Haiwen Ye
- Department of Otorhinolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China.,The Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Junfeng Lin
- Department of Otorhinolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China.,The Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Yaodong Xu
- Department of Otorhinolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China.,The Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Zhuasong Zhang
- Department of Otorhinolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China.,The Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Hao Xiong
- Department of Otorhinolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China.,The Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Maojin Laing
- Department of Otorhinolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China.,The Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Yiqing Zhen
- Department of Otorhinolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China.,The Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Suijun Chen
- Department of Otorhinolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China.,The Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| |
Collapse
|
37
|
Dong F, Liu T, Jin H, Wang W. Chimaphilin inhibits human osteosarcoma cell invasion and metastasis through suppressing the TGF-β1-induced epithelial-to-mesenchymal transition markers via PI-3K/Akt, ERK1/2, and Smad signaling pathways. Can J Physiol Pharmacol 2018; 96:1-7. [PMID: 28177668 DOI: 10.1139/cjpp-2016-0522] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epithelial-to-mesenchymal transition is a cellular process associated with cancer invasion and metastasis. However, the antimetastatic effects of chimaphilin remain elusive. In this study, we attempted to investigate the potential use of chimaphilin as an inhibitor of TGF-β1-induced epithelial-to-mesenchymal transition in U2OS cells. We found that TGF-β1 induced epithelial-to-mesenchymal transition to promote U2OS cell invasion and metastasis. Western blotting demonstrated that chimaphilin inhibited U2OS cell invasion and migration, increased the expression of the epithelial phenotype marker E-cadherin, repressed the expression of the mesenchymal phenotype marker vimentin, as well as decreased the level of epithelial-to-mesenchymal-inducing transcription factors Snail1 and Slug during the initiation of TGF-β1-induced epithelial-to-mesenchymal transition. In this study, we revealed that chimaphilin up-regulated the E-cadherin expression level and inhibited the production of vimentin, Snail1, and Slug in TGF-β1-induced U2OS cells by blocking PI-3K/Akt and ERK 1/2 signaling pathway. Additionally, the TGF-β1-mediated phosphorylated levels of Smad2/3 were inhibited by chimaphilin pretreatment. Above all, we conclude that chimaphilin represents an effective inhibitor of the metastatic potential of U2OS cells through suppression of TGF-β1-induced epithelial-to-mesenchymal transition.
Collapse
Affiliation(s)
- Feng Dong
- 3rd Department of Orthopedics, the First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin 150001, China
| | - Tingting Liu
- Pediatric Intensive Care Unit, the First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin 150001, China
| | - Hao Jin
- 3rd Department of Orthopedics, the First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin 150001, China
| | - Wenbo Wang
- 3rd Department of Orthopedics, the First Affiliated Hospital of Harbin Medical University, No. 23 Youzheng Street, Harbin 150001, China
| |
Collapse
|
38
|
Abstract
Transforming growth factor βs (TGF-βs) are closely related ligands that have pleiotropic activity on most cell types of the body. They act through common heterotetrameric TGF-β type II and type I transmembrane dual specificity kinase receptor complexes, and the outcome of signaling is context-dependent. In normal tissue, they serve a role in maintaining homeostasis. In many diseased states, particularly fibrosis and cancer, TGF-β ligands are overexpressed and the outcome of signaling is diverted toward disease progression. There has therefore been a concerted effort to develop drugs that block TGF-β signaling for therapeutic benefit. This review will cover the basics of TGF-β signaling and its biological activities relevant to oncology, present a summary of pharmacological TGF-β blockade strategies, and give an update on preclinical and clinical trials for TGF-β blockade in a variety of solid tumor types.
Collapse
Affiliation(s)
- Rosemary J Akhurst
- Department of Anatomy and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94158-9001
| |
Collapse
|
39
|
Abstract
Transforming growth factor βs (TGF-βs) are closely related ligands that have pleiotropic activity on most cell types of the body. They act through common heterotetrameric TGF-β type II and type I transmembrane dual specificity kinase receptor complexes, and the outcome of signaling is context-dependent. In normal tissue, they serve a role in maintaining homeostasis. In many diseased states, particularly fibrosis and cancer, TGF-β ligands are overexpressed and the outcome of signaling is diverted toward disease progression. There has therefore been a concerted effort to develop drugs that block TGF-β signaling for therapeutic benefit. This review will cover the basics of TGF-β signaling and its biological activities relevant to oncology, present a summary of pharmacological TGF-β blockade strategies, and give an update on preclinical and clinical trials for TGF-β blockade in a variety of solid tumor types.
Collapse
Affiliation(s)
- Rosemary J Akhurst
- Department of Anatomy and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94158-9001
| |
Collapse
|
40
|
Baicalin inhibits human osteosarcoma cells invasion, metastasis, and anoikis resistance by suppressing the transforming growth factor-β1-induced epithelial-to-mesenchymal transition. Anticancer Drugs 2017; 28:581-587. [DOI: 10.1097/cad.0000000000000495] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
Villalba M, Evans SR, Vidal-Vanaclocha F, Calvo A. Role of TGF-β in metastatic colon cancer: it is finally time for targeted therapy. Cell Tissue Res 2017; 370:29-39. [DOI: 10.1007/s00441-017-2633-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/24/2017] [Indexed: 12/15/2022]
|
42
|
Nayeem SM, Oteri F, Baaden M, Deep S. Residues of Alpha Helix H3 Determine Distinctive Features of Transforming Growth Factor β3. J Phys Chem B 2017; 121:5483-5498. [DOI: 10.1021/acs.jpcb.7b01867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shahid M. Nayeem
- Department
of Chemistry, Indian Institute of Technology, Delhi, India
| | - Francesco Oteri
- Institut
de Biologie Physico-Chimique, Laboratoire de Biochimie Théorique,
Centre National de la Recherche Scientifique, UPR9080, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Marc Baaden
- Institut
de Biologie Physico-Chimique, Laboratoire de Biochimie Théorique,
Centre National de la Recherche Scientifique, UPR9080, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Shashank Deep
- Department
of Chemistry, Indian Institute of Technology, Delhi, India
| |
Collapse
|
43
|
Seystahl K, Papachristodoulou A, Burghardt I, Schneider H, Hasenbach K, Janicot M, Roth P, Weller M. Biological Role and Therapeutic Targeting of TGF-β 3 in Glioblastoma. Mol Cancer Ther 2017; 16:1177-1186. [PMID: 28377490 DOI: 10.1158/1535-7163.mct-16-0465] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/06/2016] [Accepted: 03/23/2017] [Indexed: 11/16/2022]
Abstract
Transforming growth factor (TGF)-β contributes to the malignant phenotype of glioblastoma by promoting invasiveness and angiogenesis and creating an immunosuppressive microenvironment. So far, TGF-β1 and TGF-β2 isoforms have been considered to act in a similar fashion without isoform-specific function in glioblastoma. A pathogenic role for TGF-β3 in glioblastoma has not been defined yet. Here, we studied the expression and functional role of endogenous and exogenous TGF-β3 in glioblastoma models. TGF-β3 mRNA is expressed in human and murine long-term glioma cell lines as well as in human glioma-initiating cell cultures with expression levels lower than TGF-β1 or TGF-β2 in most cell lines. Inhibition of TGF-β3 mRNA expression by ISTH2020 or ISTH2023, two different isoform-specific phosphorothioate locked nucleic acid (LNA)-modified antisense oligonucleotide gapmers, blocks downstream SMAD2 and SMAD1/5 phosphorylation in human LN-308 cells, without affecting TGF-β1 or TGF-β2 mRNA expression or protein levels. Moreover, inhibition of TGF-β3 expression reduces invasiveness in vitro Interestingly, depletion of TGF-β3 also attenuates signaling evoked by TGF-β1 or TGF-β2 In orthotopic syngeneic (SMA-560) and xenograft (LN-308) in vivo glioma models, expression of TGF-β3 as well as of the downstream target, plasminogen-activator-inhibitor (PAI)-1, was reduced, while TGF-β1 and TGF-β2 levels were unaffected following systemic treatment with TGF-β3 -specific antisense oligonucleotides. We conclude that TGF-β3 might function as a gatekeeper controlling downstream signaling despite high expression of TGF-β1 and TGF-β2 isoforms. Targeting TGF-β3in vivo may represent a promising strategy interfering with aberrant TGF-β signaling in glioblastoma. Mol Cancer Ther; 16(6); 1177-86. ©2017 AACR.
Collapse
Affiliation(s)
- Katharina Seystahl
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital and University of Zurich, Switzerland.
| | - Alexandros Papachristodoulou
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital and University of Zurich, Switzerland
| | - Isabel Burghardt
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital and University of Zurich, Switzerland
| | - Hannah Schneider
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital and University of Zurich, Switzerland
| | - Kathy Hasenbach
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital and University of Zurich, Switzerland.,Isarna Therapeutics GmbH, Munich, Germany
| | | | - Patrick Roth
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital and University of Zurich, Switzerland
| | - Michael Weller
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital and University of Zurich, Switzerland
| |
Collapse
|
44
|
Terabe M, Robertson FC, Clark K, De Ravin E, Bloom A, Venzon DJ, Kato S, Mirza A, Berzofsky JA. Blockade of only TGF-β 1 and 2 is sufficient to enhance the efficacy of vaccine and PD-1 checkpoint blockade immunotherapy. Oncoimmunology 2017. [PMID: 28638730 DOI: 10.1080/2162402x.2017.1308616] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Checkpoint inhibition has established immunotherapy as a major modality of cancer treatment. However, the success of cancer immunotherapy is still limited as immune regulation of tumor immunity is very complicated and mechanisms involved may also differ among cancer types. Beside checkpoints, other good candidates for immunotherapy are immunosuppressive cytokines. TGF-β is a very potent immunosuppressive cytokine involved in suppression of tumor immunity and also necessary for the function of some regulatory cells. TGF-β has three isoforms, TGF-β 1, 2 and 3. It has been demonstrated in multiple mouse tumor models that inhibition of all three isoforms of TGF-β facilitates natural tumor immunosurveillance and tumor vaccine efficacy. However, individual isoforms of TGF-β are not well studied yet. Here, by using monoclonal antibodies (mAbs) specific for TGF-β isoforms, we asked whether it is necessary to inhibit TGF-β3 to enhance tumor immunity. We found that blockade of TGF-β1 and 2 and of all isoforms provided similar effects on tumor natural immunosurveillance and therapeutic vaccine-induced tumor immunity. The protection was CD8+ T cell-dependent. Blockade of TGF-β increased vaccine-induced Th1-type response measured by IFNγ production or T-bet expression in both tumor draining lymph nodes and tumors, although it did not increase tumor antigen-specific CD8+ T cell numbers. Therefore, protection correlated with qualitative rather than quantitative changes in T cells. Furthermore, when combined with PD-1 blockade, blockade of TGF-β1 and 2 further increased vaccine efficacy. In conclusion, blocking TGF-β1 and 2 is sufficient to enhance tumor immunity, and it can be further enhanced with PD-1 blockade.
Collapse
Affiliation(s)
- Masaki Terabe
- Vaccine Branch and Data Management Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Faith C Robertson
- Vaccine Branch and Data Management Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Katharine Clark
- Vaccine Branch and Data Management Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Emma De Ravin
- Vaccine Branch and Data Management Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Anja Bloom
- Vaccine Branch and Data Management Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - David J Venzon
- Data Management Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Shingo Kato
- Vaccine Branch and Data Management Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | - Jay A Berzofsky
- Vaccine Branch and Data Management Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
45
|
Chen QZ, Li Y, Shao Y, Zeng YH, Ren WY, Liu RX, Zhou LY, Hu XL, Huang M, He F, Sun WJ, Wu K, He BC. TGF-β1/PTEN/PI3K signaling plays a critical role in the anti-proliferation effect of tetrandrine in human colon cancer cells. Int J Oncol 2017; 50:1011-1021. [PMID: 28197642 DOI: 10.3892/ijo.2017.3875] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/31/2017] [Indexed: 12/17/2022] Open
Abstract
The diagnosis and treatment for colon cancer have been greatly developed, but the prognosis remains unsatisfactory. There is still a great clinical need to explore new efficacious drugs for colon cancer treatment. Tetrandrine (Tet) is a bis-benzylisoquinoline alkaloid. It has been shown that Tet may be a potential candidate for cancer treatment, but the explicit mechanism underlying this activity remains unclear. In this study, we investigated the anticancer activity of Tet in human colon cancer cells and dissected the possible mechanism. With cell viability assay and flow cytometry analysis, we confirmed that Tet can effectively inhibit the proliferation and induce apoptosis in HCT116 cells. Mechanically, we found that Tet greatly increases the mRNA and protein level of TGF-β1 in HCT116 cells. Exogenous TGF-β1 enhances the anti-proliferation and apoptosis inducing effect of Tet in HCT116 cells, which has been partly reversed by TGF-β1 inhibitor. Tet decreases the phosphorylation of Akt1/2/3 in HCT116 cells. This effect can be enhanced by exogenous TGF-β1, but partly reversed by TGF-β1 inhibitor. Tet exhibits no effect on total level of PTEN, but decreases the phosphorylation of PTEN; exogenous TGF-β1 enhances the effect of Tet on decreasing the phosphorylation of PTEN, which was partly reversed by TGF-β1 inhibitor. Our findings suggested that Tet may be a promising candidate for colon cancer treatment, and the anticancer activity may be mediated by inactivating PI3K/Akt signaling through upregulating TGF-β1 to decrease the phosphorylation of PTEN.
Collapse
Affiliation(s)
- Qian-Zhao Chen
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yang Li
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ying Shao
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yu-Hua Zeng
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wen-Yan Ren
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Rong-Xing Liu
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Lin-Yun Zhou
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xue-Lian Hu
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ming Huang
- Chongqing Key Laboratory for Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Fang He
- Chongqing Key Laboratory for Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Wen-Juan Sun
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ke Wu
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| | - Bai-Cheng He
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
46
|
P. Croxford K, L. Reader K, D. Nicholson H. The potential role of transforming growth factor beta family ligand interactions in prostate cancer. AIMS MOLECULAR SCIENCE 2017. [DOI: 10.3934/molsci.2017.1.41] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
47
|
Culture supernatants of cervical cancer cells induce an M2 phenotypic profile in THP-1 macrophages. Cell Immunol 2016; 310:42-52. [DOI: 10.1016/j.cellimm.2016.07.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 07/02/2016] [Accepted: 07/03/2016] [Indexed: 11/19/2022]
|
48
|
Egr2 and Egr3 in regulatory T cells cooperatively control systemic autoimmunity through Ltbp3-mediated TGF-β3 production. Proc Natl Acad Sci U S A 2016; 113:E8131-E8140. [PMID: 27911796 DOI: 10.1073/pnas.1611286114] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a prototypical autoimmune disease characterized by multiorgan inflammation induced by autoantibodies. Early growth response gene 2 (Egr2), a transcription factor essential for T-cell anergy induction, controls systemic autoimmunity in mice and humans. We have previously identified a subpopulation of CD4+ regulatory T cells, CD4+CD25-LAG3+ cells, that characteristically express both Egr2 and LAG3 and control mice model of lupus via TGF-β3 production. However, due to the mild phenotype of lymphocyte-specific Egr2-deficient mice, the presence of an additional regulator has been speculated. Here, we show that Egr2 and Egr3 expressed in T cells cooperatively prevent humoral immune responses by supporting TGF-β3 secretion. T cell-specific Egr2/Egr3 double-deficient (Egr2/3DKO) mice spontaneously developed an early onset lupus-like disease that was more severe than in T cell-specific Egr2-deficient mice. In accordance with the observation that CD4+CD25-LAG3+ cells from Egr2/3DKO mice completely lost the capacity to produce TGF-β3, the excessive germinal center reaction in Egr2/3DKO mice was suppressed by the adoptive transfer of WT CD4+CD25-LAG3+ cells or treatment with a TGF-β3-expressing vector. Intriguingly, latent TGF-β binding protein (Ltbp)3 expression maintained by Egr2 and Egr3 was required for TGF-β3 production from CD4+CD25-LAG3+ cells. Because Egr2 and Egr3 did not demonstrate cell intrinsic suppression of the development of follicular helper T cells, Egr2- and Egr3-dependent TGF-β3 production by CD4+CD25-LAG3+ cells is critical for controlling excessive B-cell responses. The unique attributes of Egr2/Egr3 in T cells may provide an opportunity for developing novel therapeutics for autoantibody-mediated diseases including SLE.
Collapse
|
49
|
Munblit D, Treneva M, Peroni DG, Colicino S, Chow L, Dissanayeke S, Abrol P, Sheth S, Pampura A, Boner AL, Geddes DT, Boyle RJ, Warner JO. Colostrum and Mature Human Milk of Women from London, Moscow, and Verona: Determinants of Immune Composition. Nutrients 2016; 8:nu8110695. [PMID: 27827874 PMCID: PMC5133082 DOI: 10.3390/nu8110695] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/21/2016] [Accepted: 10/28/2016] [Indexed: 11/23/2022] Open
Abstract
Cytokines and growth factors in colostrum and mature milk may play an important role in infant immune maturation, and may vary significantly between populations. We aimed to examine associations between environmental and maternal factors, and human milk (HM) cytokine and growth factor levels. We recruited 398 pregnant/lactating women in the United Kingdom, Russia, and Italy. Participants underwent skin prick testing, questionnaire interview, and colostrum and mature milk sampling. HM cytokine and growth factor levels were quantified by electro-chemiluminescence. We found significant geographical variation in growth factor levels, but no evidence of variation between sites in cytokine detectability. There was an inverse correlation between time of milk sampling and growth factor levels in colostrum for Hepatocyte Growth Factor (HGF) and TGFβ1 and TGFβ3, but not TGFβ2, and levels were significantly higher in colostrum than mature milk for all growth factors. The kinetics of decline were different for each growth factor. Cytokines were present at much lower levels than growth factors, and the decline over time was less consistent. HM growth factors and cytokine levels vary between populations for unknown reasons. Levels of HM mediators decline at different rates postpartum, and these findings suggest specific biological roles for HM growth factors and cytokines in early postnatal development.
Collapse
Affiliation(s)
- Daniel Munblit
- Department of Paediatrics, Imperial College London, London W2 1NY, UK.
- International Inflammation (in-FLAME) Network of the World Universities Network, Sydney 2006, NSW, Australia.
- Faculty of Pediatrics, I. M. Sechenov First Moscow State Medical University, Moscow 119991, Russia.
| | - Marina Treneva
- International Inflammation (in-FLAME) Network of the World Universities Network, Sydney 2006, NSW, Australia.
- Allergy Department, Veltischev Clinical Pediatric Research Institute of Pirogov Russian National Research Medical University, Moscow 125412, Russia.
| | - Diego G Peroni
- International Inflammation (in-FLAME) Network of the World Universities Network, Sydney 2006, NSW, Australia.
- Department of Clinical and Experimental Medicine, Section of Paediatrics, University of Pisa, 56126 Pisa, Italy.
| | - Silvia Colicino
- National Heart and Lung Institute, Imperial College London, London SW3 6NP, UK.
| | - LiYan Chow
- Department of Paediatrics, Imperial College London, London W2 1NY, UK.
| | - Shobana Dissanayeke
- Royal Holloway University of London School of Biological Sciences, Biomedical Sciences, London TW20 0EX, UK.
| | - Priya Abrol
- Department of Paediatrics, Imperial College London, London W2 1NY, UK.
| | - Shreya Sheth
- Department of Paediatrics, Imperial College London, London W2 1NY, UK.
| | - Alexander Pampura
- International Inflammation (in-FLAME) Network of the World Universities Network, Sydney 2006, NSW, Australia.
- Allergy Department, Veltischev Clinical Pediatric Research Institute of Pirogov Russian National Research Medical University, Moscow 125412, Russia.
| | - Attilio L Boner
- Department of Life and Reproduction Sciences, Section of Paediatrics, University of Verona, 37124 Verona, Italy.
| | - Donna T Geddes
- International Inflammation (in-FLAME) Network of the World Universities Network, Sydney 2006, NSW, Australia.
- School of Chemistry and Biochemistry, The University of Western Australia, Perth 6009, WA, Australia.
| | - Robert J Boyle
- Department of Paediatrics, Imperial College London, London W2 1NY, UK.
- International Inflammation (in-FLAME) Network of the World Universities Network, Sydney 2006, NSW, Australia.
| | - John O Warner
- Department of Paediatrics, Imperial College London, London W2 1NY, UK.
- International Inflammation (in-FLAME) Network of the World Universities Network, Sydney 2006, NSW, Australia.
| |
Collapse
|
50
|
TGF-β1 Is Present at High Levels in Wound Fluid from Breast Cancer Patients Immediately Post-Surgery, and Is Not Increased by Intraoperative Radiation Therapy (IORT). PLoS One 2016; 11:e0162221. [PMID: 27589056 PMCID: PMC5010202 DOI: 10.1371/journal.pone.0162221] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/18/2016] [Indexed: 12/13/2022] Open
Abstract
In patients with low-risk breast cancer, intraoperative radiotherapy (IORT) during breast-conserving surgery is a novel and convenient treatment option for delivering a single high dose of irradiation directly to the tumour bed. However, edema and fibrosis can develop after surgery and radiotherapy, which can subsequently impair quality of life. TGF- β is a strong inducer of the extracellular matrix component hyaluronan (HA). TGF-β expression and HA metabolism can be modulated by irradiation experimentally, and are involved in edema and fibrosis. We therefore hypothesized that IORT may regulate these factors.Wound fluid (WF) draining from breast lumpectomy sites was collected and levels of TGF-β1 and HA were determined by ELISA. Proliferation and marker expression was analyzed in primary lymphatic endothelial cells (LECs) treated with recombinant TGF-β or WF. Our results show that IORT does not change TGF-β1 or HA levels in wound fluid draining from breast lumpectomy sites, and does not lead to accumulation of sHA oligosaccharides. Nevertheless, concentrations of TGF-β1 were high in WF from patients regardless of IORT, at concentrations well above those associated with fibrosis and the suppression of LEC identity. Consistently, we found that TGF-β in WF is active and inhibits LEC proliferation. Furthermore, all three TGF-β isoforms inhibited LEC proliferation and suppressed LEC marker expression at pathophysiologically relevant concentrations. Given that TGF-β contributes to edema and plays a role in the regulation of LEC identity, we suggest that inhibition of TGF-β directly after surgery might prevent the development of side effects such as edema and fibrosis.
Collapse
|