1
|
Barghash RF, Gemmati D, Awad AM, Elbakry MMM, Tisato V, Awad K, Singh AV. Navigating the COVID-19 Therapeutic Landscape: Unveiling Novel Perspectives on FDA-Approved Medications, Vaccination Targets, and Emerging Novel Strategies. Molecules 2024; 29:5564. [PMID: 39683724 PMCID: PMC11643501 DOI: 10.3390/molecules29235564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Amidst the ongoing global challenge of the SARS-CoV-2 pandemic, the quest for effective antiviral medications remains paramount. This comprehensive review delves into the dynamic landscape of FDA-approved medications repurposed for COVID-19, categorized as antiviral and non-antiviral agents. Our focus extends beyond conventional narratives, encompassing vaccination targets, repurposing efficacy, clinical studies, innovative treatment modalities, and future outlooks. Unveiling the genomic intricacies of SARS-CoV-2 variants, including the WHO-designated Omicron variant, we explore diverse antiviral categories such as fusion inhibitors, protease inhibitors, transcription inhibitors, neuraminidase inhibitors, nucleoside reverse transcriptase, and non-antiviral interventions like importin α/β1-mediated nuclear import inhibitors, neutralizing antibodies, and convalescent plasma. Notably, Molnupiravir emerges as a pivotal player, now licensed in the UK. This review offers a fresh perspective on the historical evolution of COVID-19 therapeutics, from repurposing endeavors to the latest developments in oral anti-SARS-CoV-2 treatments, ushering in a new era of hope in the battle against the pandemic.
Collapse
Affiliation(s)
- Reham F. Barghash
- Institute of Chemical Industries Research, National Research Centre, Dokki, Cairo 12622, Egypt
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Cairo 12451, Egypt
| | - Donato Gemmati
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Ahmed M. Awad
- Department of Chemistry, California State University Channel Islands, Camarillo, CA 93012, USA
| | - Mustafa M. M. Elbakry
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Cairo 12451, Egypt
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Veronica Tisato
- Centre Hemostasis & Thrombosis, University of Ferrara, 44121 Ferrara, Italy
| | - Kareem Awad
- Institute of Pharmaceutical and Drug Industries Research, National Research Center, Dokki, Cairo 12622, Egypt;
| | - Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| |
Collapse
|
2
|
Di Trani CA, Cirella A, Arrizabalaga L, Fernandez-Sendin M, Bella A, Aranda F, Melero I, Berraondo P. Overcoming the limitations of cytokines to improve cancer therapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 369:107-141. [PMID: 35777862 DOI: 10.1016/bs.ircmb.2022.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cytokines are pleiotropic soluble proteins used by immune cells to orchestrate a coordinated response against pathogens and malignancies. In cancer immunotherapy, cytokine-based drugs can be developed potentiating pro-inflammatory cytokines or blocking immunosuppressive cytokines. However, the complexity of the mechanisms of action of cytokines requires the use of biotechnological strategies to minimize systemic toxicity, while potentiating the antitumor response. Sequence mutagenesis, fusion proteins and gene therapy strategies are employed to enhance the half-life in circulation, target the desired bioactivity to the tumor microenvironment, and to optimize the therapeutic window of cytokines. In this review, we provide an overview of the different strategies currently being pursued in pre-clinical and clinical studies to make the most of cytokines for cancer immunotherapy.
Collapse
Affiliation(s)
- Claudia Augusta Di Trani
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Assunta Cirella
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Leire Arrizabalaga
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Myriam Fernandez-Sendin
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Angela Bella
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Fernando Aranda
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IDISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
3
|
Ashour NA, Abo Elmaaty A, Sarhan AA, Elkaeed EB, Moussa AM, Erfan IA, Al-Karmalawy AA. A Systematic Review of the Global Intervention for SARS-CoV-2 Combating: From Drugs Repurposing to Molnupiravir Approval. Drug Des Devel Ther 2022; 16:685-715. [PMID: 35321497 PMCID: PMC8935998 DOI: 10.2147/dddt.s354841] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/26/2022] [Indexed: 02/05/2023] Open
Abstract
The rising outbreak of SARS-CoV-2 continues to unfold all over the world. The development of novel effective antiviral drugs to fight against SARS-CoV-2 is a time cost. As a result, some specific FDA-approved drugs have already been repurposed and authorized for COVID-19 treatment. The repurposed drugs used were either antiviral or non-antiviral drugs. Accordingly, the present review thoroughly focuses on the repurposing efficacy of these drugs including clinical trials experienced, the combination therapies used, the novel methods followed for treatment, and their future perspective. Therefore, drug repurposing was regarded as an effective avenue for COVID-19 treatment. Recently, molnupiravir is a prodrug antiviral medication that was approved in the United Kingdom in November 2021 for the treatment of COVID-19. On the other hand, PF-07321332 is an oral antiviral drug developed by Pfizer. For the treatment of COVID-19, the PF-07321332/ritonavir combination medication is used in Phase III studies and was marketed as Paxlovid. Herein, we represented the almost history of combating COVID-19 from repurposing to the recently available oral anti-SARS-CoV-2 candidates, as a new hope to end the current pandemic.
Collapse
Affiliation(s)
- Nada A Ashour
- Department of Clinical Pharmacology, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
| | - Ayman Abo Elmaaty
- Department of Medicinal Chemistry, Faculty of Pharmacy, Port Said University, Port Said, 42526, Egypt
| | - Amany A Sarhan
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah, 13713, Riyadh, Saudi Arabia
| | - Ahmed M Moussa
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
| | - Ibrahim Ali Erfan
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
| |
Collapse
|
4
|
Van Den Eeckhout B, Tavernier J, Gerlo S. Interleukin-1 as Innate Mediator of T Cell Immunity. Front Immunol 2021; 11:621931. [PMID: 33584721 PMCID: PMC7873566 DOI: 10.3389/fimmu.2020.621931] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/08/2020] [Indexed: 12/19/2022] Open
Abstract
The three-signal paradigm tries to capture how the innate immune system instructs adaptive immune responses in three well-defined actions: (1) presentation of antigenic peptides in the context of MHC molecules, which allows for a specific T cell response; (2) T cell co-stimulation, which breaks T cell tolerance; and (3) secretion of polarizing cytokines in the priming environment, thereby specializing T cell immunity. The three-signal model provides an empirical framework for innate instruction of adaptive immunity, but mainly discusses STAT-dependent cytokines in T cell activation and differentiation, while the multi-faceted roles of type I IFNs and IL-1 cytokine superfamily members are often neglected. IL-1α and IL-1β are pro-inflammatory cytokines, produced following damage to the host (release of DAMPs) or upon innate recognition of PAMPs. IL-1 activity on both DCs and T cells can further shape the adaptive immune response with variable outcomes. IL-1 signaling in DCs promotes their ability to induce T cell activation, but also direct action of IL-1 on both CD4+ and CD8+ T cells, either alone or in synergy with prototypical polarizing cytokines, influences T cell differentiation under different conditions. The activities of IL-1 form a direct bridge between innate and adaptive immunity and could therefore be clinically translatable in the context of prophylactic and therapeutic strategies to empower the formation of T cell immunity. Understanding the modalities of IL-1 activity during T cell activation thus could hold major implications for rational development of the next generation of vaccine adjuvants.
Collapse
Affiliation(s)
- Bram Van Den Eeckhout
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Jan Tavernier
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Orionis Biosciences BV, Ghent, Belgium
| | - Sarah Gerlo
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
5
|
Su Z, Wang B, Almo SC, Wu Y. Understanding the Targeting Mechanisms of Multi-Specific Biologics in Immunotherapy with Multiscale Modeling. iScience 2020; 23:101835. [PMID: 33305190 PMCID: PMC7710644 DOI: 10.1016/j.isci.2020.101835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/29/2020] [Accepted: 11/17/2020] [Indexed: 11/30/2022] Open
Abstract
Immunotherapeutics are frequently associated with adverse side effects due to the elicitation of global immune modulation. To lower the risk of these side effects, recombinant DNA technology is employed to enhance the selectivity of cell targeting by genetically fusing different biomolecules, yielding new species referred to as multi-specific biologics. The design of new multi-specific biologics is a central challenge for the realization of new immunotherapies. To understand the molecular determinants responsible for regulating the binding between multi-specific biologics and surface-bound membrane receptors, we developed a multiscale computational framework that integrates various simulation approaches covering different timescales and spatial resolutions. Our model system of multi-specific biologics contains two natural ligands of immune receptors, which are covalently tethered by a peptide linker. Using this method, a number of interesting features of multi-specific biologics were identified. Our study therefore provides an important strategy to design the next-generation biologics for immunotherapy. Two proteins are connected by different linkers as a model of bispecific biologics Conformational dynamics of biologics are captured by microsecond MD simulations Coarse-grained simulations are used to test binding between biologics and receptors Biologics with long and flexible linkers are more efficient in targeting receptors
Collapse
Affiliation(s)
- Zhaoqian Su
- Department of Systems and Computational Biology, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Bo Wang
- Department of Systems and Computational Biology, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, NY 10461, USA.,Department of Physiology and Biophysics, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Yinghao Wu
- Department of Systems and Computational Biology, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| |
Collapse
|
6
|
An overview of the safety, clinical application and antiviral research of the COVID-19 therapeutics. J Infect Public Health 2020; 13:1405-1414. [PMID: 32684351 PMCID: PMC7357519 DOI: 10.1016/j.jiph.2020.07.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/27/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023] Open
Abstract
Since a novel coronavirus pneumonia outbreak in late December 2019, coronavirus disease -19 (COVID-19) epidemic has gradually spread worldwide, becoming a major public health event. No specific antivirals are currently available for COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The treatments for COVID-19 are mainly based on the experiences of similar virus such SARS-CoV, MERS-CoV, HIV and influenza viruses. Scientists have taken great efforts to investigate the effective methods for the treatment of COVID-19. Up to now, there are over 1000 clinical studies for COVID-19 all over the world. In this article, we reviewed the current options for COVID-19 therapy including small molecules such as Remdesivir, Favipiravir, Lopinavir/Ritonavir etc, peptide inhibitors of ACE2, Traditional Chinese Medicines and Biologics such as SARS-CoV-2-specific neutralizing antibodies, mesenchymal stem cells and vaccines etc. Meanwhile, we systematically reviewed their clinical safety, clinical applications and progress of antiviral researches. The therapeutic effect of these antiviral drugs is summarized and compared, hoping to provide some ideas for clinical options of COVID-19 treatment and also provide experiences for the life-threatening virus diseases in the future.
Collapse
|
7
|
Zhang S, Zhou Y, Su L, Zhang X, Wang H, Liu B. In vivo evaluation of the efficacy of combined albedazole-IFN-α treatment for cystic echinococcosis in mice. Parasitol Res 2016; 116:735-742. [PMID: 27928681 DOI: 10.1007/s00436-016-5339-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/28/2016] [Indexed: 11/25/2022]
Abstract
Cystic echinococcosis (CE) is a serious helminthic zoonosis caused by Echinococcus granulosus metacestode worldwide. The current chemotherapy of CE is mainly based on albendazole (ABZ). However, more than 20% CE cases failed to such chemotherapy. Thus, novel and more efficient treatment options are urgently needed. This study was to evaluate the in vivo efficacy of combined ABZ-interferon (IFN)-α treatment for CE in mice. After 5 months of secondary infection with protoscoleces, mice were randomly allocated into four groups: ABZ-treated group, IFN-α-treated group, ABZ+IFN-α group, and untreated control group. Drugs in diverse treated groups were respectively administered for 2 months. Mice were then euthanized and associated indications were investigated to evaluate the therapeutic efficacy. ABZ+IFN-α induced a significant reduction of the number, size, as well as weight of cysts, compared with that in the ABZ (p < 0.05) or untreated group (p < 0.01), respectively. This effect was associated with ultrastructural modification of the cyst in the ABZ+IFN-α group. Interestingly, significant decrease of IL (interleukin)-10 in serum and in vitro production by spleen cells with ABZ+IFN-α treatment was observed in comparison with untreated control (p < 0.01). Serum IgE, IgG, and subsets were respectively decreased in ABZ+IFN-α treatment, compared with that in the control group (p < 0.01). In conclusion, our findings demonstrated that combination of ABZ with IFN-α may contribute to an efficient therapeutic regimen of human and animal CE.
Collapse
Affiliation(s)
- Shengbin Zhang
- Department of General Surgery, Baogang Hospital, Baotou, Inner Mongolia, China
| | - Yongsheng Zhou
- Department of General Surgery, Baogang Hospital, Baotou, Inner Mongolia, China
| | - Lifu Su
- Department of General Surgery, Baogang Hospital, Baotou, Inner Mongolia, China
| | - Xiaodong Zhang
- Department of General Surgery, Baogang Hospital, Baotou, Inner Mongolia, China
| | - Hao Wang
- Department of Pathogenic Biology and Medical Immunology, Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
- Key Laboratory of Hydatid Disease, Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
| | - Baoqin Liu
- Department of General Surgery, Baogang Hospital, Baotou, Inner Mongolia, China.
| |
Collapse
|
8
|
Cooperative TRAIL production mediates IFNα/Smac mimetic-induced cell death in TNFα-resistant solid cancer cells. Oncotarget 2016; 7:3709-25. [PMID: 26788912 PMCID: PMC4826164 DOI: 10.18632/oncotarget.6915] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/04/2016] [Indexed: 11/26/2022] Open
Abstract
Smac mimetics antagonize IAP proteins, which are highly expressed in several cancers. Recent reports indicate that Smac mimetics trigger a broad cytokine response and synergize with immune modulators to induce cell death. Here, we identify a differential requirement of TRAIL or TNFα as mediators of IFNα/Smac mimetic-induced cell death depending on the cellular context. Subtoxic concentrations of Smac mimetics cooperate with IFNα to induce cell death in various solid tumor cell lines in a highly synergistic manner as determined by combination index. Mechanistic studies show that IFNα/BV6 cotreatment promotes the formation of a caspase-8-activating complex together with the adaptor protein FADD and RIP1. Assembly of this RIP1/FADD/caspase-8 complex represents a critical event, since RIP1 silencing inhibits IFNα/BV6-induced cell death. Strikingly, pharmacological inhibition of paracrine/autocrine TNFα signaling by the TNFα scavenger Enbrel rescues HT-29 colon carcinoma cells, but not A172 glioblastoma cells from IFNα/BV6-induced cell death. By comparison, A172 cells are significantly protected against IFNα/BV6 treatment by blockage of TRAIL signaling through genetic silencing of TRAIL or its cognate receptor TRAIL receptor 2 (DR5). Despite this differential requirement of TNFα and TRAIL signaling, mRNA and protein expression is increased by IFNα/BV6 cotreatment in both cell lines. Interestingly, A172 cells turn out to be resistant to exogenously added recombinant TNFα even in the presence of BV6, whereas they display a high sensitivity towards TRAIL/BV6. In contrast, BV6 efficiently sensitizes HT-29 cells to TNFα while TRAIL only had limited efficacy. This demonstrates that a differential sensitivity towards TRAIL or TNFα determines the dependency on either death receptor ligand for IFNα/Smac mimetic-induced cell death. Thus, by concomitant stimulation of both death receptor systems IFNα/Smac mimetic combination treatment is an effective strategy to induce cell death in TNFα- or TRAIL-responsive cancers.
Collapse
|
9
|
Ospelnikova TP, Noseikina EM, Gaiderova LA, Ershov FI. THERAPEUTIC POTENTIAL OF ALPHA-INTERFERON PREPARATIONS DURING SOCIALLY-SIGNIFICANT HUMAN DISEASES OF VIRAL ETIOLOGY. JOURNAL OF MICROBIOLOGY, EPIDEMIOLOGY AND IMMUNOBIOLOGY 2016. [DOI: 10.36233/0372-9311-2016-5-109-121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Interferons (IFN) belong to key cytokine? of innate and adaptive immune response and play an important role in anti-viral and anti-tumor protection. At the same time, they possess a pronounced immune-modulating, anti-proliferative and anti-fibrotic effect. A general comparative characteristic of human IFN type I (a/(3), IFN type II (y) and IFN type III (X) and nosological directionality of contemporary drugs created on their base is examined in the review. Epidemiologic parameters for main socially-significant human diseases of viral etiology are presented: influenza and other ARVis, herpes infection, chronic viral hepatitis В, C and D. Main attention is given to analysis of effectiveness of therapeutic application of preparations based on IFNa during the indicated infections, a specter of main IFNa induced side effects is listed. Recent achievements on the path of creation of principally new drugs based on IFN, that have lower toxicity and higher clinical effectiveness, as well as perspectives of application of preparations based on recombinant IFN for therapy of potentially dangerous diseases are examined.
Collapse
|
10
|
Ceaglio N, Gugliotta A, Tardivo MB, Cravero D, Etcheverrigaray M, Kratje R, Oggero M. Improvement of in vitro stability and pharmacokinetics of hIFN-α by fusing the carboxyl-terminal peptide of hCG β-subunit. J Biotechnol 2016; 221:13-24. [PMID: 26806490 DOI: 10.1016/j.jbiotec.2016.01.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/13/2016] [Accepted: 01/15/2016] [Indexed: 01/07/2023]
Abstract
Improving in vivo half-life and in vitro stability of protein-based therapeutics is a current challenge for the biopharmaceutical industry. In particular, recombinant human interferon alpha-2b (rhIFN-α2b), which belongs to a group of cytokines extensively used for the treatment of viral diseases and cancers, shows a poor stability in solution and an extremely short plasma half-life which determines a strict therapeutic regimen comprising high and repeated doses. In this work, we have used a strategy based on the fusion of the carboxyl-terminal peptide (CTP) of human chorionic gonadotropin (hCG) β-subunit, bearing four O-linked oligosaccharide recognition sites, to each or both N- and C-terminal ends of rhIFN-α2b. Molecules containing from 5 (CTP-IFN and IFN-CTP) to 9 (CTP-IFN-CTP) O-glycosylation sites were efficiently expressed and secreted to CHO cells supernatants, and exhibited antiviral and antiproliferative bioactivities in vitro. Significant improvements in pharmacokinetics in rats were achieved through this approach, since the doubly CTP-modified IFN variant showed a 10-fold longer elimination half-life and a 19-fold decreased plasma apparent clearance compared to the wild-type cytokine. Moreover, CTP-IFN-CTP demonstrated a significant increase in in vitro thermal resistance and a higher stability against plasma protease inactivation, both features attributed to the stabilizing effects of the O-glycans provided by the CTP moiety. These results constitute the first report that postulates CTP as a tag for improving both the in vitro and in vivo stability of rhIFN-α2b which, in turn, would positively influence its in vivo bioactivity.
Collapse
Affiliation(s)
- Natalia Ceaglio
- Cell Culture Laboratory, School of Biochemistry and Biological Sciences, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje "El Pozo", C.C. 242, S3000ZAA Santa Fe, Argentina.
| | - Agustina Gugliotta
- Cell Culture Laboratory, School of Biochemistry and Biological Sciences, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje "El Pozo", C.C. 242, S3000ZAA Santa Fe, Argentina
| | | | - Dianela Cravero
- Cell Culture Laboratory, School of Biochemistry and Biological Sciences, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje "El Pozo", C.C. 242, S3000ZAA Santa Fe, Argentina
| | - Marina Etcheverrigaray
- Cell Culture Laboratory, School of Biochemistry and Biological Sciences, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje "El Pozo", C.C. 242, S3000ZAA Santa Fe, Argentina
| | - Ricardo Kratje
- Cell Culture Laboratory, School of Biochemistry and Biological Sciences, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje "El Pozo", C.C. 242, S3000ZAA Santa Fe, Argentina
| | - Marcos Oggero
- Cell Culture Laboratory, School of Biochemistry and Biological Sciences, Universidad Nacional del Litoral, Ciudad Universitaria, Paraje "El Pozo", C.C. 242, S3000ZAA Santa Fe, Argentina
| |
Collapse
|
11
|
Paul F, Pellegrini S, Uzé G. IFNA2: The prototypic human alpha interferon. Gene 2015; 567:132-7. [PMID: 25982860 PMCID: PMC5629289 DOI: 10.1016/j.gene.2015.04.087] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/21/2015] [Accepted: 04/28/2015] [Indexed: 01/10/2023]
Abstract
The human interferon α2 (IFNα2) was the first highly active IFN subtype to be cloned in the early eighties. It was also the first IFN and the first cytokine to be produced and commercialized by the pharmaceutical industry. Ipso facto it became the favorite IFNα subtype for academic researchers. For this fortunate reason IFNα2 has been at the origin of most discoveries related to the mechanism of action of type I interferons.
Collapse
Affiliation(s)
- Franciane Paul
- CNRS UMR 5235, University Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | | | - Gilles Uzé
- CNRS UMR 5235, University Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France.
| |
Collapse
|