1
|
Khalifa A, Guijarro A, Nencioni A. Advances in Diet and Physical Activity in Breast Cancer Prevention and Treatment. Nutrients 2024; 16:2262. [PMID: 39064705 PMCID: PMC11279876 DOI: 10.3390/nu16142262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
There is currently a growing interest in diets and physical activity patterns that may be beneficial in preventing and treating breast cancer (BC). Mounting evidence indicates that indeed, the so-called Mediterranean diet (MedDiet) and regular physical activity likely both help reduce the risk of developing BC. For those who have already received a BC diagnosis, these interventions may decrease the risk of tumor recurrence after treatment and improve quality of life. Studies also show the potential of other dietary interventions, including fasting or modified fasting, calorie restriction, ketogenic diets, and vegan or plant-based diets, to enhance the efficacy of BC therapies. In this review article, we discuss the biological rationale for utilizing these dietary interventions and physical activity in BC prevention and treatment. We highlight published and ongoing clinical studies that have applied these lifestyle interventions to BC patients. This review offers valuable insights into the potential application of these dietary interventions and physical activity as complimentary therapies in BC management.
Collapse
Affiliation(s)
- Amr Khalifa
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy;
| | - Ana Guijarro
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy;
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy;
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| |
Collapse
|
2
|
Bocian-Jastrzębska A, Malczewska-Herman A, Kos-Kudła B. Role of Leptin and Adiponectin in Carcinogenesis. Cancers (Basel) 2023; 15:4250. [PMID: 37686525 PMCID: PMC10486522 DOI: 10.3390/cancers15174250] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Hormones produced by adipocytes, leptin and adiponectin, are associated with the process of carcinogenesis. Both of these adipokines have well-proven oncologic potential and can affect many aspects of tumorigenesis, from initiation and primary tumor growth to metastatic progression. Involvement in the formation of cancer includes interactions with the tumor microenvironment and its components, such as tumor-associated macrophages, cancer-associated fibroblasts, extracellular matrix and matrix metalloproteinases. Furthermore, these adipokines participate in the epithelial-mesenchymal transition and connect to angiogenesis, which is critical for cancer invasiveness and cancer cell migration. In addition, an enormous amount of evidence has demonstrated that altered concentrations of these adipocyte-derived hormones and the expression of their receptors in tumors are associated with poor prognosis in various types of cancer. Therefore, leptin and adiponectin dysfunction play a prominent role in cancer and impact tumor invasion and metastasis in different ways. This review clearly and comprehensively summarizes the recent findings and presents the role of leptin and adiponectin in cancer initiation, promotion and progression, focusing on associations with the tumor microenvironment and its components as well as roles in the epithelial-mesenchymal transition and angiogenesis.
Collapse
Affiliation(s)
- Agnes Bocian-Jastrzębska
- Department of Endocrinology and Neuroendocrine Tumors, Department of Pathophysiology and Endocrinogy, Medical University of Silesia, 40-514 Katowice, Poland; (A.M.-H.); (B.K.-K.)
| | | | | |
Collapse
|
3
|
Bombarda-Rocha V, Silva D, Badr-Eddine A, Nogueira P, Gonçalves J, Fresco P. Challenges in Pharmacological Intervention in Perilipins (PLINs) to Modulate Lipid Droplet Dynamics in Obesity and Cancer. Cancers (Basel) 2023; 15:4013. [PMID: 37568828 PMCID: PMC10417315 DOI: 10.3390/cancers15154013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
Perilipins (PLINs) are the most abundant proteins in lipid droplets (LD). These LD-associated proteins are responsible for upgrading LD from inert lipid storage structures to fully functional organelles, fundamentally integrated in the lipid metabolism. There are five distinct perilipins (PLIN1-5), each with specific expression patterns and metabolic activation, but all capable of regulating the activity of lipases on LD. This plurality creates a complex orchestrated mechanism that is directly related to the healthy balance between lipogenesis and lipolysis. Given the essential role of PLINs in the modulation of the lipid metabolism, these proteins can become interesting targets for the treatment of lipid-associated diseases. Since reprogrammed lipid metabolism is a recognized cancer hallmark, and obesity is a known risk factor for cancer and other comorbidities, the modulation of PLINs could either improve existing treatments or create new opportunities for the treatment of these diseases. Even though PLINs have not been, so far, directly considered for pharmacological interventions, there are many established drugs that can modulate PLINs activity. Therefore, the aim of this study is to assess the involvement of PLINs in diseases related to lipid metabolism dysregulation and whether PLINs can be viewed as potential therapeutic targets for cancer and obesity.
Collapse
Affiliation(s)
- Victória Bombarda-Rocha
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
- UCIBIO–Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Dany Silva
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
- UCIBIO–Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Allal Badr-Eddine
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
| | - Patrícia Nogueira
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
- UCIBIO–Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Jorge Gonçalves
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
- UCIBIO–Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Paula Fresco
- Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (V.B.-R.); (D.S.); (A.B.-E.); (P.N.); (P.F.)
- UCIBIO–Applied Molecular Biosciences Unit, Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
4
|
González-Barba F, Balderas-Peña LMA, Trujillo-Hernández B, Cervantes-González LM, González-Rodríguez JA, Gutiérrez-Rodríguez LX, Alvarado-Zermeño A, Alcaraz-Wong AA, Gómez-Sánchez E, Carrillo-Núñez GG, Salazar-Páramo M, Nava-Zavala AH, Rubio-Jurado B, Mireles-Ramírez MA, Martínez-Herrera BE, Sat-Muñoz D. Phase Angle and Nutritional Status: The Impact on Survival and Health-Related Quality of Life in Locally Advanced Uterine Cervical Cancer. Healthcare (Basel) 2023; 11:246. [PMID: 36673614 PMCID: PMC9859032 DOI: 10.3390/healthcare11020246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/03/2023] [Accepted: 01/12/2023] [Indexed: 01/14/2023] Open
Abstract
The phase angle, an indicator of muscle mass status and membrane cell integrity, has been associated with low survival, poorer clinical outcomes, and worse quality of life among cancer patients, but information on women with uterine cervical cancer (UCCa) is scarce. In this prospective study, we used a bioelectrical impedance analyzer to obtain the PA of 65 women with UCCa. We compared the health-related quality of life and inflammatory and nutritional indicators between low PA and normal PA. The mean age was 52 ± 13. The low PA and normal PA groups differed in terms of the C-reactive protein (15.8 ± 19.6 versus 6.82 ± 5.02, p = 0.022), glucose (125.39 ± 88.19 versus 88.78 ± 23.08, p = 0.021), albumin (3.9 ± 0.39 versus 4.37 ± 0.30, p = 0.000), EORTC QLQ-C30 loss of appetite symptom scale score (33.33 (0.0-100.00) versus 0.0 (0.0-0.0), p = 0.005), and EORTC QLQ-CX24 menopausal symptoms scale score (0.0 (0.0-33.33) versus 0.0 (0.0-100.0), p = 0.03). The main finding of the present study is the interaction between PA and obesity as critical cofactors in the UCCa adeno and adenosquamous histologic variants, to a greater extent than cervical squamous cell carcinoma.
Collapse
Affiliation(s)
- Faviola González-Barba
- Departamento Clínico de Anatomía Patológica, División de Diagnóstico, UMAE, Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico
- Unidad de Investigación Biomédica 02, UMAE Hospital de Especialidades (HE), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico
| | - Luz-Ma.-Adriana Balderas-Peña
- Unidad de Investigación Biomédica 02, UMAE Hospital de Especialidades (HE), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico
- Departamento de Morfología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdG), Guadalajara 44340, Mexico
- Cuerpo Académico UDG CA-874 “Ciencias Morfológicas en el Diagnóstico y Tratamiento de la Enfermedad”, Guadalajara 44340, Mexico
| | | | - Luz-María Cervantes-González
- Unidad de Investigación Biomédica 02, UMAE Hospital de Especialidades (HE), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico
- Carrera de Médico Cirujano y Partero, Coordinación de Servicio Social, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdG), Guadalajara 44340, Mexico
- Comisión Interinstitucional de Formación de Recursos Humanos en Salud, Programa Nacional de Servicio Social en Investigación 2021, Demarcación Territorial Miguel Hidalgo 11410, Mexico
| | - Javier-Andrés González-Rodríguez
- Unidad de Investigación Biomédica 02, UMAE Hospital de Especialidades (HE), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico
- Cuerpo Académico UDG CA-874 “Ciencias Morfológicas en el Diagnóstico y Tratamiento de la Enfermedad”, Guadalajara 44340, Mexico
- Carrera de Médico Cirujano y Partero, Coordinación de Servicio Social, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdG), Guadalajara 44340, Mexico
| | - Leonardo-Xicotencatl Gutiérrez-Rodríguez
- Unidad de Investigación Biomédica 02, UMAE Hospital de Especialidades (HE), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico
- Comisión Interinstitucional de Formación de Recursos Humanos en Salud, Programa Nacional de Servicio Social en Investigación 2021, Demarcación Territorial Miguel Hidalgo 11410, Mexico
- Carrera de Médico Cirujano y Partero, Coordinación de Servicio Social, Centro Universitario del Sur, Universidad de Guadalajara (UdG), Ciudad Guzmán 49000, Mexico
| | - Adriana Alvarado-Zermeño
- Departamento Clínico de Oncología Radioterapia, Servicio Nacional de Radioneurocirugía, División de Oncología Hematología, UMAE, Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico
| | - Aldo-Antonio Alcaraz-Wong
- Departamento Clínico de Anatomía Patológica, División de Diagnóstico, UMAE, Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico
| | - Eduardo Gómez-Sánchez
- Cuerpo Académico UDG CA-874 “Ciencias Morfológicas en el Diagnóstico y Tratamiento de la Enfermedad”, Guadalajara 44340, Mexico
- División de Disciplinas Clínicas, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdG), Guadalajara 44340, Mexico
| | - Gabriela-Guadalupe Carrillo-Núñez
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdG), Guadalajara 44340, Mexico
- Cuerpo Académico UDG CA-365 “Educación y Salud”, Guadalajara 44340, Mexico
| | - Mario Salazar-Páramo
- Academia de Inmunología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdG), Guadalajara 44340, Mexico
| | - Arnulfo-Hernán Nava-Zavala
- Unidad de Investigación Social Epidemiológica y en Servicios de Salud, Órgano de Operación Administrativa Desconcentrada, Guadalajara 44340, Mexico
- Programa Internacional Facultad de Medicina, Universidad Autónoma de Guadalajara, Zapopan 45129, Mexico
- Servicio de Inmunología y Reumatología, División de Medicina Interna, Hospital General de Occidente, Secretaria de Salud Jalisco, Zapopan 45170, Mexico
| | - Benjamín Rubio-Jurado
- Departamento Clínico de Hematología, División de Oncología Hematología, UMAE, Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico
| | - Mario-Alberto Mireles-Ramírez
- División de Investigación en Salud, UMAE, Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico
| | - Brenda-Eugenia Martínez-Herrera
- Unidad de Investigación Biomédica 02, UMAE Hospital de Especialidades (HE), Centro Médico Nacional de Occidente (CMNO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Mexico
- Hospital General de Zona (HGZ) #02 c/MF “Dr. Francisco Padrón Puyou”, Órgano de Operación Administrativa Desconcentrada San Luis Potosi, IMSS, San Luis Potosi 78250, Mexico
| | - Daniel Sat-Muñoz
- Departamento de Morfología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdG), Guadalajara 44340, Mexico
- Cuerpo Académico UDG CA-874 “Ciencias Morfológicas en el Diagnóstico y Tratamiento de la Enfermedad”, Guadalajara 44340, Mexico
- Comité de Cabeza y Cuello, UMAE, Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico
- Departamento Clínico de Oncología Quirúrgica, División de Oncología Hematología, UMAE, Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico
| |
Collapse
|
5
|
Yuan H, Tang H, Shi L. Low expression of lncRNA UCA1 assists the diagnosis of type 2 diabetes mellitus and predicts an increased risk of cardiovascular complications. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2138561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Hui Yuan
- Department of Endocrinology, Daqing Oilfield General Hospital, Daqing, People’s Republic of China
| | - Haiyan Tang
- Department of Infectious Diseases, Daqing Oilfield General Hospital, Daqing, People’s Republic of China
| | - Lili Shi
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| |
Collapse
|
6
|
Ligorio F, Zambelli L, Fucà G, Lobefaro R, Santamaria M, Zattarin E, de Braud F, Vernieri C. Prognostic impact of body mass index (BMI) in HER2+ breast cancer treated with anti-HER2 therapies: from preclinical rationale to clinical implications. Ther Adv Med Oncol 2022; 14:17588359221079123. [PMID: 35281350 PMCID: PMC8908398 DOI: 10.1177/17588359221079123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/21/2022] [Indexed: 12/03/2022] Open
Abstract
Human Epidermal growth factor Receptor 2 (HER2) overexpression or HER2 gene amplification defines a subset of breast cancers (BCs) characterized by higher biological and clinical aggressiveness. The introduction of anti-HER2 drugs has remarkably improved clinical outcomes in patients with both early-stage and advanced HER2+ BC. However, some HER2+ BC patients still have unfavorable outcomes despite optimal anti-HER2 therapies. Retrospective clinical analyses indicate that overweight and obesity can negatively affect the prognosis of patients with early-stage HER2+ BC. This association could be mediated by the interplay between overweight/obesity, alterations in systemic glucose and lipid metabolism, increased systemic inflammatory status, and the stimulation of proliferation pathways resulting in the stimulation of HER2+ BC cell growth and resistance to anti-HER2 therapies. By contrast, in the context of advanced disease, a few high-quality studies, which were included in a meta-analysis, showed an association between high body mass index (BMI) and better clinical outcomes, possibly reflecting the negative prognostic role of malnourishment and cachexia in this setting. Of note, overweight and obesity are modifiable factors. Therefore, uncovering their prognostic role in patients with early-stage or advanced HER2+ BC could have clinical relevance in terms of defining subsets of patients requiring more or less aggressive pharmacological treatments, as well as of designing clinical trials to investigate the therapeutic impact of lifestyle interventions aimed at modifying body weight and composition. In this review, we summarize and discuss the available preclinical evidence supporting the role of adiposity in modulating HER2+ BC aggressiveness and resistance to therapies, as well as clinical studies reporting on the prognostic role of BMI in patients with early-stage or advanced HER2+ BC.
Collapse
Affiliation(s)
- Francesca Ligorio
- Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Luca Zambelli
- Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanni Fucà
- Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Riccardo Lobefaro
- Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marzia Santamaria
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Milan, Italy
| | - Emma Zattarin
- Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo de Braud
- Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Claudio Vernieri
- Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
- Fondazione Istituto FIRC di Oncologia Molecolare (IFOM), Milan, Italy
| |
Collapse
|
7
|
Suh JH, Lee Y, Ohn J, Kim EJ, Kim TG, Jo SJ, Kim SJ, Chung JH. Adiponectin-derived pentapeptide ameliorates psoriasiform skin inflammation by suppressing IL-17 production in γδT cells. J Dermatol Sci 2022; 106:45-52. [DOI: 10.1016/j.jdermsci.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/03/2022] [Accepted: 03/13/2022] [Indexed: 11/29/2022]
|
8
|
Michicotl-Meneses MM, Thompson-Bonilla MDR, Reyes-López CA, García-Pérez BE, López-Tenorio II, Ordaz-Pichardo C, Jaramillo-Flores ME. Inflammation Markers in Adipose Tissue and Cardiovascular Risk Reduction by Pomegranate Juice in Obesity Induced by a Hypercaloric Diet in Wistar Rats. Nutrients 2021; 13:2577. [PMID: 34444736 PMCID: PMC8402035 DOI: 10.3390/nu13082577] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 02/07/2023] Open
Abstract
Pomegranate juice (Punica granatum) has been used since ancient times in traditional medicine (Unani Medicine, Ayurveda); its main compounds are anthocyanins and ellagic acid, which have anti-inflammatory, antioxidant, hepatoprotective, and cardiovascular health effects. The objective was to evaluate the effect of pomegranate juice on inflammation, blood pressure, and vascular and physiological markers associated with obesity induced by a high-fat diet in a murine model. The results show that pomegranate juice reduces the concentration of low-density lipoprotein cholesterol (cLDL) 39% and increases the concentration of high-density lipoprotein cholesterol (cHDL) by 27%, leading to a 12%-18% decrease in the risk of cardiovascular diseases (CVD). In addition to reducing blood pressure by 24%, it also had an antiatherogenic effect by decreasing sE-selectin levels by 42%. On the other hand, the juice significantly increased adiponectin levels in adipose tissue, decreased levels of inflammation markers (tumor necrosis factor-α (TNF-α), plasminogen activator inhibitor-1 (PAI-1), interleukin-17A (IL-17A), interleukin-6 (IL-6), interleukin-1β (IL-1β)), and inhibited the monocyte chemoattractant protein-1 (MCP-1). Pomegranate juice requires clinical studies to prove its immunoregulatory and therapeutic effects on cardiovascular and atherogenic risks.
Collapse
Affiliation(s)
- Maria Monica Michicotl-Meneses
- Departamento de Ingeniería Bioquímica, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Mexico City 07738, Mexico; (M.M.M.-M.); (I.I.L.-T.)
| | - María del Rocío Thompson-Bonilla
- Laboratorio de Medicina Genómica, Investigación Biomédica y Traslacional, ISSSTE, Hospital Regional “1° de Octubre”, Mexico City 07760, Mexico;
| | - César A. Reyes-López
- Laboratorio de Bioquímica Estructural, Instituto Politécnico Nacional, Escuela Nacional de Medicina y Homeopatía, Mexico City 07320, Mexico;
| | - Blanca Estela García-Pérez
- Laboratorio de Microbiología General, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Mexico City 11340, Mexico;
| | - Itzel I. López-Tenorio
- Departamento de Ingeniería Bioquímica, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Mexico City 07738, Mexico; (M.M.M.-M.); (I.I.L.-T.)
| | - Cynthia Ordaz-Pichardo
- Laboratorio de Biología Celular y Productos Naturales, Instituto Politécnico Nacional, Escuela Nacional de Medicina y Homeopatía, Mexico City 07320, Mexico;
| | - María Eugenia Jaramillo-Flores
- Departamento de Ingeniería Bioquímica, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Mexico City 07738, Mexico; (M.M.M.-M.); (I.I.L.-T.)
| |
Collapse
|
9
|
Nam GE, Zhang ZF, Rao J, Zhou H, Jung SY. Interactions Between Adiponectin-Pathway Polymorphisms and Obesity on Postmenopausal Breast Cancer Risk Among African American Women: The WHI SHARe Study. Front Oncol 2021; 11:698198. [PMID: 34367982 PMCID: PMC8335565 DOI: 10.3389/fonc.2021.698198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/02/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND A decreased level of serum adiponectin is associated with obesity and an increased risk of breast cancer among postmenopausal women. Yet, the interplay between genetic variants associated with adiponectin phenotype, obesity, and breast cancer risk is unclear in African American (AA) women. METHODS We examined 32 single-nucleotide polymorphisms (SNPs) previously identified in genome-wide association and replication studies of serum adiponectin levels using data from 7,991 AA postmenopausal women in the Women's Health Initiative SNP Health Association Resource. RESULTS Stratifying by obesity status, we identified 18 adiponectin-related SNPs that were associated with breast cancer risk. Among women with BMI ≥ 30 kg/m2, the minor TT genotype of FER rs10447248 had an elevated breast cancer risk. Interaction was observed between obesity and the CT genotype of ADIPOQ rs6773957 on the additive scale for breast cancer risk (relative excess risk due to interaction, 0.62; 95% CI, 0.32-0.92). The joint effect of BMI ≥ 30 kg/m2 and the TC genotype of OR8S1 rs11168618 was larger than the sum of the independent effects on breast cancer risk. CONCLUSIONS We demonstrated that obesity plays a significant role as an effect modifier in an increased effect of the SNPs on breast cancer risk using one of the most extensive data on postmenopausal AA women. IMPACT The results suggest the potential use of adiponectin genetic variants as obesity-associated biomarkers for informing AA women who are at greater risk for breast cancer and also for promoting behavioral interventions, such as weight control, to those with risk genotypes.
Collapse
Affiliation(s)
- Gina E. Nam
- Department of Epidemiology, Fielding School of Public Health, University of California at Los Angeles (UCLA), Los Angeles, CA, United States
| | - Zuo-Feng Zhang
- Department of Epidemiology, Fielding School of Public Health, University of California at Los Angeles (UCLA), Los Angeles, CA, United States
- Center for Human Nutrition, Department of Medicine, UCLA David Geffen School of Medicine, University of California at Los Angeles (UCLA), Los Angeles, CA, United States
| | - Jianyu Rao
- Department of Epidemiology, Fielding School of Public Health, University of California at Los Angeles (UCLA), Los Angeles, CA, United States
| | - Hua Zhou
- Department of Biostatistics, Fielding School of Public Health, University of California at Los Angeles (UCLA), Los Angeles, CA, United States
| | - Su Yon Jung
- Translational Sciences Section, School of Nursing, University of California at Los Angeles (UCLA), Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, University of California at Los Angeles (UCLA), Los Angeles, CA, United States
| |
Collapse
|
10
|
The Potential Role of Exosomes in Child and Adolescent Obesity. CHILDREN-BASEL 2021; 8:children8030196. [PMID: 33800718 PMCID: PMC7999028 DOI: 10.3390/children8030196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/17/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023]
Abstract
Child and adolescent obesity constitute one of the greatest contemporary public health menaces. The enduring disproportion between calorie intake and energy consumption, determined by a complex interaction of genetic, epigenetic, and environmental factors, finally leads to the development of overweight and obesity. Child and adolescent overweight/obesity promotes smoldering systemic inflammation (“para-inflammation”) and increases the likelihood of later metabolic and cardiovascular complications, including metabolic syndrome and its components, which progressively deteriorate during adulthood. Exosomes are endosome-derived extracellular vesicles that are secreted by a variety of cells, are naturally taken-up by target cells, and may be involved in many physiological and pathological processes. Over the last decade, intensive research has been conducted regarding the special role of exosomes and the non-coding (nc) RNAs they contain (primarily micro (mi) RNAs, long (l) non-coding RNAs, messenger (m) RNAs and other molecules) in inter-cellular communications. Through their action as communication mediators, exosomes may contribute to the pathogenesis of obesity and associated disorders. There is increasing evidence that exosomal miRNAs and lncRNAs are involved in pivotal processes of adipocyte biology and that, possibly, play important roles in gene regulation linked to human obesity. This review aims to improve our understanding of the roles of exosomes and their cargo in the development of obesity and related metabolic and inflammatory disorders. We examined their potential roles in adipose tissue physiology and reviewed the scarce data regarding the altered patterns of circulating miRNAs and lncRNAs observed in obese children and adolescents, compared them to the equivalent, more abundant existing findings of adult studies, and speculated on their proposed mechanisms of action. Exosomal miRNAs and lncRNAs could be applied as cardiometabolic risk biomarkers, useful in the early diagnosis and prevention of obesity. Furthermore, the targeting of crucial circulating exosomal cargo to tissues involved in the pathogenesis and maintenance of obesity could provide a novel therapeutic approach to this devastating and management-resistant pandemic.
Collapse
|
11
|
Sims TT, El Alam MB, Karpinets TV, Dorta-Estremera S, Hegde VL, Nookala S, Yoshida-Court K, Wu X, Biegert GWG, Delgado Medrano AY, Solley T, Ahmed-Kaddar M, Chapman BV, Sastry KJ, Mezzari MP, Petrosino JF, Lin LL, Ramondetta L, Jhingran A, Schmeler KM, Ajami NJ, Wargo J, Colbert LE, Klopp AH. Gut microbiome diversity is an independent predictor of survival in cervical cancer patients receiving chemoradiation. Commun Biol 2021; 4:237. [PMID: 33619320 PMCID: PMC7900251 DOI: 10.1038/s42003-021-01741-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 01/13/2021] [Indexed: 02/07/2023] Open
Abstract
Diversity of the gut microbiome is associated with higher response rates for cancer patients receiving immunotherapy but has not been investigated in patients receiving radiation therapy. Additionally, current studies investigating the gut microbiome and outcomes in cancer patients may not have adjusted for established risk factors. Here, we sought to determine if diversity and composition of the gut microbiome was independently associated with survival in cervical cancer patients receiving chemoradiation. Our study demonstrates that the diversity of gut microbiota is associated with a favorable response to chemoradiation. Additionally, compositional variation among patients correlated with short term and long-term survival. Short term survivor fecal samples were significantly enriched in Porphyromonas, Porphyromonadaceae, and Dialister, whereas long term survivor samples were significantly enriched in Escherichia Shigella, Enterobacteriaceae, and Enterobacteriales. Moreover, analysis of immune cells from cervical tumor brush samples by flow cytometry revealed that patients with a high microbiome diversity had increased tumor infiltration of CD4+ lymphocytes as well as activated subsets of CD4 cells expressing ki67+ and CD69+ over the course of radiation therapy. Modulation of the gut microbiota before chemoradiation might provide an alternative way to enhance treatment efficacy and improve treatment outcomes in cervical cancer patients.
Collapse
Affiliation(s)
- Travis T Sims
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Molly B El Alam
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tatiana V Karpinets
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephanie Dorta-Estremera
- Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center and the UTHealth Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - Venkatesh L Hegde
- Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center and the UTHealth Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - Sita Nookala
- Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center and the UTHealth Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - Kyoko Yoshida-Court
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaogang Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Greyson W G Biegert
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrea Y Delgado Medrano
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Travis Solley
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mustapha Ahmed-Kaddar
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bhavana V Chapman
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - K Jagannadha Sastry
- Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center and the UTHealth Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - Melissa P Mezzari
- Department of Molecular Virology and Microbiology, Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Joseph F Petrosino
- Department of Molecular Virology and Microbiology, Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Lilie L Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lois Ramondetta
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anuja Jhingran
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kathleen M Schmeler
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nadim J Ajami
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer Wargo
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lauren E Colbert
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Ann H Klopp
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
12
|
Molehin D, Rasha F, Rahman RL, Pruitt K. Regulation of aromatase in cancer. Mol Cell Biochem 2021; 476:2449-2464. [PMID: 33599895 DOI: 10.1007/s11010-021-04099-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 02/04/2021] [Indexed: 12/21/2022]
Abstract
The regulation of aromatase, an enzyme involved in the biosynthesis of estrogen in normal and cancer cells, has been associated with growth factor signaling and immune response modulation. The tissue-specific regulatory roles of these factors are of particular importance as local aromatase expression is strongly linked to cancer development/progression and disease outcomes in patients. Therefore, aromatase has become a chemotherapeutic target and aromatase inhibitors (AIs) are used in the clinic for treating hormone-dependent cancers. Although AIs have shown promising results in the treatment of cancers, the emerging increase in AI-resistance necessitates the development of new and improved targeted therapies. This review discusses the role of tumor and stromal-derived growth factors and immune cell modulators in regulating aromatase. Current single-agent and combination therapies with or without AIs targeting growth factors and immune checkpoints are also discussed. This review highlights recent studies that show new connections between growth factors, mediators of immune response, and aromatase regulation.
Collapse
Affiliation(s)
- Deborah Molehin
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Fahmida Rasha
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | | | - Kevin Pruitt
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA. .,Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX, 79430-6591, USA.
| |
Collapse
|
13
|
Andò S, Naimo GD, Gelsomino L, Catalano S, Mauro L. Novel insights into adiponectin action in breast cancer: Evidence of its mechanistic effects mediated by ERα expression. Obes Rev 2020; 21:e13004. [PMID: 32067339 DOI: 10.1111/obr.13004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/11/2022]
Abstract
This review describes the multifaceted effects of adiponectin on breast cancer cell signalling, tumour metabolism, and microenvironment. It is largely documented that low adiponectin levels are associated with an increased risk of breast cancer. However, it needs to be still clarified what are the extents of the decrease of local/intra-tumoural adiponectin concentrations, which promote breast tumour malignancy. Most of the anti-proliferative and pro-apoptotic effects induced by adiponectin have been obtained in breast cancer cells not expressing estrogen receptor alpha (ERα). Here, we will highlight recent findings demonstrating the mechanistic effects through which adiponectin is able to fuel genomic and non-genomic estrogen signalling, inhibiting LKB1/AMPK/mTOR/S6K pathway and switching energy balance. Therefore, it emerges that the reduced adiponectin levels in patients with obesity work to sustain tumour growth and progression in ERα-positive breast cancer cells. All this may contribute to remove the misleading paradigm that adiponectin univocally inhibits breast cancer cell growth and progression independently on ERα status. The latter concept, here clearly provided by pre-clinical studies, may have translational relevance adopting adiponectin as a potential therapeutic tool. Indeed, the interfering role of ERα on adiponectin action addresses how a separate assessment of adiponectin treatment needs to be considered in novel therapeutic strategies for ERα-positive and ERα-negative breast cancer.
Collapse
Affiliation(s)
- Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy.,Centro Sanitario, University of Calabria, Arcavacata di Rende, Italy
| | - Giuseppina Daniela Naimo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Loredana Mauro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| |
Collapse
|
14
|
Biondo LA, Teixeira AAS, de O. S. Ferreira KC, Neto JCR. Pharmacological Strategies for Insulin Sensitivity in Obesity and Cancer: Thiazolidinediones and Metformin. Curr Pharm Des 2020; 26:932-945. [DOI: 10.2174/1381612826666200122124116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/21/2019] [Indexed: 12/19/2022]
Abstract
Background:
Chronic diseases, such as obesity and cancer, have high prevalence rates. Both diseases
have hyperinsulinemia, hyperglycemia, high levels of IGF-1 and inflammatory cytokines in common. Therefore,
these can be considered triggers for cancer development and growth. In addition, low-grade inflammation that
modulates the activation of immune cells, cellular metabolism, and production of cytokines and chemokines are
common in obesity, cancer, and insulin resistance. Pharmacological strategies are necessary when a change in
lifestyle does not improve glycemic homeostasis. In this regard, thiazolidinediones (TZD) possess multiple molecular
targets and regulate PPARγ in obesity and cancer related to insulin resistance, while metformin acts
through the AMPK pathway.
Objective:
The aim of this study was to review TZD and metformin as pharmacological treatments for insulin
resistance associated with obesity and cancer.
Conclusions:
Thiazolidinediones restored adiponectin secretion and leptin sensitivity, reduced lipid droplets in
hepatocytes and orexigen peptides in the hypothalamus. In cancer cells, TZD reduced proliferation, production of
reactive oxygen species, and inflammation by acting through the mTOR and NFκB pathways. Metformin has
similar effects, though these are AMPK-dependent. In addition, both drugs can be efficient against certain side
effects caused by chemotherapy.
Collapse
Affiliation(s)
- Luana A. Biondo
- Immunometabolism Research Group, Department of Cell Biology and Development, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Alexandre A. S. Teixeira
- Immunometabolism Research Group, Department of Cell Biology and Development, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Karen C. de O. S. Ferreira
- Immunometabolism Research Group, Department of Cell Biology and Development, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Jose C. R. Neto
- Immunometabolism Research Group, Department of Cell Biology and Development, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
15
|
Facile Synthesis of Silver Nanoparticles Using Asian Spider Flower and Its In Vitro Cytotoxic Activity Against Human Breast Carcinoma Cells. Processes (Basel) 2020. [DOI: 10.3390/pr8040430] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cancer is one of the most dangerous threats to human health and possibly the utmost task for current medicine. Currently, bio-based synthesis of nanoparticles from plants has gained much interest due to its potential medicinal applications. In the present study, a biological approach was employed for biogenic (green) synthesis of silver nanoparticles (AgNPs) using dried leaf extract of Asian spider flower (Asf). The biogenic synthesis of Asf-AgNPs (Asian spider flower-Silver nanoparticles) was established using ultra violet-visible (UV-vis) spectra which exhibited a wide superficial plasmon resonance of AgNPs at 445 nm. These nanoparticles clearly showed the formation of poly-disperse crystalline solids (spherical shape) with particle size range of <50 nm based on observation under a transmission electron microscope (TEM). Infrared spectroscopy (FTIR) revealed carboxylic acids (C = O stretch) known to act as a capping agent and a reductant in plant extracts. Elemental silver signal peak was observed in the graph obtained from energy-dispersive X-ray (EDX) analysis. Biocompatibility tests for Asf-AgNPs at different doses were evaluated against human breast cancer cells (MCF7) for cell viability and apoptotic analysis. According to the evaluation, biosynthesized Asf-AgNPs could prevent the explosion of human breast tumor cells (MCF7) in IC50 at a dose of 40 μg/mL after 48 h of treatment. The results obtained in the IC50 dosage treatments were statistically significant (p < 0.05) when compared with control. Nuclear damage of cells was further investigated using annexin V-FITC/PI dual staining and DAPI (4′,6-diamidino-2-phenylindole) staining method. Bright blue fluorescence with condensed and fragmented chromatin was observed. Western blot analysis showed increased expression levels of caspases-3 and 9 (apoptotic proteins). These results indicate that bio-approached AgNPs synthesized through Asf plant extract could be used as potential therapeutic medications for human cancer cells.
Collapse
|
16
|
Soumya D, Swetha D, Momin S, Gowtham RR, Dakshinamurthy E, Bharathi T, Sai Gopal DVR. Role of Adiponectin in Cervical Cancer. Curr Drug Metab 2020; 20:1033-1038. [PMID: 31902354 DOI: 10.2174/1389200221666200103113330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/07/2019] [Accepted: 11/07/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cervical Cancer (CC) is the most common leading cancer in women globally. This is considered to be the type of cancer that is restricted to women. Any women in the reproductive age range can develop CC. However, women between the ages of 25 and 39 are at a higher risk. OBJECTIVE In comparison with developed countries, the screening and awareness of CC in developing countries are significantly low. Infection with Human papillomavirus (HPV) is the main cause of CC, especially HPV-16 and HPV-18. Other than HPV, there are other factors that can contribute to CC, such as Human simplex virus (HSV) infection and immunocompromised patients with HIV. CONCLUSION Cervical cancer can be detected by molecular techniques such as (1) PCR, (2) visual acetic acid method, (3) DNA Hybrid II test, (4) liquid-based cytology, (5) Pap-Smear techniques, and (6) colposcopy techniques. Early detection of CC is very much needed; cryotherapy or LEEP (Loop electro surgical excision procedure) can be conducted during the pre-invasive stage of CC. Some metabolic changes in the human body such as fluctuating levels of insulin and triglycerides and increased activity of adiponectin may lead to CC. These contributing factors, such as adipokines, can be used as biomarkers for CC detection.
Collapse
Affiliation(s)
| | - Dakshinamurthy Swetha
- Department of Pharmacology, Seven Hills College of Pharmacy, Tirupati, AP-517561, India
| | - Saimila Momin
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA-30322, United States
| | - Racherla Rishi Gowtham
- Department of Microbiology, Sri Venkateswara Institute of Medical Sciences, Tirupati, AP-517507, India
| | | | - Talisetty Bharathi
- Department of Obstetrics and Gynaecology, Govt. Maternity Hospital, Tirupati, AP-517507, India
| | | |
Collapse
|
17
|
Cai X, Zhu Q, Wu T, Zhu B, Liu S, Liu S, Aierken X, Ahmat A, Li N. Association of circulating resistin and adiponectin levels with Kawasaki disease: A meta-analysis. Exp Ther Med 2019; 19:1033-1041. [PMID: 32010266 PMCID: PMC6966156 DOI: 10.3892/etm.2019.8306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 11/05/2019] [Indexed: 12/12/2022] Open
Abstract
The present meta-analysis was performed to examine the association between circulating blood adipokine levels and Kawasaki disease (KD). Studies were identified by searching various databases, including Web of Science, EMBASE, PubMed, Wanfang and China National Knowledge Infrastructure. After the studies were pooled, the mean difference (MD) and corresponding 95% CI were calculated. Subgroup analyses and publication bias detection were also performed. The Cochrane Q test and I2 statistics were performed using Review Manager software (version 5.3) to test for heterogeneity. A Begg's test was used to assess publication bias and STATA software (version 12.0) was used for statistical analysis. The results revealed that the KD group exhibited higher levels of resistin compared with those in the healthy controls or disease controls (non-KD; MD=20.76, 95% CI=16.16-25.36, P<0.001; MD=21.27, 95% CI=14.24-28.29, P<0.001, respectively). In addition, when compared with those in patients exhibiting non-coronary artery lesions (NCAL), those with coronary artery lesions (CAL) had higher levels of adiponectin and resistin (MD=1.00, 95% CI=0.06-1.96, P=0.04; MD=2.77, 95% CI=1.32-4.22, P<0.001). Furthermore, compared with those in the inactive-phase group, patients in the active-phase group exhibited higher levels of resistin (MD=17.73, 95% CI=12.82-22.65, P<0.001). In conclusion, the present meta-analysis indicated that resistin levels were elevated in patients with KD. It was also revealed that circulating resistin and adiponectin levels in the CAL group were significantly increased compared with those in patients with NCAL. Furthermore, the active group had higher levels of resistin than the inactive group. The results of these meta-analyses indicated that resistin may serve an important role in the pathogenesis of KD and may therefore be used as biomarkers for the diagnosis of KD, whereas adiponectin may only serve an important role in the pathogenesis of CAL and may therefore be used as a biomarker to distinguish CAL from NCAL.
Collapse
Affiliation(s)
- Xintian Cai
- Center for Hypertension of The People's Hospital of Xinjiang Uygur Autonomous Region, Hypertension Institute of Xinjiang, Urumqi, Xinjiang 830001, P.R. China
| | - Qing Zhu
- Center for Hypertension of The People's Hospital of Xinjiang Uygur Autonomous Region, Hypertension Institute of Xinjiang, Urumqi, Xinjiang 830001, P.R. China
| | - Ting Wu
- Center for Hypertension of The People's Hospital of Xinjiang Uygur Autonomous Region, Hypertension Institute of Xinjiang, Urumqi, Xinjiang 830001, P.R. China
| | - Bin Zhu
- Center for Hypertension of The People's Hospital of Xinjiang Uygur Autonomous Region, Hypertension Institute of Xinjiang, Urumqi, Xinjiang 830001, P.R. China
| | - Shasha Liu
- Center for Hypertension of The People's Hospital of Xinjiang Uygur Autonomous Region, Hypertension Institute of Xinjiang, Urumqi, Xinjiang 830001, P.R. China
| | - Shanshan Liu
- Center for Hypertension of The People's Hospital of Xinjiang Uygur Autonomous Region, Hypertension Institute of Xinjiang, Urumqi, Xinjiang 830001, P.R. China
| | - Xiayire Aierken
- Center for Hypertension of The People's Hospital of Xinjiang Uygur Autonomous Region, Hypertension Institute of Xinjiang, Urumqi, Xinjiang 830001, P.R. China
| | - Ayguzal Ahmat
- Center for Hypertension of The People's Hospital of Xinjiang Uygur Autonomous Region, Hypertension Institute of Xinjiang, Urumqi, Xinjiang 830001, P.R. China
| | - Nanfang Li
- Center for Hypertension of The People's Hospital of Xinjiang Uygur Autonomous Region, Hypertension Institute of Xinjiang, Urumqi, Xinjiang 830001, P.R. China
| |
Collapse
|
18
|
Effects of two types of energy restriction on methylation levels of adiponectin receptor 1 and leptin receptor overlapping transcript in a mouse mammary tumour virus-transforming growth factor- α breast cancer mouse model. Br J Nutr 2019; 125:1-9. [PMID: 31685042 DOI: 10.1017/s0007114519002757] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The role of adiponectin and leptin signalling pathways has been suggested to play important roles in the protective effects of energy restriction (ER) on mammary tumour (MT) development. To study the effects of ER on the methylation levels in adiponectin receptor 1 (AdipoR1) and leptin receptor overlapping transcript (Leprot) genes using the pyrosequencing method in mammary fat pad tissue, mouse mammary tumour virus-transforming growth factor-α (MMTV-TGF-α) female mice were randomly assigned to ad libitum (AL), chronic ER (CER, 15 % ER) or intermittent ER (3 weeks AL and 1 week 60 % ER in cyclic periods) groups at 10 weeks of age until 82 weeks of age. The methylation levels of AdipoR1 in the CER group were higher than those in the AL group at week 49/50 (P < 0·05), while the levels of methylation for AdipoR1 and Leprot genes were similar among the other groups. Also, the methylation levels at CpG2 and CpG3 regions of the promoter region of the AdipoR1 gene in the CER group were three times higher (P < 0·05), while CpG1 island of Leprot methylation was significantly lower compared with the other groups (P < 0·05). Adiponectin and leptin gene expression levels were consistent with the methylation levels. We also observed a change with ageing in methylation levels of these genes. These results indicate that different types of ER modify methylation levels of AdipoR1 and Leprot in different ways and CER had a more significant effect on methylation levels of both genes. Epigenetic regulation of these genes may play important roles in the preventive effects of ER against MT development and ageing processes.
Collapse
|
19
|
Leetanaporn K, Hanprasertpong J. Impact of Obesity on Clinical Outcomes in Patients with Early-Stage Cervical Cancer after Radical Hysterectomy with Pelvic Node Dissection. Oncol Res Treat 2019; 42:553-563. [PMID: 31533125 DOI: 10.1159/000502752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/14/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND The aim of this study was to determine the prognostic role of obesity on oncological outcomes, surgical complications, and postoperative morbidity of patients with early-stage cervical cancer. METHODS Between 2000 and 2016, we enrolled 500 patients with early-stage cervical cancer who underwent radical hysterectomy with pelvic node dissection (RHND) at Songklanagarind Hospital. For analysis, patients were divided based on their body mass index (BMI) into under-normal weight (<25 kg/m2), overweight (25-29.99 kg/m2), and obese (≥30 kg/m2) groups. RESULTS The median age was 47 years, and the median BMI was 24.3 kg/m2 (25% quartile, 22.0 kg/m2; 75% quartile, 27.4 kg/m2). Patients in the obese and overweight groups were more likely to have comorbidities and adenocarcinoma than patients in the under-normal weight group. The median operative time (OT) was significantly longer in the obese and overweight groups than in the under-normal weight group. The 5-year recurrence-free survival (RFS) of the under-normal weight, overweight, and obese groups was 87.5, 86.2, and 97.6%, respectively, and the 5-year overall survival (OS) times were 95.8, 97.8, and 100%, respectively. There were no significant differences in RFS or OS among the 3 weight groups. Multivariate analysis did not identify BMI as a prognostic factor for RFS and OS. CONCLUSIONS A high BMI was not associated with increased surgical complications or postoperative morbidity; furthermore, it was not associated with the prognosis of patients with early-stage cervical cancer after RHND. However, it was associated with adenocarcinoma and longer OT.
Collapse
Affiliation(s)
- Kittinun Leetanaporn
- Department of Obstetrics and Gynecology, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Jitti Hanprasertpong
- Department of Obstetrics and Gynecology, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand, .,Department of Biomedical Sciences, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand,
| |
Collapse
|
20
|
Sánchez-Jiménez F, Pérez-Pérez A, de la Cruz-Merino L, Sánchez-Margalet V. Obesity and Breast Cancer: Role of Leptin. Front Oncol 2019; 9:596. [PMID: 31380268 PMCID: PMC6657346 DOI: 10.3389/fonc.2019.00596] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 06/17/2019] [Indexed: 01/08/2023] Open
Abstract
Obesity-related breast cancer is an important threat that affects especially post-menopausal women. The link between obesity and breast cancer seems to be relying on the microenvironment generated at adipose tissue level, which includes inflammatory cytokines. In addition, its association with systemic endocrine changes, including hyperinsulinemia, increased estrogens levels, and hyperleptinemia may be key factors for tumor development. These factors may promote tumor initiation, tumor primary growth, tissue invasion, and metastatic progression. Although the relationship between obesity and breast cancer is already established, the different pathophysiological mechanisms involved are not clear. Obesity-related insulin resistance is a well-known risk factor for breast cancer development in post-menopausal women. However, the role of inflammation and other adipokines, especially leptin, is less studied. Leptin, like insulin, appears to be a growth factor for breast cancer cells. There exists a link between leptin and metabolism of estrogens and between leptin and other factors in a more complex network. As a result, obesity-associated hyperleptinemia has been suggested as an important mediator in the pathophysiology of breast cancer. On the other hand, recent data on the paradoxical effect of obesity on cancer immunotherapy efficacy has brought some controversy, since the proinflammatory effect of leptin may help the effect of immune checkpoint inhibitors. Therefore, a better knowledge of the molecular mechanisms that mediate leptin action may be helpful to understand the underlying processes which link obesity to breast cancer in post-menopausal women, as well as the possible role of leptin in the response to immunotherapy in obese patients.
Collapse
Affiliation(s)
- Flora Sánchez-Jiménez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, Seville, Spain
| | - Antonio Pérez-Pérez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, Seville, Spain
| | - Luis de la Cruz-Merino
- Department of Clinical Oncology, Virgen Macarena University Hospital, University of Seville, Seville, Spain
| | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, Seville, Spain
| |
Collapse
|
21
|
Protective Effects of Licochalcone A Ameliorates Obesity and Non-Alcoholic Fatty Liver Disease Via Promotion of the Sirt-1/AMPK Pathway in Mice Fed a High-Fat Diet. Cells 2019; 8:cells8050447. [PMID: 31083505 PMCID: PMC6562591 DOI: 10.3390/cells8050447] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/17/2022] Open
Abstract
Licochalcone A is a chalcone isolated from Glycyrrhiza uralensis. It showed anti-tumor and anti-inflammatory properties in mice with acute lung injuries and regulated lipid metabolism through the activation of AMP-activated protein kinase (AMPK) in hepatocytes. However, the effects of licochalcone A on reducing weight gain and improving nonalcoholic fatty liver disease (NAFLD) are unclear. Thus, the present study investigated whether licochalcone A ameliorated weight loss and lipid metabolism in the liver of high-fat diet (HFD)-induced obese mice. Male C57BL/6 mice were fed an HFD to induce obesity and NAFLD, and then were injected intraperitoneally with licochalcone A. In another experiment, a fatty liver cell model was established by incubating HepG2 hepatocytes with oleic acid and treating the cells with licochalcone A to evaluate lipid metabolism. Our results demonstrated that HFD-induced obese mice treated with licochalcone A had decreased body weight as well as inguinal and epididymal adipose tissue weights compared with HFD-treated mice. Licochalcone A also ameliorated hepatocyte steatosis and decreased liver tissue weight and lipid droplet accumulation in liver tissue. We also found that licochalcone A significantly regulated serum triglycerides, low-density lipoprotein, and free fatty acids, and decreased the fasting blood glucose value. Furthermore, in vivo and in vitro, licochalcone A significantly decreased expression of the transcription factor of lipogenesis and fatty acid synthase. Licochalcone A activated the sirt-1/AMPK pathway to reduce fatty acid chain synthesis and increased lipolysis and β-oxidation in hepatocytes. Licochalcone A can potentially ameliorate obesity and NAFLD in mice via activation of the sirt1/AMPK pathway.
Collapse
|
22
|
Gelsomino L, Naimo GD, Catalano S, Mauro L, Andò S. The Emerging Role of Adiponectin in Female Malignancies. Int J Mol Sci 2019; 20:E2127. [PMID: 31052147 PMCID: PMC6539460 DOI: 10.3390/ijms20092127] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/20/2019] [Accepted: 04/28/2019] [Indexed: 02/06/2023] Open
Abstract
Obesity, characterized by excess body weight, is now accepted as a hazardous health condition and an oncogenic factor. In different epidemiological studies obesity has been described as a risk factor in several malignancies. Some biological mechanisms that orchestrate obesity-cancer interaction have been discovered, although others are still not completely understood. The unbalanced secretion of biomolecules, called "adipokines", released by adipocytes strongly influences obesity-related cancer development. Among these adipokines, adiponectin exerts a critical role. Physiologically adiponectin governs glucose levels and lipid metabolism and is fundamental in the reproductive system. Low adiponectin circulating levels have been found in obese patients, in which its protective effects were lost. In this review, we summarize the epidemiological, in vivo and in vitro data in order to highlight how adiponectin may affect obesity-associated female cancers.
Collapse
Affiliation(s)
- Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | - Giuseppina Daniela Naimo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | - Loredana Mauro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
- Centro Sanitario, University of Calabria, Via Pietro Bucci, 87036 Arcavacata di Rende (CS), Italy.
| |
Collapse
|
23
|
Ouh YT, Cho HW, Lee JK, Choi SH, Choi HJ, Hong JH. CXC chemokine ligand 1 mediates adiponectin-induced angiogenesis in ovarian cancer. Tumour Biol 2019; 42:1010428319842699. [PMID: 30967059 DOI: 10.1177/1010428319842699] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES Adiponectin is a cytokine secreted from adipose tissue that regulates energy homeostasis, inflammation, and cell proliferation. Obesity is associated with increased risk of various cancers, including ovarian cancer. Adipokines, including adiponectin, have been implicated as a factor linking obesity and carcinogenesis. The oncogenic role of adiponectin is not known with regard to various cancer types. We sought to determine the role of adiponectin in angiogenesis in ovarian cancer in vitro. METHODS We transfected SKOV3 cells with vascular endothelial growth factor small interfering RNA in order to identify the independent angiogenic role of adiponectin in ovarian cancer. The vascular endothelial growth factor knockdown SKOV3 cell lines were treated with adiponectin for 48 h. The cytokines involved in adiponectin-mediated angiogenesis were explored using the human angiogenesis cytokine array and were verified with the enzyme-linked immunosorbent assay. The angiogenic effect of adiponectin was evaluated using the human umbilical vein endothelial cell tube formation assay. We also investigated the effects of adiponectin treatment on the migration and invasion of SKOV3 cells. RESULTS The number of tubes formed by human umbilical vein endothelial cell decreased significantly after knockdown of vascular endothelial growth factor (via transfection of vascular endothelial growth factor small interfering RNA into SKOV3 cells). When these vascular endothelial growth factor knockdown SKOV3 cells were treated with adiponectin, there was an increase in the number of tubes in a tube formation assay. Following adiponectin treatment, the CXC chemokine ligand 1 secretion increased in a cytokine array. This was confirmed by both enzyme-linked immunosorbent assay and Western blot. The increased secretion of CXC chemokine ligand 1 by adiponectin occurred regardless of vascular endothelial growth factor knockdown. In addition, the induction of migration and invasion of SKOV3 cells were significantly stronger with adiponectin treatment than they were without. CONCLUSION Adiponectin treatment of ovarian cancer cells induces angiogenesis via CXC chemokine ligand 1 independently of vascular endothelial growth factor. These findings suggest that adiponectin may serve as a novel therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Yung-Taek Ouh
- 1 Department of Obstetrics and Gynecology, Guro Hospital, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Hyun Woong Cho
- 1 Department of Obstetrics and Gynecology, Guro Hospital, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Jae Kwan Lee
- 1 Department of Obstetrics and Gynecology, Guro Hospital, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Song Hee Choi
- 1 Department of Obstetrics and Gynecology, Guro Hospital, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Hyun Jin Choi
- 2 Department of Obstetrics and Gynecology, Chung-Ang University Hospital, Seoul, Republic of Korea
| | - Jin Hwa Hong
- 1 Department of Obstetrics and Gynecology, Guro Hospital, College of Medicine, Korea University, Seoul, Republic of Korea
| |
Collapse
|
24
|
Barbe A, Bongrani A, Mellouk N, Estienne A, Kurowska P, Grandhaye J, Elfassy Y, Levy R, Rak A, Froment P, Dupont J. Mechanisms of Adiponectin Action in Fertility: An Overview from Gametogenesis to Gestation in Humans and Animal Models in Normal and Pathological Conditions. Int J Mol Sci 2019; 20:ijms20071526. [PMID: 30934676 PMCID: PMC6479753 DOI: 10.3390/ijms20071526] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 02/06/2023] Open
Abstract
Adiponectin is the most abundant plasma adipokine. It mainly derives from white adipose tissue and plays a key role in the control of energy metabolism thanks to its insulin-sensitising, anti-inflammatory, and antiatherogenic properties. In vitro and in vivo evidence shows that adiponectin could also be one of the hormones controlling the interaction between energy balance and fertility in several species, including humans. Indeed, its two receptors—AdipoR1 and AdipoR2—are expressed in hypothalamic–pituitary–gonadal axis and their activation regulates Kiss, GnRH and gonadotropin expression and/or secretion. In male gonads, adiponectin modulates several functions of both somatic and germ cells, such as steroidogenesis, proliferation, apoptosis, and oxidative stress. In females, it controls steroidogenesis of ovarian granulosa and theca cells, oocyte maturation, and embryo development. Adiponectin receptors were also found in placental and endometrial cells, suggesting that this adipokine might play a crucial role in embryo implantation, trophoblast invasion and foetal growth. The aim of this review is to characterise adiponectin expression and its mechanism of action in male and female reproductive tract. Further, since features of metabolic syndrome are associated with some reproductive diseases, such as polycystic ovary syndrome, gestational diabetes mellitus, preeclampsia, endometriosis, foetal growth restriction and ovarian and endometrial cancers, evidence regarding the emerging role of adiponectin in these disorders is also discussed.
Collapse
Affiliation(s)
- Alix Barbe
- INRA UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
- CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
- Université François Rabelais de Tours, F-37041 Tours, France.
| | - Alice Bongrani
- INRA UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
- CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
- Université François Rabelais de Tours, F-37041 Tours, France.
| | - Namya Mellouk
- INRA UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
- CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
- Université François Rabelais de Tours, F-37041 Tours, France.
| | - Anthony Estienne
- INRA UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
- CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
- Université François Rabelais de Tours, F-37041 Tours, France.
| | - Patrycja Kurowska
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, 31-007 Krakow, Poland.
| | - Jérémy Grandhaye
- INRA UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
- CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
- Université François Rabelais de Tours, F-37041 Tours, France.
| | - Yaelle Elfassy
- Assistance Publique des Hôpitaux de Paris, Hôpital Tenon, Service de Biologie de la Reproduction, F-75020 Paris, France.
- Université Pierre et Marie Curie Paris 6, F-75005 Paris, France.
- INSERM UMRS_938, Centre de Recherche Saint-Antoine, F-75571 Paris, France.
| | - Rachel Levy
- Assistance Publique des Hôpitaux de Paris, Hôpital Tenon, Service de Biologie de la Reproduction, F-75020 Paris, France.
- Université Pierre et Marie Curie Paris 6, F-75005 Paris, France.
- INSERM UMRS_938, Centre de Recherche Saint-Antoine, F-75571 Paris, France.
| | - Agnieszka Rak
- CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
| | - Pascal Froment
- INRA UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
- CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
- Université François Rabelais de Tours, F-37041 Tours, France.
| | - Joëlle Dupont
- INRA UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
- CNRS UMR7247 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
- Université François Rabelais de Tours, F-37041 Tours, France.
| |
Collapse
|
25
|
Yu Z, Tang S, Ma H, Duan H, Zeng Y. Association of serum adiponectin with breast cancer: A meta-analysis of 27 case-control studies. Medicine (Baltimore) 2019; 98:e14359. [PMID: 30732167 PMCID: PMC6380750 DOI: 10.1097/md.0000000000014359] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Emerging published studies have indicated that adiponectin is involved in tumorigenesis of breast cancer. However, the results of available studies were inconsistent. The aim of this updated meta-analysis was to assess the association of adiponectin with breast cancer. MATERIALS AND METHODS PubMed, EMBASE, Wanfang databases, and the China National Knowledge Infrastructure (CNKI) were systematically searched from inception to June 2018. The mean difference (MD) with 95% confidence interval (CI) were estimated and pooled to investigate the effect sizes. RESULTS Twenty-seven eligible articles that met the study criteria were included in the current meta-analysis. Overall, there was an evident inverse association between serum adiponectin levels and breast cancer (MD = -0.29, 95%CI = (-0.38, -0.21), P < .001). Asian subgroup showed a significant negative association between serum adiponectin concentrations and breast cancer in subgroup analysis by ethnicity (MD = -2.19, 95%CI = (-3.45, -0.94), P < .001). However, no statistical significance was found in Caucasian subgroup (MD = -0.65, 95%CI = (-1.47, 0.17), P = 0.12). Additionally, a further subgroup analysis of Asian stratified by menopausal status showed higher concentrations of adiponectin in healthy control group, whether they were premenopausal (MD = -0.85, 95%CI = (-1.50, -0.19), P = .01) or postmenopausal (MD = -2.17, 95%CI = (-4.17, -0.18), P = .03). No significant difference was observed concerning the association between serum adiponectin and breast cancer metastasis (MD = -1.56, 95%CI = (-4.90, 1.78), P = .36). CONCLUSION The current meta-analysis suggests that the serum adiponectin may be inversely associated with breast cancer. Decreased serum adiponectin levels in premenopausal women may also be inversely associated with breast cancer risk other than postmenopausal status. In addition, low serum adiponectin levels in Asian women were more likely to be associated with breast cancer risk than Caucasian women.
Collapse
Affiliation(s)
- Zeping Yu
- Department of Orthopedics, Chengdu Second People's Hospital
- Department of Orthopedics, West China School of Medicine/West China Hospital, Sichuan University
| | - Shenli Tang
- Department of Breast Surgery, Chengdu Women & Children's Central Hospital, Chengdu, Sichuan, P.R. China
| | - Hongbing Ma
- Department of Orthopedics, Chengdu Second People's Hospital
| | - Hong Duan
- Department of Orthopedics, West China School of Medicine/West China Hospital, Sichuan University
| | - Yong Zeng
- Department of Orthopedics, Chengdu Second People's Hospital
| |
Collapse
|
26
|
MicroRNAs and other non-coding RNAs in adipose tissue and obesity: emerging roles as biomarkers and therapeutic targets. Clin Sci (Lond) 2019; 133:23-40. [PMID: 30606812 DOI: 10.1042/cs20180890] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/29/2018] [Accepted: 12/05/2018] [Indexed: 02/07/2023]
Abstract
Obesity is a metabolic condition usually accompanied by insulin resistance (IR), type 2 diabetes (T2D), and dyslipidaemia, which is characterised by excessive fat accumulation and related to white adipose tissue (WAT) dysfunction. Enlargement of WAT is associated with a transcriptional alteration of coding and non-coding RNAs (ncRNAs). For many years, big efforts have focused on understanding protein-coding RNAs and their involvement in the regulation of adipocyte physiology and subsequent role in obesity. However, diverse findings have suggested that a dysfunctional adipocyte phenotype in obesity might be also dependent on specific alterations in the expression pattern of ncRNAs, such as miRNAs. The aim of this review is to update current knowledge on the physiological roles of miRNAs and other ncRNAs in adipose tissue function and their potential impact on obesity. Therefore, we examined their regulatory role on specific WAT features: adipogenesis, adipokine secretion, inflammation, glucose metabolism, lipolysis, lipogenesis, hypoxia and WAT browning. MiRNAs can be released to body fluids and can be transported (free or inside microvesicles) to other organs, where they might trigger metabolic effects in distant tissues, thus opening new possibilities to a potential use of miRNAs as biomarkers for diagnosis, prognosis, and personalisation of obesity treatment. Understanding the role of miRNAs also opens the possibility of using these molecules on individualised dietary strategies for precision weight management. MiRNAs should be envisaged as a future therapeutic approach given that miRNA levels could be modulated by synthetic molecules (f.i. miRNA mimics and inhibitors) and/or specific nutrients or bioactive compounds.
Collapse
|
27
|
Mathew H, Castracane VD, Mantzoros C. Adipose tissue and reproductive health. Metabolism 2018; 86:18-32. [PMID: 29155136 DOI: 10.1016/j.metabol.2017.11.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/06/2017] [Accepted: 11/08/2017] [Indexed: 01/04/2023]
Abstract
The understanding of adipose tissue role has evolved from that of a depot energy storage organ to a dynamic endocrine organ. While genetics, sexual phenotype and sex steroids can impact the mass and distribution of adipose tissue, there is a counter-influence of white adipocytes on reproduction. This primarily occurs via the secretion of adipokines, the most studied of which- leptin and adiponectin- are highlighted in this article. Leptin, the "satiety hormone" primarily acts on the hypothalamus via pro-opiomelanocortin (POMC), neuropeptide Y (NPY), and agouti-related peptide (AgRP) neurons to translate acute changes in nutrition and energy expenditure, as well as chronic adipose accumulation into changes in appetite and potentially mediate insulin resistance via shared pathway and notably impacting reproductive health via influence on GnRH secreting neurons. Meanwhile, adiponectin is notable for its action in mediating insulin sensitivity, with receptors found at every level of the reproductive axis. Both have been examined in the context of physiologic and pathologic reproductive conditions. Leptin has been shown to influence puberty, pregnancy, hypothalamic amenorrhea, and lipodystrophy, and with a potential therapeutic role for both metabolic and reproductive health. Adiponectin mediates the relative state of insulin resistance in pregnancy, and has been implicated in conditions such as polycystic ovary syndrome and reproductive malignancies. There are numerous other adipokines, including resistin, visfatin, chemerin and retinol binding protein-4, which may also play roles in reproductive health and disease states. The continued examination of these and other adipokines in both normal reproduction and reproductive pathologies represents an important avenue for continued study. Here, we seek to provide a broad, yet comprehensive overview of many facets of these relationships and highlight areas of consideration for clinicians and future study.
Collapse
Affiliation(s)
- Hannah Mathew
- Section of Endocrinology, Diabetes and Weight Management, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA.
| | - V Daniel Castracane
- Department of Obstetrics and Gynecology, Texas Tech University Health Sciences Center, Odessa, TX, USA
| | - Christos Mantzoros
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
28
|
Abstract
BACKGROUND Accumulating data have found that adiponectin is involved in development of breast cancer (BC). However, these results were inconsistent. METHOD A systematic search in PubMed, Embase, ISI Web of Science, and Chinese National Knowledge Infrastructure databases were conducted up to October 1, 2017. The standardized mean difference (SMD) with 95% confidence interval was applied to pool the effect size. RESULTS Finally, 31 eligible studies were included in this meta-analysis. The overall results indicated that serum adiponectin levels in BC cases were significantly lower than the controls (SMD = -0.33, P < 0.0001). As for the subgroup analysis of menstrual status, serum adiponectin levels were significantly lower in pre- and postmenopausal BC cases. Moreover, the subgroup analysis by ethnicity in pre- and postmenopausal group indicated an inverse association between adiponectin levels and BC risk in Asian population, but not in Caucasian population. CONCLUSION The present meta-analysis suggests that low serum adiponectin concentration may be associated with an increased BC risk in premenopausal and postmenopausal women, especially among Asians. Adiponectin may serve as a biomarker of BC risk and help to identify subjects at high risk for BC development.
Collapse
Affiliation(s)
- Li Gu
- Department of Obstetrics, West China Women's and Children's Hospital
- Key Laboratory of Birth and Related Diseases of Women and Children, Sichuan University
| | - Chang Cao
- Department of Cosmetic Plastic and Burns surgery, West China Hospital, Sichuan University, Chengdu
| | - Jing Fu
- International Education School, Southwest Medical University, Luzhou
| | - Qian Li
- Department of Operations Management, West China Hospital, Sichuan University
| | - De-Hua Li
- Key Laboratory of Birth and Related Diseases of Women and Children, Sichuan University
- Department of West China Second University Hospital Quality improvement, West China Women's and Children's Hospital, Chengdu
| | - Ming-Yao Chen
- Dazhou vocational and technical college, Dazhou, PR China
| |
Collapse
|
29
|
Himbert C, Delphan M, Scherer D, Bowers LW, Hursting S, Ulrich CM. Signals from the Adipose Microenvironment and the Obesity-Cancer Link-A Systematic Review. Cancer Prev Res (Phila) 2018; 10:494-506. [PMID: 28864539 DOI: 10.1158/1940-6207.capr-16-0322] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 06/06/2017] [Accepted: 07/11/2017] [Indexed: 12/13/2022]
Abstract
Obesity and its associated metabolic dysregulation are established risk factors for many cancers. However, the biologic mechanisms underlying this relationship remain incompletely understood. Given the rising rates of both obesity and cancer worldwide, and the challenges for many people to lose excess adipose tissue, a systematic approach to identify potential molecular and metabolic targets is needed to develop effective mechanism-based strategies for the prevention and control of obesity-driven cancer. Epidemiologic, clinical, and preclinical data suggest that within the growth-promoting, proinflammatory microenvironment accompanying obesity, crosstalk between adipose tissue (comprised of adipocytes, macrophages and other cells) and cancer-prone cells may occur via obesity-associated hormones, cytokines, and other mediators that have been linked to increased cancer risk and/or progression. We report here a systematic review on the direct "crosstalk" between adipose tissue and carcinomas in humans. We identified 4,641 articles with n = 20 human clinical studies, which are summarized as: (i) breast (n = 7); (ii) colorectal (n = 4); (iii) esophageal (n = 2); (iv) esophageal/colorectal (n = 1); (v) endometrial (n = 1); (vi) prostate (n = 4); and (vii) ear-nose-throat (ENT) cancer (n = 1). Findings from these clinical studies reinforce preclinical data and suggest organ-dependent crosstalk between adipose tissue and carcinomas via VEGF, IL6, TNFα, and other mechanisms. Moreover, visceral white adipose tissue plays a more central role, as it is more bioenergetically active and is associated with a more procancer secretome than subcutaneous adipose tissue. Efforts to eavesdrop and ultimately interfere with this cancer-enhancing crosstalk may lead to new targets and strategies for decreasing the burden of obesity-related cancers. Cancer Prev Res; 10(9); 494-506. ©2017 AACR.
Collapse
Affiliation(s)
- Caroline Himbert
- Huntsman Cancer Institute, Population Sciences, Salt Lake City, Utah.,Department of Population Health Sciences, University of Utah, Salt Lake City, Utah
| | - Mahmoud Delphan
- Huntsman Cancer Institute, Population Sciences, Salt Lake City, Utah.,Department of Population Health Sciences, University of Utah, Salt Lake City, Utah.,Exercise Immunology, Physical Education and Sport Sciences Department, Tarbiat Modares University, Tehran, Iran
| | - Dominique Scherer
- Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| | - Laura W Bowers
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina
| | - Stephen Hursting
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina
| | - Cornelia M Ulrich
- Huntsman Cancer Institute, Population Sciences, Salt Lake City, Utah. .,Department of Population Health Sciences, University of Utah, Salt Lake City, Utah
| |
Collapse
|
30
|
Busch EL, Crous-Bou M, Prescott J, Downing MJ, Rosner BA, Mutter GL, De Vivo I. Adiponectin, Leptin, and Insulin-Pathway Receptors as Endometrial Cancer Subtyping Markers. Discov Oncol 2018; 9:33-39. [PMID: 29297146 DOI: 10.1007/s12672-017-0318-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/19/2017] [Indexed: 11/29/2022] Open
Abstract
Developing a system of molecular subtyping for endometrial tumors might improve insight into disease etiology and clinical prediction of patient outcomes. High body mass index (BMI) has been implicated in development of endometrial cancer through hormonal pathways and might influence tumor expression of biomarkers involved in BMI-sensitive pathways. We evaluated whether endometrial tumor expression of 7 markers from BMI-sensitive pathways of insulin resistance could effectively characterize molecular subtypes: adiponectin receptor 1, adiponectin receptor 2, leptin receptor, insulin receptor (beta subunit), insulin receptor substrate 1, insulin-like growth factor 1 receptor, and insulin-like growth factor 2 receptor. Using endometrial carcinoma tissue specimens from a case-only prospective sample of 360 women from the Nurses' Health Study, we scored categorical immunohistochemical measurements of protein expression for each marker. Logistic regression was used to estimate associations between endometrial cancer risk factors, especially BMI, and tumor marker expression. Proportional hazard modeling was performed to estimate associations between marker expression and time to all-cause mortality as well as time to endometrial cancer-specific mortality. No association was observed between BMI and tumor expression of any marker. No marker was associated with time to either all-cause mortality or endometrial cancer-specific mortality in models with or without standard clinical predictors of patient mortality (tumor stage, grade, and histologic type). It did not appear that any of the markers evaluated here could be used effectively to define molecular subtypes of endometrial cancer.
Collapse
Affiliation(s)
- Evan L Busch
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, 3rd Floor, Boston, MA, 02115, USA.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Marta Crous-Bou
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, 3rd Floor, Boston, MA, 02115, USA.,Clinical Research Unit, BarcelonaBeta Brain Research Center, 08005, Barcelona, Spain
| | - Jennifer Prescott
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, 3rd Floor, Boston, MA, 02115, USA
| | - Michael J Downing
- Division of Women's and Perinatal Pathology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Bernard A Rosner
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, 3rd Floor, Boston, MA, 02115, USA.,Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - George L Mutter
- Division of Women's and Perinatal Pathology, Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Immaculata De Vivo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, 3rd Floor, Boston, MA, 02115, USA. .,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
| |
Collapse
|
31
|
Sahoo AK, Das JK, Nayak S. Isolation, culture, characterization, and osteogenic differentiation of canine endometrial mesenchymal stem cell. Vet World 2017; 10:1533-1541. [PMID: 29391698 PMCID: PMC5771182 DOI: 10.14202/vetworld.2017.1533-1541] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 12/04/2017] [Indexed: 01/09/2023] Open
Abstract
Aim In this study, the canine endometrium tissue is characterized for its stem cell properties such as adherence to tissue culture plate (plasticity), short population doubling time, serial clonal passaging, long-term culturing properties, stem cell marker expression, and multilineage differentiation potential. Materials and Methods The present work describes a novel isolation protocol for obtaining mesenchymal stem cells from the uterine endometrium and is compared with cells derived from umbilical cord matrix as a positive control. These cells are clonogenic, can undergo several population doublings in vitro, and can be differentiated to the osteocytes in mature mesenchymal tissues when grown in osteogenic differentiation media as detected by Alizarin Red-S staining. Results It is reported for the first time that the cells derived from the canine endometrium (e-multipotent stem cells [MSCs]) were able to differentiate into a heterologous cell type: Osteocytes, thus demonstrating the presence of MSCs. Thus, the endometrium may be told as a potential source of MSCs which can be used for various therapeutic purposes. Conclusion The endometrium can be used as a potential source of MSCs, which can be used for various therapeutic purposes.
Collapse
Affiliation(s)
- A K Sahoo
- Department of Veterinary Surgery and Radiology, College of Veterinary Science and Animal Husbandry, OUAT, Bhubaneswar - 751 003, Odisha, India
| | - J K Das
- Department of Veterinary Surgery and Radiology, College of Veterinary Science and Animal Husbandry, OUAT, Bhubaneswar - 751 003, Odisha, India
| | - S Nayak
- Department of Veterinary Surgery and Radiology, College of Veterinary Science and Animal Husbandry, OUAT, Bhubaneswar - 751 003, Odisha, India
| |
Collapse
|
32
|
Li HM, Zhang TP, Leng RX, Li XP, Li XM, Liu HR, Ye DQ, Pan HF. Emerging role of adipokines in systemic lupus erythematosus. Immunol Res 2017; 64:820-30. [PMID: 27314594 DOI: 10.1007/s12026-016-8808-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disorder characterized by multisystem organ involvement and unclear pathogenesis. Several adipokines synthesized in the adipose tissue, including leptin, adiponectin, resistin, and chemerin, have been explored in autoimmune rheumatic diseases, especially SLE, and results suggest that these mediators may be implicated in the pathogenesis of SLE. However, the current results are controversial. In this review, we will briefly discuss the expression and possible pathogenic role of several important adipokines, including leptin, adiponectin, resistin, and chemerin in SLE.
Collapse
Affiliation(s)
- Hong-Miao Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China.,Anhui Provincial Laboratory of Population Health and Major Disease Screening and Diagnosis, Hefei, People's Republic of China
| | - Tian-Ping Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China.,Anhui Provincial Laboratory of Population Health and Major Disease Screening and Diagnosis, Hefei, People's Republic of China
| | - Rui-Xue Leng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China.,Anhui Provincial Laboratory of Population Health and Major Disease Screening and Diagnosis, Hefei, People's Republic of China
| | - Xiang-Pei Li
- Department of Rheumatology, Anhui Provincial Hospital, Hefei, People's Republic of China
| | - Xiao-Mei Li
- Department of Rheumatology, Anhui Provincial Hospital, Hefei, People's Republic of China
| | - Hai-Rong Liu
- Graduate School, Wannan Medical College, West of Wenchang Road, University Park, Wuhu, 241002, Anhui, People's Republic of China
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China.,Anhui Provincial Laboratory of Population Health and Major Disease Screening and Diagnosis, Hefei, People's Republic of China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China. .,Anhui Provincial Laboratory of Population Health and Major Disease Screening and Diagnosis, Hefei, People's Republic of China.
| |
Collapse
|
33
|
Orrù S, Nigro E, Mandola A, Alfieri A, Buono P, Daniele A, Mancini A, Imperlini E. A Functional Interplay between IGF-1 and Adiponectin. Int J Mol Sci 2017; 18:E2145. [PMID: 29036907 PMCID: PMC5666827 DOI: 10.3390/ijms18102145] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/02/2017] [Accepted: 10/09/2017] [Indexed: 02/07/2023] Open
Abstract
A functional relationship is suggested between two well-known protein hormones, insulin-like growth factor 1 (IGF-1) and adiponectin. In the last two decades in fact, different experimental evidence has indicated a non-random link between them. Here, we describe briefly the IGF-1 and adiponectin systems, and we then focus on their putative interplay in relation to several pathological conditions, including obesity, diabetes, insulin resistance, cardiovascular disease, and cancer. Although the existing studies are hardly comparable, they definitely indicate a functional connection between these two protein hormones. In conclusion, the current knowledge strongly encourages further research into the common, as well as novel, mechanisms through which IGF-1 and adiponectin exert their concerted action.
Collapse
Affiliation(s)
- Stefania Orrù
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli "Parthenope", via Medina 40, 80133 Napoli, Italy.
- IRCCS SDN, via E. Gianturco 113, 80142 Napoli, Italy.
| | - Ersilia Nigro
- CEINGE-Biotecnologie Avanzate S.c.a r.l., Via G. Salvatore 486, 80145 Napoli, Italy.
- Dipartimento di Medicina e di Scienze della Salute "Vincenzo Tiberio" Università degli Studi del Molise, Campobasso, Italy.
| | - Annalisa Mandola
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli "Parthenope", via Medina 40, 80133 Napoli, Italy.
- CEINGE-Biotecnologie Avanzate S.c.a r.l., Via G. Salvatore 486, 80145 Napoli, Italy.
| | - Andreina Alfieri
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli "Parthenope", via Medina 40, 80133 Napoli, Italy.
- CEINGE-Biotecnologie Avanzate S.c.a r.l., Via G. Salvatore 486, 80145 Napoli, Italy.
| | - Pasqualina Buono
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli "Parthenope", via Medina 40, 80133 Napoli, Italy.
- IRCCS SDN, via E. Gianturco 113, 80142 Napoli, Italy.
| | - Aurora Daniele
- CEINGE-Biotecnologie Avanzate S.c.a r.l., Via G. Salvatore 486, 80145 Napoli, Italy.
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche Farmaceutiche, Università della Campania "Luigi Vanvitelli", Via G. Vivaldi 42, 81100 Caserta, Italy.
| | - Annamaria Mancini
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli "Parthenope", via Medina 40, 80133 Napoli, Italy.
- CEINGE-Biotecnologie Avanzate S.c.a r.l., Via G. Salvatore 486, 80145 Napoli, Italy.
| | | |
Collapse
|
34
|
Adiponectin: Its role in obesity-associated colon and prostate cancers. Crit Rev Oncol Hematol 2017; 116:125-133. [DOI: 10.1016/j.critrevonc.2017.06.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/01/2017] [Accepted: 06/08/2017] [Indexed: 01/09/2023] Open
|
35
|
Abstract
The association between obesity and ovarian cancer risk has been extensively investigated, but studies have yielded inconsistent findings. This review aims to summarise and discuss the evidence generated to date. Articles published in English prior to August 2016 were retrieved from PubMed. Keywords included obesity, overweight, body size, body mass index, waist-hip ratio, waist circumference, body weight, ovarian cancer, ovarian carcinoma, ovarian neoplasm, and ovarian tumour. Eligible studies compared two or more groups of women, with at least one group in the overweight or obese category and one comprising normal weight controls. Summary data in the form of relative risk, hazard ratio, or odds ratio for each comparison group from individual studies were collated and reviewed. Forty-three studies were included in the final analysis, with a total of 3,491,943 participants. All studies included body mass index as an exposure measure, and a majority relied on self-reported measures from participants; 14 studies found a statistically significant positive association between ovarian cancer risk and higher body mass index, 26 studies found no significant association, and 3 studies found a negative association between ovarian cancer risk and higher body mass index. This review concludes that there is limited, inconsistent evidence of a positive association between obesity and ovarian cancer risk.
Collapse
Affiliation(s)
- Ke Wei Foong
- 1 School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Helen Bolton
- 2 Department of Gynaecological Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
36
|
Li X, Yu Z, Fang L, Liu F, Jiang K. Expression of Adiponectin Receptor-1 and Prognosis of Epithelial Ovarian Cancer Patients. Med Sci Monit 2017; 23:1514-1521. [PMID: 28356549 PMCID: PMC5384618 DOI: 10.12659/msm.899990] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Adiponectin receptor-1 (AdipoR1) has been reported to be associated with the risk of obesity-associated malignancies, including epithelial ovarian cancer (EOC). The aim of this study was to determine if AdipoR1 could serve as a prognosis indicator for patients with EOC. Material/Methods In this study, expression of AdipoR1 in 73 EOC patients consecutively admitted to our hospital was detected by immunohistochemical staining. Univariate and multivariate analyses were performed to assess the relationship between AdipoR1 expression level and progression-free survival (PFS) and overall survival (OS) rates in patients. Results A relatively lower expression of AdipoR1 in the cancerous tissues was detected compared to normal ovarian tissues, but the difference was not significant (p>0.05). AdipoR1 expression level in EOC patients was negatively correlated with advanced FIGO stages in patients and tumor differentiation, but had no correlation with pathological types, presenting of ascites, shorter platinum-free interval (PFI), diabetes, preoperative and postoperative body mass index (BMI), or platelet counts (p>0.05). Moreover, patients with AdipoR1 expression had a significantly longer PFS and OS compared to the negative expression group (p<0.001). Conclusions Our findings suggest that AdipoR1 expression level in cancerous tissues might serve as an independent prognostic indicator in EOC patients and is associated with longer PFS and OS.
Collapse
Affiliation(s)
- Xiahui Li
- Department of Oncology, The 2nd Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China (mainland)
| | - Zhe Yu
- Department of Oncology, The 2nd Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China (mainland)
| | - Liping Fang
- Department of Oncology, The 2nd Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China (mainland)
| | - Fang Liu
- Department of Oncology , The 2nd Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China (mainland)
| | - Kui Jiang
- Department of Oncology, The 2nd Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China (mainland)
| |
Collapse
|
37
|
Choi Y, Ahn KJ, Park SK, Cho H, Lee JY. Adverse effect of excess body weight on survival in cervical cancer patients after surgery and radiotherapy. Radiat Oncol J 2016; 35:48-54. [PMID: 27997788 PMCID: PMC5398347 DOI: 10.3857/roj.2016.01977] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/01/2016] [Accepted: 11/09/2016] [Indexed: 11/03/2022] Open
Abstract
PURPOSE This study aimed to assess the effects of body mass index (BMI) on survival in cervical cancer patients who had undergone surgery and radiotherapy (RT). MATERIALS AND METHODS We retrospectively reviewed the medical records of 70 cervical cancer patients who underwent surgery and RT from 2007 to 2012. Among them, 40 patients (57.1%) had pelvic lymph node metastases at the time of diagnosis. Sixty-seven patients (95.7%) had received chemotherapy. All patients had undergone surgery and postoperative RT. Median BMI of patients was 22.8 kg/m2 (range, 17.7 to 35.9 kg/m2). RESULTS The median duration of follow-up was 52.3 months (range, 16 to 107 months). Twenty-four patients (34.3%) showed recurrence. Local failure, regional lymph nodal failure, and distant failure occurred in 4 (5.7%), 6 (8.6%), and 17 (24.3%) patients, respectively. The 5-year actuarial pelvic control rate was 83.4%. The 5-year cancer-specific survival (CSS) and disease-free survival (DFS) rates were 85.1% and 65.0%, respectively. The presence of pelvic lymph node metastases (n = 30) and being overweight or obese (n = 34, BMI ≥ 23 kg/m2) were poor prognostic factors for CSS (p = 0.003 and p = 0.045, respectively). Of these, pelvic lymph node metastasis was an independent prognostic factor (p = 0.030) for CSS. CONCLUSION Overweight or obese cervical cancer patients showed poorer survival outcomes than normal weight or underweight patients. Weight control seems to be important in cervical cancer patients to improve clinical outcomes.
Collapse
Affiliation(s)
- Yunseon Choi
- Department of Radiation Oncology, Inje University Busan Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Ki Jung Ahn
- Department of Radiation Oncology, Inje University Busan Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Sung Kwang Park
- Department of Radiation Oncology, Inje University Busan Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Heunglae Cho
- Department of Radiation Oncology, Inje University Busan Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Ji Young Lee
- Division of Oncology/Hematology, Department of Internal Medicine, Inje University Busan Paik Hospital, Inje University College of Medicine, Busan, Korea
| |
Collapse
|
38
|
Different molecular signaling sustaining adiponectin action in breast cancer. Curr Opin Pharmacol 2016; 31:1-7. [PMID: 27552697 DOI: 10.1016/j.coph.2016.08.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/05/2016] [Accepted: 08/02/2016] [Indexed: 12/24/2022]
Abstract
Obesity is defined as a chronic and excessive growth of adipose tissue. It is increasingly recognized as an oncogenic factor. Adipose tissue, originally thought as a passive depot for fat metabolism, is now identified as an endocrine organ, secreting a wide array of bioactive molecules known as adipocytokines, which act as key mediators in several obesity-associated diseases. Among these adipocytokines, adiponectin has been proposed as having a key role in the pathogenesis of cardiovascular disease and type 2 diabetes along with other diseases such as obesity-associated malignancies, including breast cancer. New insights into the molecular mechanisms linking adiponectin and mammary tumorigenesis could be useful to identify novel therapeutic approaches to be exploited, particularly in obese women.
Collapse
|
39
|
Li J, Chen XL, Shaker A, Oshima T, Shan J, Miwa H, Feng C, Zhang J. Contribution of immunomodulators to gastroesophageal reflux disease and its complications: stromal cells, interleukin 4, and adiponectin. Ann N Y Acad Sci 2016; 1380:183-194. [PMID: 27441783 DOI: 10.1111/nyas.13157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/29/2016] [Accepted: 06/01/2016] [Indexed: 12/15/2022]
Abstract
Gastroesophageal reflux disease (GERD) has become the most commonly seen gastrointestinal disorder in outpatient clinics. In the United States, around 20% of the general population experience heartburn on a weekly basis. Although clinical complaints can be mild or moderate, patients with GERD may develop further complications, such as peptic strictures, Barrett's esophagus (BE), and even esophageal adenocarcinoma. Pathologically, GERD is developed as a result of chronic and enhanced exposure of the esophageal epithelium to noxious gastric refluxate. In this review article, we provide an overview of GERD and then focus on the roles of stromal cells, interleukin 4, and adiponectin in GERD and BE. The importance of inflammation and immunomodulators in GERD pathogenesis is highlighted. Targeting the immunomodulators or inflammation in general may improve the therapeutic outcome of GERD, in particular, in those refractory to proton pump inhibitors.
Collapse
Affiliation(s)
- Jing Li
- Department of Thoracic Surgery, Ningxia Medical University General Hospital, Yinchuan, Ningxia, China.,Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham, North Carolina
| | - Xiaoxin Luke Chen
- Cancer Research Program, JLC-BBRI, North Carolina Central University, Durham, North Carolina. .,Center for Esophageal Disease and Swallowing, Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| | - Anisa Shaker
- Division of Gastroenterology, Department of Medicine, University of Southern California, Keck School of Medicine, Los Angeles, California.
| | - Tadayuki Oshima
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan.
| | - Jing Shan
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Hiroto Miwa
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Cheng Feng
- Department of Gastroenterology, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.
| | - Jun Zhang
- Department of Gastroenterology, Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|