1
|
Xue R, Li G, Zhou Y, Wang B, Xu Y, Zhao P, Teng L, Zheng J, Liu H, Ji S, Elston DM, Liang Y. Efficacy and safety of low-dose interleukin 2 in the treatment of moderate-to-severe bullous pemphigoid: A single center perspective-controlled trial. J Am Acad Dermatol 2024; 91:1113-1117. [PMID: 39182680 DOI: 10.1016/j.jaad.2024.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Regulatory T cells (Tregs) are reduced in the peripheral blood and skin lesions of patients with bullous pemphigoid (BP). Low-dose interleukin 2 (IL-2) therapy can stimulate Tregs specifically, suggesting potential for the treatment of BP. OBJECTIVE To evaluate the response to low-dose IL-2 therapy in the treatment of moderate-to-severe BP. METHODS Forty-three patients with moderate-to-severe BP were included. The therapy included systemic corticosteroids with an initial dose of 0.5 mg/kg/d for moderate and 1.0 mg/kg/d for severe disease, respectively, combined with allowed immunosuppressants for the control group, whereas in addition to the same corticosteroid therapy, IL-2 (half million IU) was administered subcutaneously every other day for the treatment group for 8 weeks. The primary outcome was the number of days required to achieve disease control. Secondary outcomes included other clinical responses. RESULTS The number of days required to achieve disease control with the treatment group was (7.60 ± 3.00), which was shorter than in the control group (10.43 ± 3.06) (P = .008). The total amount of systemic corticosteroids was less, and no serious infections were detected in the treatment group. LIMITATIONS Single center, open-label study with short duration and small size. CONCLUSION Our trial supports the potential of low-dose IL-2 therapy for patients with moderate-to-severe BP, which showed earlier treatment responses.
Collapse
Affiliation(s)
- Ruzeng Xue
- First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Guomin Li
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Yao Zhou
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Bocheng Wang
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Yingping Xu
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Peizhen Zhao
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Lijun Teng
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Jinjin Zheng
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Hongfang Liu
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Suyun Ji
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Dirk M Elston
- Department of Dermatology, Medical University of South Carolina, Charleston, South Carolina.
| | - Yunsheng Liang
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Zhang A, Fan T, Liu Y, Yu G, Li C, Jiang Z. Regulatory T cells in immune checkpoint blockade antitumor therapy. Mol Cancer 2024; 23:251. [PMID: 39516941 PMCID: PMC11545879 DOI: 10.1186/s12943-024-02156-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Regulatory T cells (Tregs), an essential component of the human immune system, are a heterogeneous group of T lymphocytes with the ability to suppress immune responses and maintain immune homeostasis. Recent evidence indicates that Tregs may impair antitumor immunity and facilitate cancer progression by weakening functions of effector T cells (Teffs). Consequently, targeting Tregs to eliminate them from tumor microenvironments to improve Teffs' activity could emerge as an effective strategy for cancer immunotherapy. This review outlines the biology of Tregs, detailing their origins, classification, and crucial markers. Our focus lies on the complex role of Tregs in cancer's development, progression and treatment, particularly on their suppressive role upon antitumor responses via multiple mechanisms. We delve into Tregs' involvement in immune checkpoint blockade (ICB) therapy, their dual effect on cancer immunotherapy and their potential biomarkers for ICB therapy effectiveness. We also summarize advances in the therapies that adjust Tregs to optimize ICB therapy, which may be crucial for devising innovative cancer treatment strategies.
Collapse
Affiliation(s)
- An Zhang
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yixiao Liu
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Guanhua Yu
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zheng Jiang
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
3
|
Zhao ZJ, Lian HY, Li WJ, Zhang Q, Ma HH, Wang D, Zhao YZ, Zhu T, Li HL, Huang XT, Wang TY, Zhang R, Cui L, Li ZG. The clinical impact of serum soluble CD25 levels in children with Langerhans cell histiocytosis. J Pediatr (Rio J) 2024:S0021-7557(24)00111-6. [PMID: 39265632 DOI: 10.1016/j.jped.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 09/14/2024] Open
Abstract
OBJECTIVE Langerhans cell histiocytosis (LCH) is a rare myeloid neoplasm with inflammatory characteristics. This study aims to investigate the correlation between sCD25 levels and clinical characteristics and prognosis in pediatric LCH. METHODS Serum sCD25 levels were measured in 370 LCH patients under 18 years old using ELISA assays. The patients were divided into two cohorts based on different treatment regimens. The authors further assessed the predictive value for the prognosis impact of sCD25 in a test cohort, which was validated in the independent validation cohort. RESULTS The median serum sCD25 level at diagnosis was 3908 pg/ml (range: 231-44 000). sCD25 level was significantly higher in multi-system and risk organ positive (MS RO+) LCH patients compared to single-system(SS) LCH patients (p < 0.001). Patients with increased sCD25 were more likely to have involvement of risk organs, skin, lung, lymph node, or pituitary (all p < 0.05). sCD25 level could predict LCH progression and relapse with an area under the ROC curve of 60.6 %. The best cutoff value was determined at 2921 pg/ml. High-sCD25 group had a significantly worse progression-free survival than those in the low-sCD25 group (p < 0.05). CONCLUSION Elevated serum sCD25 levels at initial diagnosis were associated with high-risk clinical features and worse prognosis. sCD25 levels can predict the progression/recurrence of LCH after treatment with first-line chemotherapy.
Collapse
Affiliation(s)
- Zi-Jing Zhao
- Capital Medical University, Beijing Children's Hospital, National Center for Children's Health, Hematologic Diseases Laboratory, Beijing Pediatric Research Institute, Beijing, China; Capital Medical University, National Key Discipline of Pediatrics, Beijing, China; Ministry of Education, Key Laboratory of Major Diseases in Children, Beijing, China
| | - Hong-Yun Lian
- Capital Medical University, National Key Discipline of Pediatrics, Beijing, China; Ministry of Education, Key Laboratory of Major Diseases in Children, Beijing, China; Capital Medical University, Beijing Children's Hospital, National Center for Children's Health, Department of Hematology, Hematology Center, Beijing, China
| | - Wei-Jing Li
- Capital Medical University, Beijing Children's Hospital, National Center for Children's Health, Hematologic Diseases Laboratory, Beijing Pediatric Research Institute, Beijing, China; Capital Medical University, National Key Discipline of Pediatrics, Beijing, China; Ministry of Education, Key Laboratory of Major Diseases in Children, Beijing, China
| | - Qing Zhang
- Capital Medical University, Beijing Children's Hospital, National Center for Children's Health, Hematologic Diseases Laboratory, Beijing Pediatric Research Institute, Beijing, China; Capital Medical University, National Key Discipline of Pediatrics, Beijing, China; Ministry of Education, Key Laboratory of Major Diseases in Children, Beijing, China
| | - Hong-Hao Ma
- Capital Medical University, National Key Discipline of Pediatrics, Beijing, China; Ministry of Education, Key Laboratory of Major Diseases in Children, Beijing, China; Capital Medical University, Beijing Children's Hospital, National Center for Children's Health, Department of Hematology, Hematology Center, Beijing, China
| | - Dong Wang
- Capital Medical University, National Key Discipline of Pediatrics, Beijing, China; Ministry of Education, Key Laboratory of Major Diseases in Children, Beijing, China; Capital Medical University, Beijing Children's Hospital, National Center for Children's Health, Department of Hematology, Hematology Center, Beijing, China
| | - Yun-Ze Zhao
- Capital Medical University, National Key Discipline of Pediatrics, Beijing, China; Ministry of Education, Key Laboratory of Major Diseases in Children, Beijing, China; Capital Medical University, Beijing Children's Hospital, National Center for Children's Health, Department of Hematology, Hematology Center, Beijing, China
| | - Ting Zhu
- Capital Medical University, Beijing Children's Hospital, National Center for Children's Health, Hematologic Diseases Laboratory, Beijing Pediatric Research Institute, Beijing, China; Capital Medical University, National Key Discipline of Pediatrics, Beijing, China; Ministry of Education, Key Laboratory of Major Diseases in Children, Beijing, China
| | - Hua-Lin Li
- Capital Medical University, Beijing Children's Hospital, National Center for Children's Health, Hematologic Diseases Laboratory, Beijing Pediatric Research Institute, Beijing, China; Capital Medical University, National Key Discipline of Pediatrics, Beijing, China; Ministry of Education, Key Laboratory of Major Diseases in Children, Beijing, China
| | - Xiao-Tong Huang
- Capital Medical University, Beijing Children's Hospital, National Center for Children's Health, Hematologic Diseases Laboratory, Beijing Pediatric Research Institute, Beijing, China; Capital Medical University, National Key Discipline of Pediatrics, Beijing, China; Ministry of Education, Key Laboratory of Major Diseases in Children, Beijing, China
| | - Tian-You Wang
- Capital Medical University, National Key Discipline of Pediatrics, Beijing, China; Ministry of Education, Key Laboratory of Major Diseases in Children, Beijing, China; Capital Medical University, Beijing Children's Hospital, National Center for Children's Health, Department of Hematology, Hematology Center, Beijing, China
| | - Rui Zhang
- Capital Medical University, National Key Discipline of Pediatrics, Beijing, China; Ministry of Education, Key Laboratory of Major Diseases in Children, Beijing, China; Capital Medical University, Beijing Children's Hospital, National Center for Children's Health, Department of Hematology, Hematology Center, Beijing, China
| | - Lei Cui
- Capital Medical University, Beijing Children's Hospital, National Center for Children's Health, Hematologic Diseases Laboratory, Beijing Pediatric Research Institute, Beijing, China; Capital Medical University, National Key Discipline of Pediatrics, Beijing, China; Ministry of Education, Key Laboratory of Major Diseases in Children, Beijing, China
| | - Zhi-Gang Li
- Capital Medical University, Beijing Children's Hospital, National Center for Children's Health, Hematologic Diseases Laboratory, Beijing Pediatric Research Institute, Beijing, China; Capital Medical University, National Key Discipline of Pediatrics, Beijing, China; Ministry of Education, Key Laboratory of Major Diseases in Children, Beijing, China.
| |
Collapse
|
4
|
Ahmadi A, Valencia AP, Begue G, Norman JE, Fan S, Durbin-Johnson BP, Jenner BN, Campbell MD, Reyes G, Kapahi P, Himmelfarb J, de Boer IH, Marcinek DJ, Kestenbaum BR, Gamboa JL, Roshanravan B. Randomized Crossover Clinical Trial of Nicotinamide Riboside and Coenzyme Q10 on Metabolic Health and Mitochondrial Bioenergetics in CKD. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.23.24312501. [PMID: 39228730 PMCID: PMC11370499 DOI: 10.1101/2024.08.23.24312501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Background Mitochondria-driven oxidative/redox stress and inflammation play a major role in chronic kidney disease (CKD) pathophysiology. Compounds targeting mitochondrial metabolism may improve mitochondrial function, inflammation, and redox stress; however, there is limited evidence of their efficacy in CKD. Methods We conducted a randomized, double-blind, placebo-controlled crossover trial comparing the effects of 1200 mg/day of coenzyme Q10 (CoQ10) or 1000 mg/day of nicotinamide riboside (NR) supplementation to placebo in 25 people with moderate-to-severe CKD (eGFR <60mL/min/1.73 m2). We assessed changes in the blood transcriptome using 3'-Tag-Seq gene expression profiling and changes in pre-specified secondary outcomes of inflammatory and oxidative stress biomarkers. For a subsample of participants (n=14), we assessed lymphocyte and monocyte bioenergetics using an extracellular flux analyzer. Results The (mean±SD) age, eGFR, and BMI of the participants were 61±11 years, 37±9 mL/min/1.73m2, and 28±5 kg/m2 respectively. Of the participants, 16% had diabetes and 40% were female. Compared to placebo, NR-mediated transcriptomic changes were enriched in gene ontology (GO) terms associated with carbohydrate/lipid metabolism and immune signaling while, CoQ10 changes were enriched in immune/stress response and lipid metabolism GO terms. NR increased plasma IL-2 (estimated difference, 0.32, 95% CI of 0.14 to 0.49 pg/mL), and CoQ10 decreased both IL-13 (estimated difference, -0.12, 95% CI of -0.24 to -0.01 pg/mL) and CRP (estimated difference, -0.11, 95% CI of -0.22 to 0.00 mg/dL) compared to placebo. Both NR and CoQ10 reduced 5 series F2-Isoprostanes (estimated difference, -0.16 and -0.11 pg/mL, respectively; P<0.05 for both). NR, but not CoQ10, increased the bioenergetic health index (BHI) (estimated difference, 0.29, 95% CI of 0.06 to 0.53) and spare respiratory capacity (estimated difference, 3.52, 95% CI of 0.04 to 7 pmol/min/10,000 cells) in monocytes. Conclusion Six weeks of NR and CoQ10 improved in oxidative stress, inflammation, and cell bioenergetics in persons with moderate to severe CKD.
Collapse
Affiliation(s)
- Armin Ahmadi
- Department of Medicine, Division of Nephrology, University of California, Davis, CA, USA
| | - Ana P. Valencia
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, WA, USA
| | - Gwénaëlle Begue
- Kinesiology Department, California State University, Sacramento, CA, USA
| | - Jennifer E. Norman
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of California, Davis, CA, USA
| | - Sili Fan
- Department of Biostatistics, School of Medicine, University of California, Davis, CA, USA
| | | | - Bradley N. Jenner
- Department of Biostatistics, School of Medicine, University of California, Davis, CA, USA
| | | | - Gustavo Reyes
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Pankaj Kapahi
- The Buck Institute for Research on Aging, Novato, CA 94945, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Jonathan Himmelfarb
- Department of Medicine, Division of Nephrology, Kidney Research Institute, University of Washington, Seattle, WA, USA
| | - Ian H. de Boer
- Department of Medicine, Division of Nephrology, Kidney Research Institute, University of Washington, Seattle, WA, USA
| | - David J. Marcinek
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, WA, USA
| | - Bryan R. Kestenbaum
- Department of Medicine, Division of Nephrology, Kidney Research Institute, University of Washington, Seattle, WA, USA
| | - Jorge L. Gamboa
- School of Medicine, Vanderbilt University, Nashville, TN, USA
| | - Baback Roshanravan
- Department of Medicine, Division of Nephrology, University of California, Davis, CA, USA
| |
Collapse
|
5
|
Yue Y, Ren Y, Lu C, Li P, Zhang G. Epigenetic regulation of human FOXP3+ Tregs: from homeostasis maintenance to pathogen defense. Front Immunol 2024; 15:1444533. [PMID: 39144146 PMCID: PMC11323565 DOI: 10.3389/fimmu.2024.1444533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
Regulatory T cells (Tregs), characterized by the expression of Forkhead Box P3 (FOXP3), constitute a distinct subset of T cells crucial for immune regulation. Tregs can exert direct and indirect control over immune homeostasis by releasing inhibitory factors or differentiating into Th-like Treg (Th-Treg), thereby actively contributing to the prevention and treatment of autoimmune diseases. The epigenetic regulation of FOXP3, encompassing DNA methylation, histone modifications, and post-translational modifications, governs the development and optimal suppressive function of Tregs. In addition, Tregs can also possess the ability to maintain homeostasis in diverse microenvironments through non-suppressive mechanisms. In this review, we primarily focus on elucidating the epigenetic regulation of Tregs as well as their multifaceted roles within diverse physiological contexts while looking forward to potential strategies involving augmentation or suppression of Tregs activity for disease management, particularly in light of the ongoing global COVID-19 pandemic.
Collapse
Affiliation(s)
| | | | | | | | - Guojun Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
6
|
Liao Z, Zeng X, Guo X, Shi Q, Tang Z, Li P, Chen C, Chen M, Chen J, Xu J, Cai Y. Targeting the aryl hydrocarbon receptor with FICZ regulates IL-2 and immune infiltration to alleviate Hashimoto's thyroiditis in mice. Eur J Pharmacol 2024; 973:176588. [PMID: 38621508 DOI: 10.1016/j.ejphar.2024.176588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/25/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
Hashimoto's thyroiditis (HT) is the most frequent autoimmune disorder. Growing work points to the involvement of aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor, in the regulation of immune homeostasis. However, the roles of AhR and its ligands in HT remains unclear. In this study, we leveraged public human database analyses to postulate that the AhR expression was predominantly in thyroid follicular cells, correlating significantly with the thyroid infiltration levels of multiple immune cells in HT patients. Using a thyroglobulin-induced HT mouse model and in vitro thyroid follicular epithelial cell cultures, we found a significant downregulation of AhR expression in thyrocytes both in vivo and in vitro. Conversely, activating AhR by FICZ, a natural AhR ligand, mitigated inflammation and apoptosis in thyrocytes in vitro and conferred protection against HT in mice. RNA sequencing (RNA-seq) of thyroid tissues indicated that AhR activation moderated HT-associated immune or inflammatory signatures. Further, immunoinfiltration analysis indicated that AhR activation regulated immune cell infiltration in the thyroid of HT mice, such as suppressing cytotoxic CD8+ T cell infiltration and promoting anti-inflammatory M2 macrophage polarization. Concomitantly, the expression levels of interleukin-2 (IL-2), a lymphokine that downregulates immune responses, were typically decreased in HT but restored upon AhR activation. In silico validation substantiated the binding interaction between AhR and IL-2. In conclusion, targeting the AhR with FICZ regulates IL-2 and immune infiltration to alleviate experimental HT, shedding new light on the therapeutic intervention of this prevalent disease.
Collapse
Affiliation(s)
- Zhengzheng Liao
- Department of Pharmacy, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Xianzhong Zeng
- Department of Endocrinology, Ganzhou People's Hospital, Ganzhou, 341000, People's Republic of China
| | - Xiaoling Guo
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Qing Shi
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Ziyun Tang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Ping Li
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China; Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, 330006, People's Republic of China; Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, 330006, People's Republic of China
| | - Cuiyun Chen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China; Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, 330006, People's Republic of China; Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, 330006, People's Republic of China
| | - Mengxia Chen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China; Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, 330006, People's Republic of China; Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, 330006, People's Republic of China
| | - Jianrong Chen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China; Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, 330006, People's Republic of China; Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, 330006, People's Republic of China
| | - Jixiong Xu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China; Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, 330006, People's Republic of China; Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, 330006, People's Republic of China.
| | - Yaojun Cai
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China; Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang, 330006, People's Republic of China; Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
7
|
Lu Y, Xiang Z, Wang W, Yun B, Yi C, Zhang M, Xie N, Wang C, Zhuang Z. Establishment and validation of a tumor-infiltrating γδT cell related prognostic gene signature in head and neck squamous cell carcinoma. Int Immunopharmacol 2024; 132:112054. [PMID: 38608477 DOI: 10.1016/j.intimp.2024.112054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/06/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
γδT cells are unconventional T cells only accounting for 1-5 % of circulating T lymphocytes. Their potent anti-tumor capability has been evidenced by accumulating studies. However, the prognostic value of γδT cells remains not well documented in head and neck squamous cell carcinoma (HNSCC). In this study, we utilized the TCGA HNSCC database to evaluate the infiltration of γδT cells and the association between γδT cells and clinicopathological factors by related gene signature, which were then validated by a total of 100 collected tumor samples from HNSCC patient cohort. Heterogeneity and functional characteristics of distinct infiltrating γδT cell profiles in HNSCC were then investigated based on the scRNA-seq data from the GEO database. We found higher γδT cell gene signature score was significantly associated with longer survival. Cox regression models showed that γδT cell gene signature could serve as an independent prognostic indicator for HNSCC patients. A high level of γδT cell-related gene signature was positively correlated with the infiltration of tumor-infiltrating lymphocytes and immune score. Through scRNA-seq analysis, we identified that γδ+ Trm cells and γδ+ CTL cells possessed anti-tumor and immunoregulatory properties. Notably, we found a significant association between the presence of these cells and improved survival outcomes. In our cell-cell communication analyses, we identified that γδT cells have the potential to eliminate tumor cells through the secretion of interferon-gamma and granzyme. Collectively, the infiltration of γδT cells may serve as a promising prognostic tool, prompting the consideration of treatment options for patients with HNSCC.
Collapse
Affiliation(s)
- Yanwen Lu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Zhuqin Xiang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Wenjin Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Bokai Yun
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Chen Yi
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Ming Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Nan Xie
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Cheng Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Zehang Zhuang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510080, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| |
Collapse
|
8
|
Schweitzer L, Barkati S, Laneuville P, Fox S, Vinh DC. Treatment of Progressive Multifocal Leukoencephalopathy with IL-2 and Mirtazapine. J Clin Immunol 2024; 44:97. [PMID: 38587706 DOI: 10.1007/s10875-024-01698-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/29/2024] [Indexed: 04/09/2024]
Affiliation(s)
- Lorne Schweitzer
- Department of Medicine, Division of Infectious Diseases, McGill University Health Centre, Montreal, Quebec, Canada
| | - Sapha Barkati
- Department of Medicine, Division of Infectious Diseases, McGill University Health Centre, Montreal, Quebec, Canada
| | - Pierre Laneuville
- Department of Medicine, Division of Hematology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Susan Fox
- Department of Medicine, Division of Hematology and Oncology, Hôpital Charles-Lemoyne, Longueuil, Quebec, Canada
| | - Donald C Vinh
- Department of Medicine, Division of Infectious Diseases, McGill University Health Centre, Montreal, Quebec, Canada.
- IiMMUNO-GRAM (Infection and IMMunity Genetic Research to Advance Molecular medicine) Center of Reference, Research Institute - McGill University Health Centre, 1001 Decarie Blvd; Block E (EM3-3211), Montreal, Quebec, H4A 3J1, Canada.
- Department of OptiLab (Division of Medical Microbiology, Division of Molecular Genetics-Immunology), McGill University Health Centre - Research Institute, 1001 Decarie Blvd; Block E; Rm EM3-3230 (Mail Drop: EM3-3211), Montreal, Quebec, H4A 3J1, Canada.
- Department of Human Genetics, McGill University Health Centre - Research Institute, 1001 Decarie Blvd; Block E; Rm EM3-3230 (Mail Drop: EM3-3211), Montreal, Quebec, H4A 3J1, Canada.
| |
Collapse
|
9
|
Wang M, Song J, Yang H, Wu X, Zhang J, Wang S. Gut microbiota was highly related to the immune status in chronic obstructive pulmonary disease patients. Aging (Albany NY) 2024; 16:3241-3256. [PMID: 38349864 PMCID: PMC10929793 DOI: 10.18632/aging.205532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/05/2024] [Indexed: 02/15/2024]
Abstract
This study aimed to explore the profile of gut microbiota and immunological state in COPD patients. 80 fecal and blood samples were collected from 40 COPD patients and 40 healthy controls (HC) and analyzed with 16s-rRNA gene sequencing and immunofactor omics analysis to investigate the profile of gut microbiota and immunologic factors (IFs). The linear discriminant analysis (LDA) effect size (LefSe) was used to determine the biomarker's taxa. The random forest and LASSO regression analysis were executed to screen IFs and develop an IFscore model. The correlation between gut microbiota and IFs, along with the IFscore and the diversity of gut microbiota, was evaluated with the Spearman analysis. The α and β diversity showed that the composition and distribution of gut microbiota in the COPD group differed from that of the HC group. 7 differential taxa at the phylum level and 17 differential taxa at the genus level were found. LefSe analysis screened out 5 biomarker's taxa. 32 differential IFs (up-regulated 27 IFs and down-regulated 5 IFs) were identified between two groups, and 5 IFs (CCL3, CXCL9, CCL7, IL2, IL4) were used to construct an IFscore model. The Spearman analysis revealed that 29 IFs were highly related to 5 biomarker's taxa and enriched in 16 pathways. Furthermore, the relationship between the IFscore and gut microbiota diversity was very close. The gut microbiota and IFs profile in COPD patients differed from that in healthy individuals. Gut microbiota was highly related to the immune status in COPD patients.
Collapse
Affiliation(s)
- Mei Wang
- Department of Respiratory, Zhejiang Jinhua Guangfu Cancer Hospital, Jinhua 321000, Zhejiang, China
| | - Jun Song
- Department of Respiratory, Zhejiang Jinhua Guangfu Cancer Hospital, Jinhua 321000, Zhejiang, China
| | - Huizhen Yang
- Department of Respiratory, Zhejiang Jinhua Guangfu Cancer Hospital, Jinhua 321000, Zhejiang, China
| | - Xiaoyu Wu
- Department of Respiratory, Zhejiang Jinhua Guangfu Cancer Hospital, Jinhua 321000, Zhejiang, China
| | - Jin Zhang
- Department of Psychiatry, Jinhua Second People’s Hospital, Jinhua 321000, Zhejiang, China
| | - Sheng Wang
- Department of Respiratory, Zhejiang Jinhua Guangfu Cancer Hospital, Jinhua 321000, Zhejiang, China
| |
Collapse
|
10
|
Yu X, Niu Y, Xu J, Zhang X, Wu H, Wang Y, Zhang J, Wu M. The clinical significance of plasma sCD25 as valuable biomarker for progression and prognosis of tuberculosis. BMC Infect Dis 2024; 24:115. [PMID: 38254003 PMCID: PMC10804724 DOI: 10.1186/s12879-023-08798-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/07/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND sCD25 is an important immune molecule for T cell regulation. Tracking the detection of plasma sCD25 plays an important role in the evaluation of immune function, progression, and prognosis of tuberculosis (TB) patients. This study analyzed the association of plasma sCD25 levels with clinical, laboratory, CT imaging characteristics, and clinical outcome of TB patients. METHODS The clinical data of 303 TB patients treated in the Fifth People's Hospital of Suzhou from October 2019 to January 2022 were retrospectively analyzed. The levels of sCD25 in plasma were detected by ELISA. According to the cut-off threshold of plasma sCD25 levels, the patients were divided into a low-value group (Group TB1) and a high-value group (Group TB2). The association of plasma sCD25 levels with clinical, laboratory, and CT imaging characteristics of TB patients, as well as their TB treatment outcome were analyzed. RESULTS The levels of plasma sCD25 of patients with TB patients were higher than that of the healthy control group (P < 0.01). Among the 303 TB patients, the levels were increased in Group TB2 patients (0.602 ± 0.216 vs. 1.717 ± 0.604 ng/ml, P < 0.001), and there was a progressive reduction after anti-TB treatment. Furthermore, patients in Group TB2 showed higher positive rates in sputum smear (52.0% vs. 34.3%; P = 0.003), sputum culture (69.7% vs. 56.9%; P = 0.032), Xpert MTB/RIF (66.3% vs. 51.2%; P = 0.013) and TB-DNA (51.5% vs. 31.2%; P = 0.001) than those in Group TB1. Patients in Group TB2 had higher incidence in cough (78.8% vs. 62.3%; P = 0.004), expectoration (64.4% vs. 45.1%; P = 0.001), concomitant extrapulmonary TB (14.1% vs. 5.9%; P = 0.016), cavities (47.9% vs. 34.0%; P = 0.022), and unfavorable outcomes after anti-TB treatment. CONCLUSION The clinical, laboratory and radiological manifestations of TB patients with high plasma sCD25 levels indicate that the disease is more severe. Tracking plasma sCD25 detection of TB patients has evident clinical significance. It is noteworthy that when the plasma sCD25 levels are significantly elevated, patients should be cautious of the TB progression and disease severity.
Collapse
Affiliation(s)
- Xin Yu
- Department of Tuberculosis, The Fifth People's Hospital of Suzhou, The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, China
| | - Yayan Niu
- Department of Tuberculosis, The Fifth People's Hospital of Suzhou, The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, China
| | - Junchi Xu
- Department of Clinical laboratory, The Fifth People's Hospital of Suzhou, Suzhou, China
| | - Xiaolong Zhang
- Department of Tuberculosis, Suzhou Center for Disease Control and Prevention, Suzhou, China
| | - Haiyan Wu
- Department of Tuberculosis, The Fifth People's Hospital of Suzhou, The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, China
| | - Yuhan Wang
- Department of Tuberculosis, The Fifth People's Hospital of Suzhou, The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, China
| | - Jianping Zhang
- Department of Tuberculosis, The Fifth People's Hospital of Suzhou, The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, China.
| | - Meiying Wu
- Department of Tuberculosis, The Fifth People's Hospital of Suzhou, The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
11
|
Wang X, Liu Z, Wang D, Zhang Y, Zhang H, Xue F, Wang X, Tang Z, Han X. Immunoswitch Nanomodulators Enable Active Targeting and Selective Proliferation of Regulatory T Cells for Multiple Sclerosis Therapy. ACS NANO 2024; 18:770-782. [PMID: 38113242 DOI: 10.1021/acsnano.3c09225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Interleukin-2 (IL-2) used in multiple sclerosis (MS) therapy modulates the balance between regulatory T (Treg) cells and effector T (Teff) cells. However, the off-target activation of Teff cells by IL-2 limits its clinical application. Therefore, a rapidly prepared immunoswitch nanomodulator termed aT-IL2C NPs was developed, which specifically recognized Treg cells with high TIGIT expression thanks to the presence of an anti-TIGIT and an IL-2/JES6-1 complex (IL2C) being delivered to Treg cells but not to Teff cells with low TIGIT expression. Then, IL2C released IL-2 due to the specific expression of the high-affinity IL-2 receptor on Treg cells, thus enabling the active targeting and selective proliferation of Treg cells. Moreover, the anti-TIGIT of aT-IL2C NPs selectively inhibited the proliferation of Teff cells while leaving the proliferation of Treg cells unaffected. In addition, since the IL-2 receptor on Teff cells had medium-affinity, the IL2C hardly released IL-2 to Teff cells, thus enabling the inhibition of Teff cell proliferation. The treatment of experimental autoimmune encephalomyelitis (EAE) mice with aT-IL2C NPs ameliorated the severity of the EAE and restored white matter integrity. Collectively, this work described a potential promising agent for effective MS therapy.
Collapse
Affiliation(s)
- Xiaoshuang Wang
- No. 1 Department of Neurology, China-Japan Union Hospital of Jilin University, 126 Xiantai Road, Changchun 130033, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Road, Changchun 130022, China
| | - Zhilin Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Road, Changchun 130022, China
| | - Di Wang
- No. 1 Department of Neurology, China-Japan Union Hospital of Jilin University, 126 Xiantai Road, Changchun 130033, China
| | - Yingyu Zhang
- No. 1 Department of Neurology, China-Japan Union Hospital of Jilin University, 126 Xiantai Road, Changchun 130033, China
| | - Honglei Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Road, Changchun 130022, China
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education and Key Laboratory of Polymeric Materials & Application Technology of Hunan Province, Xiangtan University, Xiangtan 411105, China
| | - Fuxin Xue
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Road, Changchun 130022, China
- Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun, Jilin 130024, China
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Road, Changchun 130022, China
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Road, Changchun 130022, China
| | - Xuemei Han
- No. 1 Department of Neurology, China-Japan Union Hospital of Jilin University, 126 Xiantai Road, Changchun 130033, China
| |
Collapse
|
12
|
Saeed W, Shahbaz E, Maqsood Q, Ali SW, Mahnoor M. Cutaneous Oncology: Strategies for Melanoma Prevention, Diagnosis, and Therapy. Cancer Control 2024; 31:10732748241274978. [PMID: 39133519 PMCID: PMC11320697 DOI: 10.1177/10732748241274978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/11/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024] Open
Abstract
Skin cancer comprises one-third of all diagnosed cancer cases and remains a major health concern. Genetic and environmental parameters serve as the two main risk factors associated with the development of skin cancer, with ultraviolet radiation being the most common environmental risk factor. Studies have also found fair complexion, arsenic toxicity, indoor tanning, and family history among the prevailing causes of skin cancer. Prevention and early diagnosis play a crucial role in reducing the frequency and ensuring effective management of skin cancer. Recent studies have focused on exploring minimally invasive or non-invasive diagnostic technologies along with artificial intelligence to facilitate rapid and accurate diagnosis. The treatment of skin cancer ranges from traditional surgical excision to various advanced methods such as phototherapy, radiotherapy, immunotherapy, targeted therapy, and combination therapy. Recent studies have focused on immunotherapy, with the introduction of new checkpoint inhibitors and personalized immunotherapy enhancing treatment efficacy. Advancements in multi-omics, nanotechnology, and artificial intelligence have further deepened the understanding of the mechanisms underlying tumoral growth and their interaction with therapeutic effects, which has paved the way for precision oncology. This review aims to highlight the recent advancements in the understanding and management of skin cancer, and provide an overview of existing and emerging diagnostic, prognostic, and therapeutic modalities, while highlighting areas that require further research to bridge the existing knowledge gaps.
Collapse
Affiliation(s)
- Wajeeha Saeed
- Department of Food Sciences, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Esha Shahbaz
- Department of Food Sciences, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Quratulain Maqsood
- Centre for Applied Molecular Biology, University of the Punjab, Lahore Pakistan
| | - Shinawar Waseem Ali
- Department of Food Sciences, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Muhammada Mahnoor
- Sehat Medical Complex Lake City, University of Lahore, Lahore Pakistan
| |
Collapse
|
13
|
Qiao Z, Zhao W, Liu Y, Feng W, Ma Y, Jin H. Low-dose Interleukin-2 For Psoriasis Therapy Based on the Regulation of Th17/Treg Cell Balance in Peripheral Blood. Inflammation 2023; 46:2359-2373. [PMID: 37596509 PMCID: PMC10673739 DOI: 10.1007/s10753-023-01883-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2023] [Indexed: 08/20/2023]
Abstract
The imbalance between regulatory T (Treg) cells and efficient T cells plays an important role in psoriasis. Low-dose interleukin (IL)-2 can preferentially activate Treg cells and ameliorate the imbalance of Treg/efficient T cells. This study focused on the status of circulating CD4+ T subsets and the clinical efficacy of low-dose IL-2 therapies in psoriasis. This retrospective study included peripheral blood samples obtained from 45 psoriatic patients and 40 healthy controls. The 45 psoriatic patients received three cycles of subcutaneous low-dose IL-2 treatment (0.5 million IU/day for 2 weeks) combined with conventional therapies. Inflammatory indices, CD4+ T-lymphocyte subsets, and cytokines were measured in all patients before and after treatment. The percentage of Treg cells was dramatically decreased in the psoriasis group compared to the healthy group, and the percentage of Treg cells negatively correlated with the disease indices and the Psoriasis Area and Severity Index (PASI) (P < 0.001). The Th17/Treg ratio was significantly increased in the psoriasis group compared to the healthy group, and the Th17/Treg ratio positively correlated with disease indices and PASI (P < 0.001). Low-dose IL-2 treatment significantly amplified the percentage of Treg cells and restored the Th17 and Treg immune balance in psoriasis (P < 0.001). Low-dose IL-2 combination therapy effectively improved the clinical manifestations of psoriasis but decreased the inflammatory indicators of the disease activity, with no apparent side effects. Thus, low-dose IL-2 provides a new strategy for the treatment of psoriasis.
Collapse
Affiliation(s)
- Zusha Qiao
- Department of Dermatology, Second Hospital of Shanxi Medical University, Taiyuan, China
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, 100730, China
| | - Wenpeng Zhao
- Department of Rheumatology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yan Liu
- Department of Cancer prevention and control office, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Wenli Feng
- Department of Dermatology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yan Ma
- Department of Dermatology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Hongzhong Jin
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, 100730, China.
| |
Collapse
|
14
|
Passeron T, King B, Seneschal J, Steinhoff M, Jabbari A, Ohyama M, Tobin DJ, Randhawa S, Winkler A, Telliez JB, Martin D, Lejeune A. Inhibition of T-cell activity in alopecia areata: recent developments and new directions. Front Immunol 2023; 14:1243556. [PMID: 38022501 PMCID: PMC10657858 DOI: 10.3389/fimmu.2023.1243556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
Alopecia areata (AA) is an autoimmune disease that has a complex underlying immunopathogenesis characterized by nonscarring hair loss ranging from small bald patches to complete loss of scalp, face, and/or body hair. Although the etiopathogenesis of AA has not yet been fully characterized, immune privilege collapse at the hair follicle (HF) followed by T-cell receptor recognition of exposed HF autoantigens by autoreactive cytotoxic CD8+ T cells is now understood to play a central role. Few treatment options are available, with the Janus kinase (JAK) 1/2 inhibitor baricitinib (2022) and the selective JAK3/tyrosine kinase expressed in hepatocellular carcinoma (TEC) inhibitor ritlecitinib (2023) being the only US Food and Drug Administration-approved systemic medications thus far for severe AA. Several other treatments are used off-label with limited efficacy and/or suboptimal safety and tolerability. With an increased understanding of the T-cell-mediated autoimmune and inflammatory pathogenesis of AA, additional therapeutic pathways beyond JAK inhibition are currently under investigation for the development of AA therapies. This narrative review presents a detailed overview about the role of T cells and T-cell-signaling pathways in the pathogenesis of AA, with a focus on those pathways targeted by drugs in clinical development for the treatment of AA. A detailed summary of new drugs targeting these pathways with expert commentary on future directions for AA drug development and the importance of targeting multiple T-cell-signaling pathways is also provided in this review.
Collapse
Affiliation(s)
- Thierry Passeron
- University Côte d’Azur, Centre Hospitalier Universitaire Nice, Department of Dermatology, Nice, France
- University Côte d’Azur, INSERM, U1065, C3M, Nice, France
| | - Brett King
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, United States
| | - Julien Seneschal
- Department of Dermatology and Paediatric Dermatology, National Reference Centre for Rare Skin Diseases, Saint-André Hospital, University of Bordeaux, Bordeaux, France
- Bordeaux University, Centre national de la recherche scientifique (CNRS), ImmunoConcept, UMR5164, Bordeaux, France
| | - Martin Steinhoff
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Department of Dermatology and Venereology, Weill Cornell Medicine-Qatar, Doha, Qatar
- College of Medicine, Qatar University, Doha, Qatar
- Department of Dermatology, Weill Cornell Medicine, New York, NY, United States
- College of Health and Life Sciences, Hamad Bin Khalifa University-Qatar, Doha, Qatar
| | - Ali Jabbari
- Department of Dermatology, University of Iowa, Iowa City, IA, United States
- Iowa City VA Medical Center, Iowa City, IA, United States
| | - Manabu Ohyama
- Department of Dermatology, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Desmond J. Tobin
- Charles Institute of Dermatology, UCD School of Medicine, University College Dublin, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
15
|
La Cava A. Low-dose interleukin-2 therapy in systemic lupus erythematosus. RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2023; 4:150-156. [PMID: 37781677 PMCID: PMC10538619 DOI: 10.2478/rir-2023-0021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/18/2023] [Indexed: 10/03/2023]
Abstract
In systemic lupus erythematosus (SLE), T regulatory cells (Tregs) contribute to the inhibition of autoimmune responses by suppressing self-reactive immune cells. Interleukin (IL)-2 plays an essential role in the generation, function and homeostasis of the Tregs and is reduced in SLE. Several clinical studies, including randomized trials, have shown that low-dose IL-2 therapy in SLE patients is safe and effective and can reduce disease manifestations. This review discusses the rationale for the use of low-dose IL-2 therapy in SLE, the clinical responses in patients, and the effects of this therapy on different types of T cells. Considerations are made on the current and future directions of use of low-dose IL-2 regimens in SLE.
Collapse
Affiliation(s)
- Antonio La Cava
- Department of Medicine, University of California Los Angeles, Los Angeles, CA90095, USA
| |
Collapse
|
16
|
Wang J, Zhao X, Wan YY. Intricacies of TGF-β signaling in Treg and Th17 cell biology. Cell Mol Immunol 2023; 20:1002-1022. [PMID: 37217798 PMCID: PMC10468540 DOI: 10.1038/s41423-023-01036-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
Balanced immunity is pivotal for health and homeostasis. CD4+ helper T (Th) cells are central to the balance between immune tolerance and immune rejection. Th cells adopt distinct functions to maintain tolerance and clear pathogens. Dysregulation of Th cell function often leads to maladies, including autoimmunity, inflammatory disease, cancer, and infection. Regulatory T (Treg) and Th17 cells are critical Th cell types involved in immune tolerance, homeostasis, pathogenicity, and pathogen clearance. It is therefore critical to understand how Treg and Th17 cells are regulated in health and disease. Cytokines are instrumental in directing Treg and Th17 cell function. The evolutionarily conserved TGF-β (transforming growth factor-β) cytokine superfamily is of particular interest because it is central to the biology of both Treg cells that are predominantly immunosuppressive and Th17 cells that can be proinflammatory, pathogenic, and immune regulatory. How TGF-β superfamily members and their intricate signaling pathways regulate Treg and Th17 cell function is a question that has been intensely investigated for two decades. Here, we introduce the fundamental biology of TGF-β superfamily signaling, Treg cells, and Th17 cells and discuss in detail how the TGF-β superfamily contributes to Treg and Th17 cell biology through complex yet ordered and cooperative signaling networks.
Collapse
Affiliation(s)
- Junying Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Xingqi Zhao
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yisong Y Wan
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
17
|
Zhou P, Cao C, Ji T, Zheng T, Dai Y, Liu M, Jiang J, Sun D, Bai Z, Lu X, Gong F. Longitudinal analysis of memory Tfh cells and antibody response following CoronaVac vaccination. JCI Insight 2023; 8:e168437. [PMID: 37384407 PMCID: PMC10445683 DOI: 10.1172/jci.insight.168437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/28/2023] [Indexed: 07/01/2023] Open
Abstract
The inactivated vaccine CoronaVac is one of the most widely used COVID-19 vaccines globally. However, the longitudinal evolution of the immune response induced by CoronaVac remains elusive compared with other vaccine platforms. Here, we recruited 88 healthy individuals who received 3 doses of CoronaVac vaccine. We longitudinally evaluated their polyclonal and antigen-specific CD4+ T cells and neutralizing antibody response after receiving each dose of vaccine for over 300 days. Both the second and third doses of vaccine induced robust spike-specific neutralizing antibodies, with a third vaccine further increasing the overall magnitude of antibody response and neutralization against Omicron sublineages B.1.1.529, BA.2, BA.4/BA.5, and BA.2.75.2. Spike-specific CD4+ T cells and circulating T follicular helper (cTfh) cells were markedly increased by the second and third dose of CoronaVac vaccine, accompanied by altered composition of functional cTfh cell subsets with distinct effector and memory potential. Additionally, cTfh cells were positively correlated with neutralizing antibody titers. Our results suggest that CoronaVac vaccine-induced spike-specific T cells are capable of supporting humoral immunity for long-term immune protection.
Collapse
Affiliation(s)
- Pengcheng Zhou
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
- The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia
| | - Cheng Cao
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Tuo Ji
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
- Department of Central Laboratory, The Second People’s Hospital of Lianyungang City (Cancer Hospital of Lianyungang), Lianyungang, China
| | - Ting Zheng
- Hospital for Special Surgery, Weill Cornell Medical College, New York, New York, USA
| | - Yaping Dai
- Department of Laboratory Medicine, The Fifth People’s Hospital of Wuxi, Wuxi, China
| | - Min Liu
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Junfeng Jiang
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Daoqi Sun
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Zhonghu Bai
- School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiaojie Lu
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Fang Gong
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
18
|
Wang Y, Tang X, Zhu Y, Yang XX, Liu B. Role of interleukins in acute myeloid leukemia. Leuk Lymphoma 2023; 64:1400-1413. [PMID: 37259867 DOI: 10.1080/10428194.2023.2218508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/21/2023] [Indexed: 06/02/2023]
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy with strong heterogeneity. Immune disorders are a feature of various malignancies, including AML. Interleukins (ILs) and other cytokines participate in a series of biological processes of immune disorders in the microenvironment, and serve as a bridge for communication between various cellular components in the immune system. The role of ILs in AML is complex and pleiotropic. It can not only play an anti-AML role by enhancing anti-leukemia immunity and directly inducing AML cell apoptosis, but also promote the growth, proliferation and drug resistance of AML. These properties of ILs can be used to explore their potential efficacy in disease monitoring, prognosis assessment, and development of new treatment strategies for AML. This review aims to clarify some of the complex roles of ILs in AML and their clinical applications.
Collapse
Affiliation(s)
- Yin Wang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiao Tang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yu Zhu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiao-Xiao Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Bei Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Hematology, The First Affiliated Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
19
|
Wang J, Guo HX, Cheng T, Shi L, Zhang SX, Li XF. Reduced circulating Tregs and positive pANCA were robustly associated with the occurrence of antiphospholipid syndrome in patients with systemic lupus erythematosus. Lupus 2023; 32:746-755. [PMID: 37051771 DOI: 10.1177/09612033231171287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is a typical chronic immune disorder with clinical heterogeneity. The systemic abnormal immune response not only challenges the diagnosis and treatment of the disease itself but also the secondary antiphospholipid syndrome (APS), characterized by recurrent arterial or venous thrombosis, recurrent spontaneous abortion, or stillbirth. Clinical interest has primarily focused on primary APS's pathological and clinical features. However, differences in clinical features and laboratory indicators between SLE with or without APS are still lacking, especially differences between circulating lymphocytes, which are critical in the pathogenesis of SLE and its complications. METHODS In this retrospective study, we collected and analyzed clinical characteristics, general laboratory indicators, immunological indicators, and circulating lymphocyte subsets of SLE with or without APS. RESULTS Systemic lupus erythematosus with APS (SLE-APS) had elevated SLEDAI scores, hospitalization costs and time, and frequencies of central nervous system symptoms and spontaneous abortion compared with those without APS. SLE-APS had higher positive anti-Cardiolipin antibodies, anti-β2 Glycoprotein 1 antibodies, and perinuclear antineutrophil cytoplasmic antibody (pANCA) than none-APS patients. Compared with healthy controls (HCs), the circulating lymphocyte subsets were altered to some extent in all patients, especially in patients with SLE-APS. Reduced Tregs and positive pANCA were independent risk factors for SLE secondary APS. CONCLUSION The present study revealed a robust association between APS secondary to SLE and reduced Tregs and positive pANCA, which provides essential information regarding the diagnosis and therapeutic possibilities of APS secondary to SLE.
Collapse
Affiliation(s)
- Jia Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, China
| | - Hong-Xia Guo
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Ting Cheng
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, China
| | - Lei Shi
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, China
| | - Xiao-Feng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, China
- Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, China
| |
Collapse
|
20
|
Immunomodulatory effect of IL-2 induced bone marrow mononuclear cell therapy on control of allergic asthma. Allergol Immunopathol (Madr) 2023; 51:110-115. [PMID: 36617829 DOI: 10.15586/aei.v51i1.746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/23/2022] [Indexed: 01/03/2023]
Abstract
Asthma is a chronic airway disease. Allergic reactions and T helper (h)2 immune response play a key role in asthma occurrence. Cell therapy can control inflammation and remodeling responses in allergic asthma, and cytokines can change this effect. Therefore, in this study, the effect of treated cell therapy with IL-2 to control allergic asthma was studied. Bone marrow cells were extracted and co-cultured with IL-2 and the cells were used via intra-tracheal administration in allergic asthma mice. Levels of IL-4, IL-5, IL-13, Leukotriene B4 and C4, and remodeling factors were measured. At least, a histopathology test of lung tissue was done. Type2 cytokines, leukotrienes, remodeling factors, mucus secretion, goblet cell hyperplasia, peri-bronchial and peri-vascular inflammation were significantly (p˂0.05) decreased by treating with bone marrow-derived mononuclear cells (BMDMCs) and IL-2-BMDMCs. Treatment with IL-2-BMDMCs could significantly decrease IL-13, transforming growth factor (TGF)-β, HP levels, and mucus secretion (p˂0.05) compared to BMDMCs treatment. In this study, BMDMCs and IL-2-BMDMCs therapy could decrease inflammation, allergic, and remodeling factors in allergic asthma. Cell therapy with BMDMCs had a strong and notable effect on the control of allergic asthma pathophysiology when co-cultured and used with IL-2.
Collapse
|
21
|
Brzezicka KA, Arlian BM, Wang S, Olmer M, Lotz M, Paulson JC. Suppression of Autoimmune Rheumatoid Arthritis with Hybrid Nanoparticles That Induce B and T Cell Tolerance to Self-Antigen. ACS NANO 2022; 16:20206-20221. [PMID: 36418226 DOI: 10.1021/acsnano.2c05643] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Autoimmune diseases affect over 4% of the world's population. Treatments are generally palliative or use broad spectrum immunosuppressants to reduce symptoms and disease progression. In some diseases, antibodies generated to a single autoantigen are the major cause of pathogenic inflammation, suggesting that treatments to induce tolerance to the autoantigen could be therapeutic. Here we report the development of hybrid nanoparticles (NPs) that induce tolerance in both T cells and B cells. The NPs comprise a lipid monolayer encapsulating a PLGA core loaded with rapamycin that promotes development of regulatory T cells (Tregs). The lipid monolayer displays the protein antigen and a ligand of the B cell inhibitory co-receptor CD22 (CD22L) that act together to suppress activation of B cells recognizing the antigen. We demonstrate that the hybrid NPs decorated with ovalbumin (OVA) elicit tolerance to OVA in naı̈ve mice, as judged by low OVA-specific antibody titers after the challenge. In the K/BxN mouse model of rheumatoid arthritis caused by B and T cell-dependent responses to the self-antigen glucose-6-phosphate-isomerase (GPI), we show that GPI hybrid NPs delay development of disease, with some treated mice remaining arthritis-free for 300 days. We provide evidence that the mechanism of rheumatoid arthritis suppression involves induction of B cell tolerance, as measured by low anti-GPI antibodies and decreased plasma cell populations, and T cell tolerance, as measured by increased Tregs. The results show the potential of this versatile NP platform for inducing immune tolerance to a self-antigen and suppressing autoimmune disease.
Collapse
Affiliation(s)
- Katarzyna A Brzezicka
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
- Department of Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Britni M Arlian
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
- Department of Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Shengyang Wang
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
- Department of Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Merissa Olmer
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Martin Lotz
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - James C Paulson
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
- Department of Immunology and Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
22
|
Zhou P, Zheng T, Zhao B. Cytokine-mediated immunomodulation of osteoclastogenesis. Bone 2022; 164:116540. [PMID: 36031187 PMCID: PMC10657632 DOI: 10.1016/j.bone.2022.116540] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022]
Abstract
Cytokines are an important set of proteins regulating bone homeostasis. In inflammation induced bone resorption, cytokines, such as RANKL, TNF-α, M-CSF, are indispensable for the differentiation and activation of resorption-driving osteoclasts, the process we know as osteoclastogenesis. On the other hand, immune system produces a number of regulatory cytokines, including IL-4, IL-10 and IFNs, and limits excessive activation of osteoclastogenesis and bone loss during inflammation. These unique properties make cytokines powerful targets as rheostat to maintain bone homeostasis and for potential immunotherapies of inflammatory bone diseases. In this review, we summarize recent advances in cytokine-mediated regulation of osteoclastogenesis and provide insights of potential translational impact of bench-side research into clinical treatment of bone disease.
Collapse
Affiliation(s)
- Pengcheng Zhou
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China; Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
| | - Ting Zheng
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA
| | - Baohong Zhao
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, New York, NY, USA; Graduate Program in Biochemistry, Cell and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| |
Collapse
|