1
|
Lv Y, Zheng Y, Su S, Xiao J, Yang J, Xiong L, Guo Y, Zhou X, Guo N, Lei P. CD14 loCD301b + macrophages gathering as a proangiogenic marker in adipose tissues. J Lipid Res 2024:100720. [PMID: 39645040 DOI: 10.1016/j.jlr.2024.100720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 11/19/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024] Open
Abstract
The role of the monocyte marker CD14 in the regulation of obesity is increasingly recognized. Our observations indicated that Cd14-/- mice exhibited a leaner body shape compared to their wild type (WT) counterparts. And the loss of CD14 alleviated high-fat diet (HFD)-induced obesity in mice. In human subjects, CD14 level was tested to be positively correlated with overweight and obesity. However, the relationship between CD14 and the development of obesity remains only partially understood. To investigate the underlying mechanisms, adipose tissues (AT) from Cd14-/- and WT mice were subjected to deep RNA sequencing. Gene Ontology enrichment analysis revealed a significant enhancement of angiogenesis-related function in the Cd14-/- epWAT compared to WT counterpart, which was accompanied by an upregulation of Cd301b. Subsequent assays confirmed the enhanced angiogenesis and more accumulation of CD301b+ macrophages in Cd14-/- epWAT. Because Igf1 expression has been suggested to be associated with Cd301b expression through pseudotime analysis, we found it was IGF-1 secreted from Cd14-/- macrophages that mediated the angiogenesis enhancement. Collectively, our findings indicate that the accumulation of CD14loCD301b+ macrophages may serve as a proangiogenic marker in adipose tissues, providing novel insights into the relationship between CD14 and obesity development.
Collapse
Affiliation(s)
- Yibing Lv
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China; Henan Provincial Key Laboratory of Genetic Diseases and Functional Genomics, Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Yidan Zheng
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Shanshan Su
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Junyi Xiao
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Jie Yang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lingyun Xiong
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yanyan Guo
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Xiaoqi Zhou
- Department of Transfusion Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nengqiang Guo
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Ping Lei
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.
| |
Collapse
|
2
|
Chen X, Jiang G, Zhao T, Sun N, Liu S, Guo H, Zeng C, Liu Y. Identification of potential drug targets for diabetic polyneuropathy through Mendelian randomization analysis. Cell Biosci 2024; 14:147. [PMID: 39639394 PMCID: PMC11619124 DOI: 10.1186/s13578-024-01323-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Diabetic polyneuropathy (DPN) is a common diabetes complication with limited treatment options. We aimed to identify circulating plasma proteins as potential therapeutic targets for DPN using Mendelian Randomization (MR). METHODS The protein quantitative trait loci (pQTLs) utilized in this study were derived from seven previously published genome-wide association studies (GWASs) on plasma proteomics. The DPN data were obtained from the IEU OpenGWAS project. This study employed two-sample MR using MR-Egger and inverse-variance weighted methods to evaluate the causal relationship between plasma proteins and DPN risk, with Cochran's Q test, and I2 statistics, among other methods, used to validate the robustness of the results. RESULTS Using cis-pQTLs as genetic instruments, we identified 62 proteins associated with DPN, with 33 increasing the risk and 29 decreasing the risk of DPN. Using cis-pQTLs + trans-pQTLs, we identified 116 proteins associated with DPN, with 44 increasing the risk and 72 decreasing the risk of DPN. Steiger directionality tests indicated that the causal relationships between circulating plasma proteins and DPN were consistent with expected directions. CONCLUSION This study identified 96 circulating plasma proteins with genetically determined levels that affect the risk of DPN, providing new potential targets for DPN drug development, particularly ITM2B, CREG1, CD14, and PLXNA4.
Collapse
Affiliation(s)
- Xiaokun Chen
- Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai, China
| | - Guohua Jiang
- Department of Foot and Ankle Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Orthopedic Hospital of Guangdong Province, Guangzhou, China
| | - Tianjing Zhao
- Department of Foot and Ankle Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Orthopedic Hospital of Guangdong Province, Guangzhou, China
| | - Nian Sun
- Department of Foot and Ankle Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Orthopedic Hospital of Guangdong Province, Guangzhou, China
| | - Shanshan Liu
- Zhujiang Hospital of Southern Medical University, 253 Gongye Middle Avenue, Guangzhou, 510280, China
| | - Hao Guo
- Department of Foot and Ankle Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Orthopedic Hospital of Guangdong Province, Guangzhou, China
| | - Canjun Zeng
- Department of Foot and Ankle Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.
- Orthopedic Hospital of Guangdong Province, Guangzhou, China.
| | - Yijun Liu
- Department of Foot and Ankle Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.
- Orthopedic Hospital of Guangdong Province, Guangzhou, China.
| |
Collapse
|
3
|
Drymel B, Tomela K, Galus Ł, Olejnik-Schmidt A, Mackiewicz J, Kaczmarek M, Mackiewicz A, Schmidt M. Circulating Cell-Free Microbial DNA Signatures and Plasma Soluble CD14 Level Are Associated with Clinical Outcomes of Anti-PD-1 Therapy in Advanced Melanoma Patients. Int J Mol Sci 2024; 25:12982. [PMID: 39684692 DOI: 10.3390/ijms252312982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
An accumulating number of studies suggest the potential of circulating cell-free microbial DNA (cfmDNA) as a non-invasive biomarker in various diseases, including cancers. However, its value in the prediction or prognosis of clinical outcomes of immune checkpoint inhibitors (ICIs) is poorly explored. The circulating cfmDNA pool may also reflect the translocation of various microbial ligands to the circulatory system and may be associated with the increased release of soluble CD14 (sCD14) by myeloid cells. In the present study, blood samples were collected from advanced melanoma patients (n = 66) before and during the anti-PD-1 therapy (approximately 3 and 12 months after the start). Then, V3-V4 16S rRNA gene sequencing was performed to analyze the circulating cfmDNA extracted from plasma samples. Moreover, the concentration of plasma sCD14 was measured using ELISA. As a result, the differences in the circulating cfmDNA profiles were found between patients with favorable and unfavorable clinical outcomes of the anti-PD-1 and baseline signatures correlated with progression-free survival and overall survival. Moreover, there was a higher concentration of plasma sCD14 in patients with unfavorable clinical outcomes. High baseline sCD14 level and its increase during the therapy prognosticated worse survival outcomes. Taken together, this preliminary study indicates the potential of circulating cfmDNA signatures and plasma sCD14 levels as biomarkers of clinical outcomes of ICIs.
Collapse
Affiliation(s)
- Bernadeta Drymel
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, 60-627 Poznań, Poland
| | - Katarzyna Tomela
- Department of Cancer Immunology, Poznań University of Medical Sciences, 61-866 Poznań, Poland
| | - Łukasz Galus
- Department of Medical and Experimental Oncology, Institute of Oncology, Poznań University of Medical Sciences, 60-355 Poznań, Poland
| | - Agnieszka Olejnik-Schmidt
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, 60-627 Poznań, Poland
| | - Jacek Mackiewicz
- Department of Medical and Experimental Oncology, Institute of Oncology, Poznań University of Medical Sciences, 60-355 Poznań, Poland
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, 61-866 Poznań, Poland
| | - Mariusz Kaczmarek
- Department of Cancer Immunology, Poznań University of Medical Sciences, 61-866 Poznań, Poland
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, 61-866 Poznań, Poland
| | - Andrzej Mackiewicz
- Department of Cancer Immunology, Poznań University of Medical Sciences, 61-866 Poznań, Poland
- Department of Cancer Diagnostics and Immunology, Greater Poland Cancer Centre, 61-866 Poznań, Poland
| | - Marcin Schmidt
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, 60-627 Poznań, Poland
| |
Collapse
|
4
|
Park S, Jang J, Kim HJ, Jung Y. Unveiling multifaceted roles of myeloid innate immune cells in the pathogenesis of psoriasis. Mol Aspects Med 2024; 99:101306. [PMID: 39191143 DOI: 10.1016/j.mam.2024.101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/11/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024]
Abstract
Psoriasis is a chronic inflammatory skin disease occurring worldwide. Initially viewed as a keratinocyte disorder, psoriasis is now recognized to involve a complex interplay between genetic predisposition, environmental triggers, and a dysregulated immune system, with a significant role of CD4+ T cells producing IL-17. Recent genetic studies have identified susceptibility loci that underscore the importance of innate immune responses, particularly the roles of myeloid cells, such as dendritic cells, macrophages, and neutrophils. These cells initiate and sustain inflammation through cytokine production triggered by external stimuli. They influence keratinocyte behavior and interact with adaptive immune cells. Recent techniques have further revealed the heterogeneity of myeloid cells in psoriatic lesions, highlighting the contributions of less-studied subsets, such as eosinophils and mast cells. This review examines the multifaceted roles of myeloid innate immune cells in psoriasis, emphasizing their functional diversity in promoting psoriatic inflammation. It also describes current treatment targeting myeloid innate immune cells and explores potential new therapeutic strategies based on the functional characteristics of these subsets. Future research should focus on the detailed characterization of myeloid subsets and their interactions to develop targeted treatments that address the complex immune landscape of psoriasis.
Collapse
Affiliation(s)
- Sohyeon Park
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon, 21999, South Korea
| | - Jinsun Jang
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon, 21999, South Korea
| | - Hee Joo Kim
- Department of Dermatology, Gachon Gil Medical Center, College of Medicine, Gachon University, Incheon, 21565, South Korea; Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, South Korea.
| | - YunJae Jung
- Department of Health Science and Technology, Gachon Advanced Institute for Health Science & Technology, Gachon University, Incheon, 21999, South Korea; Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, South Korea; Department of Microbiology, College of Medicine, Gachon University, Incheon, 21999, South Korea.
| |
Collapse
|
5
|
Arshad U, Kennedy KM, Cid de la Paz M, Kendall SJ, Cangiano LR, White HM. Immune cells phenotype and bioenergetic measures in CD4 + T cells differ between high and low feed efficient dairy cows. Sci Rep 2024; 14:15993. [PMID: 38987567 PMCID: PMC11237092 DOI: 10.1038/s41598-024-66345-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Identifying sources of variance that contribute to residual feed intake (RFI) can aid in improving feed efficiency. The objectives of this study were to investigate immune cells phenotype and bioenergetic measures in CD4+ T cells in low feed efficient (LE) and high feed efficient (HE) dairy cows. Sixty-four Holstein cows were enrolled at 93 ± 22 days in milk (DIM) and monitored for 7 weeks to measure RFI. Cows with the highest RFI (LE; n = 14) or lowest RFI (HE; n = 14) were selected to determine immune cells phenotype using flow cytometry. Blood was sampled in the same LE and HE cows at 234 ± 22 DIM to isolate peripheral blood mononuclear cells, followed by magnetic separation of CD4+ T lymphocytes using bovine specific monoclonal antibodies. The metabolic function of isolated CD4+ T lymphocytes was evaluated under resting and activated states. An increased expression of CD62L+ cells within CD8+ T lymphocytes and CD21+ B lymphocytes was observed in HE cows compared to LE cows. CD4+ T lymphocytes of HE cows exhibited an increased mitochondrial and glycolytic activity in resting and activated states compared to LE cows. These data suggest that immune cells in HE cows exhibit an increased metabolic function, which might influence nutrient partitioning and utilization and serve as a source of variation in feed efficiency that warrants future investigation.
Collapse
Affiliation(s)
- Usman Arshad
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 1675 Observatory Drive Rm 952D, Madison, WI, 53706, USA
| | - Katherine M Kennedy
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 1675 Observatory Drive Rm 952D, Madison, WI, 53706, USA
| | - Malena Cid de la Paz
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 1675 Observatory Drive Rm 952D, Madison, WI, 53706, USA
| | - Sophia J Kendall
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 1675 Observatory Drive Rm 952D, Madison, WI, 53706, USA
| | - Lautaro R Cangiano
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 1675 Observatory Drive Rm 952D, Madison, WI, 53706, USA
| | - Heather M White
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 1675 Observatory Drive Rm 952D, Madison, WI, 53706, USA.
| |
Collapse
|
6
|
Sun G, Zhou Y, Han X, Che X, Yu S, Song D, Ma F, Huang L. Potential marker genes for chronic obstructive pulmonary disease revealed based on single-cell sequencing and Mendelian randomization analysis. Aging (Albany NY) 2024; 16:8922-8943. [PMID: 38787375 PMCID: PMC11164476 DOI: 10.18632/aging.205849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/15/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Progress is being made in the prevention and treatment of chronic obstructive pulmonary disease (COPD), but it is still unsatisfactory. With the development of genetic technology, validated genetic information can better explain COPD. OBJECTIVE The study utilized scRNA-seq and Mendelian randomization analysis of eQTLs to identify crucial genes and potential mechanistic pathways underlying COPD pathogenesis. MEHODS Single-cell sequencing data were used to identify marker genes for immune cells in the COPD process. Data on eQTLs for immune cell marker genes were obtained from the eQTLGen consortium. To estimate the causal effect of marker genes on COPD, we selected an independent cohort (ukb-b-16751) derived from the UK Biobank database for two-sample Mendelian randomization analysis. Subsequently, we performed immune infiltration analysis, gene set enrichment analysis (GSEA), and co-expression network analysis on the key genes. RESULTS The 154 immune cell-associated marker genes identified were mainly involved in pathways such as vacuolar cleavage, positive regulation of immune response and regulation of cell activation. Mendelian randomization analysis screened four pairs of marker genes (GZMH, COTL1, CSTA and CD14) were causally associated with COPD. These four key genes were significantly associated with immune cells. In addition, we have identified potential transcription factors associated with these key genes using the Cistrome database, thus contributing to a deeper understanding of the regulatory network of these gene expressions. CONCLUSIONS This eQTLs Mendelian randomization study identified four key genes (GZMH, COTL1, CSTA, and CD14) causally associated with COPD, providing new insights for prevention and treatment of COPD.
Collapse
Affiliation(s)
- Gang Sun
- General Hospital of Northern Theater Command, Shenyang 110000, Liaoning, China
| | - Yun Zhou
- East China Normal University Wuhu Affiliated Hospital (The Second People’s Hospital of Wuhu City), Wuhu 241000, Anhui, China
| | - Xiaoxiao Han
- The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei 230022, Anhui China
| | - Xiangqian Che
- General Hospital of Northern Theater Command, Shenyang 110000, Liaoning, China
| | - Shuo Yu
- The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei 230022, Anhui China
| | - Di Song
- General Hospital of Northern Theater Command, Shenyang 110000, Liaoning, China
| | - Feifei Ma
- General Hospital of Northern Theater Command, Shenyang 110000, Liaoning, China
| | - Lewei Huang
- General Hospital of Northern Theater Command, Shenyang 110000, Liaoning, China
| |
Collapse
|
7
|
Chang J, Jiang T, Shan X, Zhang M, Li Y, Qi X, Bian Y, Zhao L. Pro-inflammatory cytokines in stress-induced depression: Novel insights into mechanisms and promising therapeutic strategies. Prog Neuropsychopharmacol Biol Psychiatry 2024; 131:110931. [PMID: 38176531 DOI: 10.1016/j.pnpbp.2023.110931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/12/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Stress-mediated depression is one of the common psychiatric disorders with a high prevalence and suicide rate, there is a lack of effective treatment. Accordingly, effective treatments with few adverse effects are urgently needed. Pro-inflammatory cytokines (PICs) may play a key role in stress-mediated depression. Thereupon, both preclinical and clinical studies have found higher levels of IL-1β, TNF-α and IL-6 in peripheral blood and brain tissue of patients with depression. Recent studies have found PICs cause depression by affecting neuroinflammation, monoamine neurotransmitters, hypothalamic pituitary adrenal axis and neuroplasticity. Moreover, they play an important role in the symptom, development and progression of depression, maybe a potential diagnostic and therapeutic marker of depression. In addition, well-established antidepressant therapies have some relief on high levels of PICs. Importantly, anti-inflammatory drugs relieve depressive symptoms by reducing levels of PICs. Collectively, reducing PICs may represent a promising therapeutic strategy for depression.
Collapse
Affiliation(s)
- Jun Chang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Tingcan Jiang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoqian Shan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Mingxing Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yujiao Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Xin Qi
- Department of Cardiology, Tianjin Union Medical Center, 300121, China
| | - Yuhong Bian
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Lan Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
8
|
Yang W, Xi C, Yao H, Yuan Q, Zhang J, Chen Q, Wu G, Hu J. Oral administration of lysozyme protects against injury of ileum via modulating gut microbiota dysbiosis after severe traumatic brain injury. Front Cell Infect Microbiol 2024; 14:1304218. [PMID: 38352055 PMCID: PMC10861676 DOI: 10.3389/fcimb.2024.1304218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
Objective The current study sought to clarify the role of lysozyme-regulated gut microbiota and explored the potential therapeutic effects of lysozyme on ileum injury induced by severe traumatic brain injury (sTBI) and bacterial pneumonia in vivo and in vitro experiments. Methods Male 6-8-week-old specific pathogen-free (SPF) C57BL/6 mice were randomly divided into Normal group (N), Sham group (S), sTBI group (T), sTBI + or Lysozyme-treated group (L), Normal + Lysozyme group (NL) and Sham group + Lysozyme group (SL). At the day 7 after establishment of the model, mice were anesthetized and the samples were collected. The microbiota in lungs and fresh contents of the ileocecum were analyzed. Lungs and distal ileum were used to detect the degree of injury. The number of Paneth cells and the expression level of lysozyme were assessed. The bacterial translocation was determined. Intestinal organoids culture and co-coculture system was used to test whether lysozyme remodels the intestinal barrier through the gut microbiota. Results After oral administration of lysozyme, the intestinal microbiota is rebalanced, the composition of lung microbiota is restored, and translocation of intestinal bacteria is mitigated. Lysozyme administration reinstates lysozyme expression in Paneth cells, thereby reducing intestinal permeability, pathological score, apoptosis rate, and inflammation levels. The gut microbiota, including Oscillospira, Ruminococcus, Alistipes, Butyricicoccus, and Lactobacillus, play a crucial role in regulating and improving intestinal barrier damage and modulating Paneth cells in lysozyme-treated mice. A co-culture system comprising intestinal organoids and brain-derived proteins (BP), which demonstrated that the BP effectively downregulated the expression of lysozyme in intestinal organoids. However, supplementation of lysozyme to this co-culture system failed to restore its expression in intestinal organoids. Conclusion The present study unveiled a virtuous cycle whereby oral administration of lysozyme restores Paneth cell's function, mitigates intestinal injury and bacterial translocation through the remodeling of gut microbiota.
Collapse
Affiliation(s)
- Weijian Yang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Caihua Xi
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Department of Neurosurgery and Neurocritical Care, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Haijun Yao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Department of Neurosurgery and Neurocritical Care, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiang Yuan
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Jun Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Qifang Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Department of Neurosurgery and Neurocritical Care, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Gang Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| | - Jin Hu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
- Neurosurgical Institute of Fudan University, Shanghai, China
- Shanghai Clinical Medical Center of Neurosurgery, Shanghai, China
| |
Collapse
|