1
|
Zhang N, Liu J, Zhang Y, Chen L, Zhang S, Liu X, Tang X, Gu X, Chen S, Suo X. Transcriptomic analysis uncovers a biphasic response to precocious Eimeria acervulina infection in chicken duodenal tissue. Vet Parasitol 2024; 331:110245. [PMID: 39018905 DOI: 10.1016/j.vetpar.2024.110245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/19/2024]
Abstract
Live anticoccidial vaccines, either formulated with unattenuated or attenuated Eimeria parasites, are powerful stimulators of chicken intestinal immunity. Little is known about the dynamics of gene expression and the corresponding biological processes of chicken responses against infection with precocious line (PL) of Eimeria parasites. In the present study, we performed a time-series transcriptomic analysis of chicken duodenum across 15 time points from 6 to 156 hours post-infection (p.i.) with PL of E. acervulina. A high-quality profile showing two distinct changes in chicken duodenum mRNA expression was generated during the infection of Eimeria. Early response revealed that activation of the chicken immune response was detectable from 6 h.p.i., prominent genes triggered during the initiation of asexual and sexual parasite growth encompass immune regulatory effects, such as interferon gamma (IFN-γ), interferon regulatory factor 1 (IRF1), and interleukin-10 (IL10). The late response was identified significantly associating with maintaining cellular structure and activating lipid metabolic pathways. These analyses provide a detailed depiction of the biological response landscape in chickens infected by the PL of E. acervulina, contributing significant insights for the investigation of the host-parasite interactions and the management of parasitic diseases.
Collapse
Affiliation(s)
- Ning Zhang
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jie Liu
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yuanyuan Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture & Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing 100193 China
| | - Linlin Chen
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Sixin Zhang
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xianyong Liu
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xinming Tang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaolong Gu
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; College of Animal Science and Technology, Hebei North University, Zhangjiakou 075000, China
| | - Shiyi Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xun Suo
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
2
|
Sandholt AKS, Wattrang E, Lilja T, Ahola H, Lundén A, Troell K, Svärd SG, Söderlund R. Dual RNA-seq transcriptome analysis of caecal tissue during primary Eimeria tenella infection in chickens. BMC Genomics 2021; 22:660. [PMID: 34521339 PMCID: PMC8438895 DOI: 10.1186/s12864-021-07959-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/29/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Coccidiosis is an infectious disease with large negative impact on the poultry industry worldwide. It is an enteric infection caused by unicellular Apicomplexan parasites of the genus Eimeria. The present study aimed to gain more knowledge about interactions between parasites and the host immune system during the early asexual replication phase of E. tenella in chicken caeca. For this purpose, chickens were experimentally infected with E. tenella oocysts, sacrificed on days 1-4 and 10 after infection and mRNA from caecal tissues was extracted and sequenced. RESULTS Dual RNA-seq analysis revealed time-dependent changes in both host and parasite gene expression during the course of the infection. Chicken immune activation was detected from day 3 and onwards with the highest number of differentially expressed immune genes recorded on day 10. Among early (days 3-4) responses up-regulation of genes for matrix metalloproteinases, several chemokines, interferon (IFN)-γ along with IFN-stimulated genes GBP, IRF1 and RSAD2 were noted. Increased expression of genes with immune suppressive/regulatory effects, e.g. IL10, SOCS1, SOCS3, was also observed among early responses. For E. tenella a general up-regulation of genes involved in protein expression and energy metabolism as well as a general down-regulation genes for DNA and RNA processing were observed during the infection. Specific E. tenella genes with altered expression during the experiment include those for proteins in rhoptry and microneme organelles. CONCLUSIONS The present study provides novel information on both the transcriptional activity of E. tenella during schizogony in ceacal tissue and of the local host responses to parasite invasion during this phase of infection. Results indicate a role for IFN-γ and IFN-stimulated genes in the innate defence against Eimeria replication.
Collapse
Affiliation(s)
- Arnar K S Sandholt
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Eva Wattrang
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden.
| | - Tobias Lilja
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Harri Ahola
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Anna Lundén
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Karin Troell
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| | - Staffan G Svärd
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Robert Söderlund
- Department of Microbiology, National Veterinary Institute, Uppsala, Sweden
| |
Collapse
|
3
|
Castro FLS, Teng PY, Yadav S, Gould RL, Craig S, Pazdro R, Kim WK. The effects of L-Arginine supplementation on growth performance and intestinal health of broiler chickens challenged with Eimeria spp. Poult Sci 2020; 99:5844-5857. [PMID: 33142502 PMCID: PMC7647855 DOI: 10.1016/j.psj.2020.08.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/22/2020] [Accepted: 08/07/2020] [Indexed: 12/28/2022] Open
Abstract
This study evaluated the effects of varying levels of L-arginine (Arg) on performance and intestinal health of broilers challenged with Eimeria. Cobb 500 male chicks (n = 720) were randomly distributed in a 5 × 2 factorial arrangement (6 replicates/12 birds). The main factors were Arg levels (1.04, 1.14, 1.24, 1.34, 1.44%) and challenge or non-challenge with Eimeria. At day 12, in the challenge group, each bird received orally 12,500 Eimeria maxima, 12,500 Eimeria tenella, and 62,500 Eimeria acervulina sporulated oocysts. At 5 d postinfection (dpi), intestinal permeability was measured. At 6 and 14 dpi, performance, intestinal histomorphology, nutrient digestibility, tight junction protein (TJP) gene expression, and antioxidant markers were evaluated. Few interactions were found, and when significant, the supplementation of Arg did not counteract the negative effects of Eimeria challenge. Challenge, regardless of Arg level, increased intestinal permeability, although the expression of Claudin-1, a TJP, was upregulated. At 6 dpi, the antioxidant system was impaired by the challenge. Moreover, growth performance, intestinal histomorphology, and nutrient digestibility were negatively affected by challenge at 6 and 14 dpi. Regardless of challenge, from 0 to 14 dpi, birds fed 1.44% showed higher weight gain than 1.04% of Arg, and birds fed 1.34% showed lower feed conversion than 1.04% of Arg. At 5 dpi, intestinal permeability was improved in birds fed 1.34% than 1.04% of Arg. Moreover, 1.34% of Arg upregulated the expression of the TJP Zonula occludens-1 (ZO-1) as compared with 1.24 and 1.44% of Arg at 6 dpi. At 14 dpi, 1.44% of Arg upregulated the expression of ZO-1 and ZO-2 compared with 1.24 and 1.34% of Arg. The nutrient digestibility was quadratically influenced by Arg, whereas the antioxidant markers were unaffected. Thus, the challenge with Eimeria had a negative impact on growth and intestinal health. The dietary supplementation of levels ranging from 1.24 to 1.44% of Arg showed promising results, improving overall growth, intestinal integrity, and morphology in broilers subjected or not to Eimeria challenge.
Collapse
Affiliation(s)
- Fernanda L S Castro
- Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA
| | - Po-Yun Teng
- Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA
| | - Sudhir Yadav
- Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA
| | - Rebecca L Gould
- Department of Foods and Nutrition, University of Georgia (UGA), Athens, GA, USA
| | - Steven Craig
- Department of Foods and Nutrition, University of Georgia (UGA), Athens, GA, USA
| | - Robert Pazdro
- Department of Foods and Nutrition, University of Georgia (UGA), Athens, GA, USA
| | - Woo K Kim
- Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
4
|
Fan XC, Liu TL, Wang Y, Wu XM, Wang YX, Lai P, Song JK, Zhao GH. Genome-wide analysis of differentially expressed profiles of mRNAs, lncRNAs and circRNAs in chickens during Eimeria necatrix infection. Parasit Vectors 2020; 13:167. [PMID: 32245514 PMCID: PMC7118956 DOI: 10.1186/s13071-020-04047-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/27/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Eimeria necatrix, the most highly pathogenic coccidian in chicken small intestines, can cause high morbidity and mortality in susceptible birds and devastating economic losses in poultry production, but the underlying molecular mechanisms in interaction between chicken and E. necatrix are not entirely revealed. Accumulating evidence shows that the long-non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) are key regulators in various infectious diseases. However, the expression profiles and roles of these two non-coding RNAs (ncRNAs) during E. necatrix infection are still unclear. METHODS The expression profiles of mRNAs, lncRNAs and circRNAs in mid-segments of chicken small intestines at 108 h post-infection (pi) with E. necatrix were analyzed by using the RNA-seq technique. RESULTS After strict filtering of raw data, we putatively identified 49,183 mRNAs, 818 lncRNAs and 4153 circRNAs. The obtained lncRNAs were classified into four types, including 228 (27.87%) intergenic, 67 (8.19%) intronic, 166 (20.29%) anti-sense and 357 (43.64%) sense-overlapping lncRNAs; of these, 571 were found to be novel. Five types were also predicted for putative circRNAs, including 180 exonic, 54 intronic, 113 antisense, 109 intergenic and 3697 sense-overlapping circRNAs. Eimeria necatrix infection significantly altered the expression of 1543 mRNAs (707 upregulated and 836 downregulated), 95 lncRNAs (49 upregulated and 46 downregulated) and 13 circRNAs (9 upregulated and 4 downregulated). Target predictions revealed that 38 aberrantly expressed lncRNAs would cis-regulate 73 mRNAs, and 1453 mRNAs could be trans-regulated by 87 differentially regulated lncRNAs. Additionally, 109 potential sponging miRNAs were also identified for 9 circRNAs. GO and KEGG enrichment analysis of target mRNAs for lncRNAs, and sponging miRNA targets and source genes for circRNAs identified associations of both lncRNAs and circRNAs with host immune defense and pathogenesis during E. necatrix infection. CONCLUSIONS To the best of our knowledge, the present study provides the first genome-wide analysis of mRNAs, lncRNAs and circRNAs in chicken small intestines infected with E. necatrix. The obtained data will offer novel clues for exploring the interaction mechanisms between chickens and Eimeria spp.
Collapse
Affiliation(s)
- Xian-Cheng Fan
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.,Center of Animal Disease Prevention and Control of Huyi District, Xi'an, 710300, China
| | - Ting-Li Liu
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.,State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Yi Wang
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Xue-Mei Wu
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Yu-Xin Wang
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Peng Lai
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Jun-Ke Song
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Guang-Hui Zhao
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
5
|
Li J, Li W, Li J, Wang Z, Xiao D, Wang Y, Ni X, Zeng D, Zhang D, Jing B, Liu L, Luo Q, Pan K. Screening of differentially expressed immune-related genes from spleen of broilers fed with probiotic Bacillus cereus PAS38 based on suppression subtractive hybridization. PLoS One 2019; 14:e0226829. [PMID: 31869398 PMCID: PMC6927618 DOI: 10.1371/journal.pone.0226829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/05/2019] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to construct the spleen differential genes library of broilers fed with probiotic Bacillus cereus PAS38 by suppression subtractive hybridization (SSH) and screen the immune-related genes. Sixty seven-day-old broilers were randomly divided into two groups. The control group was fed with basal diet, and the treated group was fed with basal diet containing Bacillus cereus PAS38 1×106 CFU/g. Spleen tissues were taken and extracted its total RNA at 42 days old, then SSH was used to construct differential gene library and screen immune-related genes. A total of 119 differentially expressed sequence tags (ESTs) were isolated by SSH and 9 immune-related genes were screened out by Gene ontology analysis. Nine differentially expressed genes were identified by qRT-PCR. JCHAIN, FTH1, P2RX7, TLR7, IGF1R, SMAD7, and SLC7A6 were found to be significantly up-regulated in the treated group. Which was consistent with the results of SSH. These findings imply that probiotic Bacillus cereus PAS38-induced differentially expressed genes in spleen might play an important role in the improvement of immunity for broilers, which provided useful information for further understanding of the molecular mechanism of probiotics responsible to affect the poultry immunity.
Collapse
Affiliation(s)
- Jiajun Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Wanqiang Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Jianzhen Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
- Branch of Animal Husbandry and Veterinary Medicine, Chengdu Vocational College of Agricultural Science and Technology, Chengdu, Sichuan Province, China
| | - Zhenhua Wang
- Branch of Animal Husbandry and Veterinary Medicine, Chengdu Vocational College of Agricultural Science and Technology, Chengdu, Sichuan Province, China
| | - Dan Xiao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Yufei Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Xueqin Ni
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Dong Zeng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Dongmei Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Bo Jing
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Lei Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Qihui Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Kangcheng Pan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, China
- * E-mail:
| |
Collapse
|
6
|
Wang X, Zou W, Yu H, Lin Y, Dai G, Zhang T, Zhang G, Xie K, Wang J, Shi H. RNA Sequencing Analysis of Chicken Cecum Tissues Following Eimeria tenella Infection in Vivo. Genes (Basel) 2019; 10:E420. [PMID: 31159150 PMCID: PMC6627390 DOI: 10.3390/genes10060420] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/15/2022] Open
Abstract
Eimeria tenella (E. tenella) is one of the most frequent and pathogenic species of protozoan parasites of the genus Eimeria that exclusively occupies the cecum, exerting a high economic impact on the poultry industry. To investigate differentially expressed genes (DEGs) in the cecal tissue of Jinghai yellow chickens infected with E. tenella, the molecular response process, and the immune response mechanism during coccidial infection, RNA-seq was used to analyze the cecal tissues of an E. tenella infection group (JS) and an uninfected group (JC) on the seventh day post-infection. The DEGs were screened by functional and pathway enrichment analyses. The results indicated that there were 5477 DEGs (p-value < 0.05) between the JS and the JC groups, of which 2942 were upregulated, and 2535 were downregulated. GO analysis indicated that the top 30 significantly enriched GO terms mainly involved signal transduction, angiogenesis, inflammatory response, and blood vessel development. KEGG analysis revealed that the top significantly enriched signaling pathways included focal adhesion, extracellular matrix-receptor interaction, and peroxisome proliferator-activated receptor. The key DEGs in these pathways included ANGPTL4, ACSL5, VEGFC, MAPK10, and CD44. These genes play an important role in the infection of E. tenella. This study further enhances our understanding of the molecular mechanism of E. tenella infection in chickens.
Collapse
Affiliation(s)
- Xiaohui Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| | - Wenbin Zou
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| | - Hailiang Yu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| | - Yuxin Lin
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China.
- Animal Husbandry and Veterinary Station of Kunshan City, Kunshan 215300, Jiangsu, China.
| | - Guojun Dai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| | - Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| | - Kaizhou Xie
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| | - Jinyu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, Jiangsu, China.
| | - Huiqiang Shi
- Jiangsu Jinghai Poultry Group Co., Ltd., Haimen 226100, Jiangsu, China.
| |
Collapse
|
7
|
Use of discriminant analysis for the evaluation of coccidiosis resistance parameters in chickens raised in hot humid tropical environment. Trop Anim Health Prod 2018; 50:1161-1166. [DOI: 10.1007/s11250-018-1547-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 02/12/2018] [Indexed: 11/25/2022]
|
8
|
Blake DP. Eimeria genomics: Where are we now and where are we going? Vet Parasitol 2015; 212:68-74. [DOI: 10.1016/j.vetpar.2015.05.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/01/2015] [Accepted: 05/09/2015] [Indexed: 11/25/2022]
|
9
|
Min Y, Li L, Liu S, Zhang J, Gao Y, Liu F. Effects of dietary distillers dried grains with solubles (DDGS) on growth performance, oxidative stress, and immune function in broiler chickens. J APPL POULTRY RES 2015. [DOI: 10.3382/japr/pfv002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
10
|
Chapman HD, Barta JR, Blake D, Gruber A, Jenkins M, Smith NC, Suo X, Tomley FM. A selective review of advances in coccidiosis research. ADVANCES IN PARASITOLOGY 2014; 83:93-171. [PMID: 23876872 DOI: 10.1016/b978-0-12-407705-8.00002-1] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Coccidiosis is a widespread and economically significant disease of livestock caused by protozoan parasites of the genus Eimeria. This disease is worldwide in occurrence and costs the animal agricultural industry many millions of dollars to control. In recent years, the modern tools of molecular biology, biochemistry, cell biology and immunology have been used to expand greatly our knowledge of these parasites and the disease they cause. Such studies are essential if we are to develop new means for the control of coccidiosis. In this chapter, selective aspects of the biology of these organisms, with emphasis on recent research in poultry, are reviewed. Topics considered include taxonomy, systematics, genetics, genomics, transcriptomics, proteomics, transfection, oocyst biogenesis, host cell invasion, immunobiology, diagnostics and control.
Collapse
Affiliation(s)
- H David Chapman
- Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas, USA.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Kim DK, Lillehoj HS, Lee KW, Jang SI, Neumann AP, Siragusa GR, Lillehoj EP, Hong YH. Genome-wide differential gene expression profiles in broiler chickens with gangrenous dermatitis. Avian Dis 2013; 56:670-9. [PMID: 23397837 DOI: 10.1637/10069-013112-reg.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Gangrenous dermatitis (GD) is a disease of poultry characterized by necrosis of the skin and severe cellulitis of the subcutaneous tissues caused by infection with Clostridium septicum (CS) and/or Clostridium perfringens (CP) type A. While GD causes significant morbidity, mortality, and economic loss to the poultry industry, the fundamental mechanisms underlying this host-pathogen interaction are relatively unknown. This study used comparative global gene expression microarray analysis of GD-affected and clinically healthy chickens from a recent GD outbreak to glean insights into the molecular and cellular changes associated with this disease process. Histopathologic and immunohistochemical analyses confirmed extensive muscle damage and prominent leukocyte infiltration in the skin of GD-affected birds but not in healthy controls. The levels of mRNAs in the skin and underlying muscle corresponding to 952 microarray elements were altered in GD-afflicted birds compared with healthy controls, with 468 being increased and 484 decreased. From these, a subset of 386 genes was identified and used for biologic function and pathway analyses. The biologic functions that were most significantly associated with the differentially expressed genes were "inflammatory response" and "cellular growth and proliferation" classified under the categories of "disease and disorders" and "molecular and cellular functions," respectively. The biologic pathway that was most significantly associated with the differentially expressed genes was the nuclear factor-erythroid 2-related factor 2 (NRF2)-mediated oxidative stress pathway. Finally, in vitro infection of chicken macrophages with CS or CP modified the levels of mRNAs encoding interferon (IFN)-alpha, IFN-gamma, interleukin (IL)-1beta, IL-6, IL-12p40, tumor necrosis factor superfamily 15 (downregulated), IL-8, and IL-10 (upregulated), thus confirming the suppressive effect of GD on the chicken immune system.
Collapse
Affiliation(s)
- Duk Kyung Kim
- Animal Parasitic Diseases Laboratory, Animal and Natural Resources Institute, United States Department of Agriculture, Agricultural Research Service, Building 1043, Beltsville Agricultural Research Center-East, Beltsville, MD 20705, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Lillehoj HS, Lee SH, Jang SI, Kim DK, Lee KW. Recent Progress in Understanding Host Mucosal Response to Avian Coccidiosis and Development of Alternative Strategies to Mitigate the Use of Antibiotics in Poultry Production. ACTA ACUST UNITED AC 2011. [DOI: 10.5536/kjps.2011.38.4.275] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Comparative microarray analysis of intestinal lymphocytes following Eimeria acervulina, E. maxima, or E. tenella infection in the chicken. PLoS One 2011; 6:e27712. [PMID: 22140460 PMCID: PMC3225369 DOI: 10.1371/journal.pone.0027712] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 10/23/2011] [Indexed: 11/24/2022] Open
Abstract
Relative expression levels of immune- and non-immune-related mRNAs in chicken intestinal intraepithelial lymphocytes experimentally infected with Eimeria acervulina, E. maxima, or E. tenella were measured using a 10K cDNA microarray. Based on a cutoff of >2.0-fold differential expression compared with uninfected controls, relatively equal numbers of transcripts were altered by the three Eimeria infections at 1, 2, and 3 days post-primary infection. By contrast, E. tenella elicited the greatest number of altered transcripts at 4, 5, and 6 days post-primary infection, and at all time points following secondary infection. When analyzed on the basis of up- or down-regulated transcript levels over the entire 6 day infection periods, approximately equal numbers of up-regulated transcripts were detected following E. tenella primary (1,469) and secondary (1,459) infections, with a greater number of down-regulated mRNAs following secondary (1,063) vs. primary (890) infection. On the contrary, relatively few mRNA were modulated following primary infection with E. acervulina (35 up, 160 down) or E. maxima (65 up, 148 down) compared with secondary infection (E. acervulina, 1,142 up, 1,289 down; E. maxima, 368 up, 1,349 down). With all three coccidia, biological pathway analysis identified the altered transcripts as belonging to the categories of “Disease and Disorder” and “Physiological System Development and Function”. Sixteen intracellular signaling pathways were identified from the differentially expressed transcripts following Eimeria infection, with the greatest significance observed following E. acervulina infection. Taken together, this new information will expand our understanding of host-pathogen interactions in avian coccidiosis and contribute to the development of novel disease control strategies.
Collapse
|
14
|
Kim CH, Lillehoj HS, Hong YH, Keeler CL, Lillehoj EP. Analysis of global transcriptional responses of chicken following primary and secondary Eimeria acervulina infections. BMC Proc 2011; 5 Suppl 4:S12. [PMID: 21645291 PMCID: PMC3108206 DOI: 10.1186/1753-6561-5-s4-s12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background Characterization of host transcriptional responses during coccidia infections can provide new clues for the development of alternative disease control strategies against these complex protozoan pathogens. Methods In the current study, we compared chicken duodenal transcriptome profiles following primary and secondary infections with Eimeria acervulina using a 9.6K avian intestinal intraepithelial lymphocyte cDNA microarray (AVIELA). Results Gene Ontology analysis showed that primary infection significantly modulated the levels of mRNAs for genes involved in the metabolism of lipids and carbohydrates as well as those for innate immune-related genes. By contrast, secondary infection increased the levels of transcripts encoded by genes related to humoral immunity and reduced the levels of transcripts for the innate immune-related genes. The observed modulation in transcript levels for gene related to energy metabolism and immunity occurred concurrent with the clinical signs of coccidiosis. Conclusions Our results suggest that altered expression of a specific set of host genes induced by Eimeria infection may be responsible, in part, for the observed reduction in body weight gain and inflammatory gut damage that characterizes avian coccidiosis.
Collapse
Affiliation(s)
- Chul-Hong Kim
- Animal Parasitic Diseases Laboratory, Animal and Natural Resources Institute, Agricultural Research Service, USDA, Beltsville, MD 20705, USA.
| | | | | | | | | |
Collapse
|