1
|
Knutsen IS, Erkinharju T, Bøgwald J, Dalmo RA, Seternes T. Inflammatory responses in Atlantic lumpfish (Cyclopterus lumpus L.) after intraperitoneal injection of a vaccine against Aeromonas salmonicida and Vibrio salmonicida at different water temperatures. JOURNAL OF FISH DISEASES 2024; 47:e14001. [PMID: 39011626 DOI: 10.1111/jfd.14001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/17/2024]
Abstract
Studying inflammatory responses induced by vaccination can contribute to a more detailed understanding of underlying immune mechanisms in lumpfish (Cyclopterus lumpus). Tissue samples from lumpfish intraperitoneally immunized with a divalent oil-adjuvanted vaccine (Aeromonas salmonicida and Vibrio salmonicida) at water temperatures of 5, 10, and 15°C were collected at 630 day degrees and 18 weeks post injection. The relative amount of secretory and membrane-bound immunoglobulin M (IgM) gene transcripts in the head kidney was determined by qPCR. Vaccine-induced inflammatory lesions were assessed on histological sections of abdominal pancreatic/intestinal tissue from vaccinated fish in all three temperature groups. Inflammatory cells forming dense aggregations in lesions showed proliferative activity, many of which were identified as eosinophilic-granulocyte-like cells. IgM+ cells were scattered in inflammatory tissue dominated by connective tissue, showing no difference in numbers between lesions from fish vaccinated at 5, 10, and 15°C. Relative gene expression analysis of secretory and membrane-bound IgM revealed low overall expression in the head kidney of vaccinated fish at both 630 day-degrees and 18 weeks post injection. The results of this study indicate that the vaccine stimulated prolonged local inflammatory responses at the injection site, which were not influenced by temperature.
Collapse
Affiliation(s)
- Ingrid Svihus Knutsen
- Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fishery Science, UiT the Arctic University of Norway, Tromsø, Norway
| | - Toni Erkinharju
- Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fishery Science, UiT the Arctic University of Norway, Tromsø, Norway
| | - Jarl Bøgwald
- Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fishery Science, UiT the Arctic University of Norway, Tromsø, Norway
| | - Roy A Dalmo
- Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fishery Science, UiT the Arctic University of Norway, Tromsø, Norway
| | - Tore Seternes
- Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fishery Science, UiT the Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
2
|
Ahmadivand S, Krpetic Z, Martínez MM, Garcia-Ordoñez M, Roher N, Palić D. Self-assembling ferritin nanoplatform for the development of infectious hematopoietic necrosis virus vaccine. Front Immunol 2024; 15:1346512. [PMID: 38352881 PMCID: PMC10863052 DOI: 10.3389/fimmu.2024.1346512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024] Open
Abstract
Self-assembling protein nanoparticles are used as a novel vaccine design platform to improve the stability and immunogenicity of safe subunit vaccines, while providing broader protection against viral infections. Infectious Hematopoietic Necrosis virus (IHNV) is the causative agent of the WOAH-listed IHN diseases for which there are currently no therapeutic treatments and no globally available commercial vaccine. In this study, by genetically fusing the virus glycoprotein to the H. pylori ferritin as a scaffold, we constructed a self-assembling IHNV nanovaccine (FerritVac). Despite the introduction of an exogenous fragment, the FerritVac NPs show excellent stability same as Ferritin NPs under different storage, pH, and temperature conditions, mimicking the harsh gastrointestinal condition of the virus main host (trout). MTT viability assays showed no cytotoxicity of FerritVac or Ferritin NPs in zebrafish cell culture (ZFL cells) incubated with different doses of up to 100 µg/mL for 14 hours. FerritVac NPs also upregulated expression of innate antiviral immunity, IHNV, and other fish rhabdovirus infection gene markers (mx, vig1, ifit5, and isg-15) in the macrophage cells of the host. In this study, we demonstrate the development of a soluble recombinant glycoprotein of IHNV in the E. coli system using the ferritin self-assembling nanoplatform, as a biocompatible, stable, and effective foundation to rescue and produce soluble protein and enable oral administration and antiviral induction for development of a complete IHNV vaccine. This self-assembling protein nanocages as novel vaccine approach offers significant commercial potential for non-mammalian and enveloped viruses.
Collapse
Affiliation(s)
- Sohrab Ahmadivand
- Faculty of Veterinary Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| | - Zeljka Krpetic
- Biomedical Research Centre, School of Science Engineering and Environment, University of Salford, Salford, United Kingdom
| | - Merce Márquez Martínez
- Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
| | - Marlid Garcia-Ordoñez
- Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Nerea Roher
- Institute of Biotechnology and Biomedicine (IBB), Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBER de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
| | - Dušan Palić
- Faculty of Veterinary Medicine, Ludwig-Maximilians University Munich, Munich, Germany
| |
Collapse
|
3
|
Fu X, Luo M, Lin Q, Liang H, Niu Y, Luo X, Ma B, Li N. An Avirulent Largemouth Bass Birnavirus Vaccine Candidate Protects Largemouth Bass against Birnavirus Infection. Vaccines (Basel) 2023; 11:1740. [PMID: 38140144 PMCID: PMC10747726 DOI: 10.3390/vaccines11121740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/26/2023] [Accepted: 11/19/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Largemouth bass birnavirus (LBBV) disease outbreaks in largemouth bass fingerlings lead to high mortality in China. Therefore, the development of immersion immunization strategies is paramount. METHODS An avirulent LBBV strain was screened using a fish challenge assay. The proliferation dynamics of the avirulent strain were determined in vitro and in vivo. The efficacy of the avirulent vaccine was evaluated using immune gene expression, viral load, and a virus challenge, and the safety was also assessed using a reversion to virulence test. RESULTS An avirulent virus strain, designated as largemouth bass birnavirus Guangdong Sanshui (LBBV-GDSS-20180701), was selected from five fish birnavirus isolates. The proliferation peak titer was 109.01 TCID50/mL at 24 hpi in CPB cells and the peak viral load was 2.5 × 104 copies/mg at 4 dpi in the head kidneys and spleens of largemouth bass. The largemouth bass that were immersed within an avirulent vaccine or injected with an inactivated vaccine were protected from the virulent LBBV challenge with a relative percent survival (RPS) of 75% or 42.9%, respectively. The expression levels of IL-12, MHCI, MHCII, CD8, CD4, and IgM in the avirulent group were significantly upregulated at a partial time point compared to the inactivated vaccine group. Moreover, the viral load in the avirulent vaccine group was significantly lower than those in the inactivated vaccine group and control group using real-time PCR. CONCLUSIONS LBBV-GDSS-20180701 is a potential live vaccine candidate against LBBV disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ningqiu Li
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology and Green Breeding, Guangzhou 510380, China; (X.F.); (M.L.); (Q.L.); (H.L.); (Y.N.); (X.L.); (B.M.)
| |
Collapse
|
4
|
Jeong KH, Kim HJ, Kim HJ. Current status and future directions of fish vaccines employing virus-like particles. FISH & SHELLFISH IMMUNOLOGY 2020; 100:49-57. [PMID: 32130976 DOI: 10.1016/j.fsi.2020.02.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 05/15/2023]
Abstract
In most breeding schemes, fish are cultured in enclosed spaces, which greatly increases the risk of outbreaks where the onset of infectious diseases can cause massive mortality and enormous economic losses. Vaccination is the most effective and long-term measure for improving the basic make-up of a fish farm. As the relationship between antibody and antigen is similar to that between screw and nut, similarity in the shape or nature of the vaccine antigen to the original pathogen is important for achieving a satisfactory/good/excellent antibody response with a vaccine. Virus-like particles (VLPs) best fulfil this requirement as their tertiary structure mimics that of the native virus. For this reason, VLPs have been attracting attention as next-generation vaccines for humans and animals, and the effects of various types of VLP vaccines on humans and livestock have been examined. Recent studies of VLP-based fish vaccines indicate that these vaccines are promising, and raise hopes of extending their use in the near future. In this review, the structural properties and immunogenicity of VLP-based vaccines against fish viruses such as infectious pancreatic necrosis virus (IPNV), salmonid alphavirus (SAV), nervous necrosis virus (NNV) and iridovirus are introduced/summarized. The NNV VLP vaccine is the most-studied VLP-based vaccine against fish viruses. Therefore, the current status of NNV VLP research is highlighted in this review, which deals with the advantages of using VLPs as vaccines, and the expression systems for producing them. Moreover, the need for lyophilized VLPs and oral VLP delivery is discussed. Finally, future directions for the development of VLP vaccines in the fish vaccine field are considered.
Collapse
Affiliation(s)
- Ki-Ho Jeong
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, South Korea
| | - Hyoung Jin Kim
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, South Korea
| | - Hong-Jin Kim
- Laboratory of Virology, College of Pharmacy, Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, South Korea.
| |
Collapse
|
5
|
A chimeric recombinant infectious hematopoietic necrosis virus induces protective immune responses against infectious hematopoietic necrosis and infectious pancreatic necrosis in rainbow trout. Mol Immunol 2019; 116:180-190. [PMID: 31704501 DOI: 10.1016/j.molimm.2019.10.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/23/2019] [Accepted: 10/23/2019] [Indexed: 12/18/2022]
Abstract
Infectious pancreatic necrosis virus (IPNV) and infectious hematopoietic necrosis virus (IHNV) are two common viral pathogens that cause severe economic losses in all salmonid species in culture, but especially in rainbow trout. Although vaccines against both diseases have been commercialized in some countries, no such vaccines are available for them in China. In this study, a recombinant virus was constructed using the IHNV U genogroup Blk94 virus as a backbone vector to express the antigenic gene, VP2, from IPNV via the reverse genetics system. The resulting recombinant virus (rBlk94-VP2) showed stable biological characteristics as confirmed by virus growth kinetic analyses, pathogenicity analyses, indirect immunofluorescence assays and western blotting. Rainbow trout were immunized with rBlk94-VP2 and then challenged with the IPNV ChRtm213 strain and the IHNV Sn1203 strain on day 45 post-vaccination. A significantly higher survival rate against IHNV was obtained in the rBlk94-VP2 group on day 45 post-vaccination (86%) compared with the PBS mock immunized group (2%). Additionally, IPNV loads decreased significantly in the rBlk94-VP2 immunized group in the liver (28.6-fold to 36.5-fold), anterior kidney (21.7-fold to 44.2-fold), and spleen (14.9-fold to 22.7-fold), as compared with the PBS mock control group. The mRNA transcripts for several innate and adaptive immune-related proteins (IFN-γ, IFN-1, Mx-1, CD4, CD8, IgM, and IgT) were also significantly upregulated after rBlk94-VP2 vaccination, and neutralizing antibodies against both IHNV and IPNV were induced on day 45 post-vaccination. Collectively, our results suggest that this recombinant virus could be developed as a vaccine vector to protect rainbow trout against two or more diseases, and our approach lays the foundations for developing live vaccines for rainbow trout.
Collapse
|
6
|
Xu L, Zhao J, Liu M, Ren G, Jian F, Yin J, Feng J, Liu H, Lu T. Bivalent DNA vaccine induces significant immune responses against infectious hematopoietic necrosis virus and infectious pancreatic necrosis virus in rainbow trout. Sci Rep 2017; 7:5700. [PMID: 28720888 PMCID: PMC5515949 DOI: 10.1038/s41598-017-06143-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/08/2017] [Indexed: 02/06/2023] Open
Abstract
Infectious hematopoietic necrosis virus (IHNV) and infectious pancreatic necrosis virus (IPNV) are important pathogens of salmon and trout. An active bivalent DNA vaccine was constructed with the glycoprotein gene of Chinese IHNV isolate Sn1203 and VP2-VP3 gene of Chinese IPNV isolate ChRtm213. Rainbow trout (5 g) were vaccinated by intramuscular injection with 1.0 µg of the bivalent DNA vaccine and then challenged with an intraperitoneal injection of IHNV, IPNV, or both, at 30 and 60 days post-vaccination (d.p.v.). High protection rates against IHNV were observed, with 6% and 10% cumulative mortality, respectively, compared with 90-94% in the mock-vaccinated groups. IPNV loads (531-fold and 135-fold, respectively) were significantly reduced in the anterior kidneys of the vaccinated trout. Significant protection against co-infection with IHNV and IPNV was observed, with cumulative mortality rates of 6.67% and 3.33%, respectively, compared with 50.0% and 43.3%, respectively, in the mock-vaccinated groups. No detectable infective IHNV or IPNV was recovered from vaccinated trout co-infected with IHNV and IPNV. The bivalent DNA vaccine increased the expression of Mx-1 and IFN-γ at 4, 7, and 15 d.p.v, and IgM at 21 d.p.v., and induced high titres (≥160) of IHNV and IPNV neutralizing antibodies at 30 and 60 d.p.v.
Collapse
Affiliation(s)
- Liming Xu
- Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, P.R. China
| | - Jingzhuang Zhao
- Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, P.R. China
| | - Miao Liu
- Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, P.R. China
| | - Guangming Ren
- Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, P.R. China
| | - Feng Jian
- Benxi AgriMarine Industries Inc., Benxi, 117000, P.R. China
| | - Jiasheng Yin
- Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, P.R. China
| | - Ji Feng
- Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, P.R. China
| | - Hongbai Liu
- Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, P.R. China
| | - Tongyan Lu
- Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, P.R. China.
| |
Collapse
|
7
|
Aquilino C, Granja AG, Castro R, Wang T, Abos B, Parra D, Secombes CJ, Tafalla C. Rainbow trout CK9, a CCL25-like ancient chemokine that attracts and regulates B cells and macrophages, the main antigen presenting cells in fish. Oncotarget 2017; 7:17547-64. [PMID: 27003360 PMCID: PMC4951232 DOI: 10.18632/oncotarget.8163] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 03/07/2016] [Indexed: 11/25/2022] Open
Abstract
CK9 is a rainbow trout (Oncorhynchus mykiss) CC chemokine phylogenetically related to mammalian CCL25. Although CK9 is known to be transcriptionally regulated in response to inflammation particularly in mucosal tissues, its functionality has never been revealed. In the current work, we have demonstrated that CK9 is chemoattractant for antigen presenting cells (APCs) expressing major histocompatibility complex class II (MHC II) on the cell surface. Among these APCs, CK9 has a strong chemotactic capacity for both B cells (IgM+ and IgT+) and macrophages. Along with its chemotactic capacities, CK9 modulated the MHC II turnover of B lymphocytes and up-regulated the phagocytic capacity of both IgM+ cells and macrophages. Although CK9 had no lymphoproliferative effects, it increased the survival of IgT+ lymphocytes. Furthermore, we have established that the chemoattractant capacity of CK9 is strongly increased after pre-incubation of leukocytes with a T-independent antigen, whereas B cell receptor (BCR) cross-linking strongly abrogated their capacity to migrate to CK9, indicating that CK9 preferentially attracts B cells at the steady state or under BCR-independent stimulation. These results point to CK9 being a key regulator of B lymphocyte trafficking in rainbow trout, able to modulate innate functions of teleost B lymphocytes and macrophages.
Collapse
Affiliation(s)
- Carolina Aquilino
- Animal Health Research Center (CISA-INIA), Valdeolmos (Madrid), Spain
| | - Aitor G Granja
- Animal Health Research Center (CISA-INIA), Valdeolmos (Madrid), Spain
| | - Rosario Castro
- Animal Health Research Center (CISA-INIA), Valdeolmos (Madrid), Spain
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Beatriz Abos
- Animal Health Research Center (CISA-INIA), Valdeolmos (Madrid), Spain
| | - David Parra
- Animal Physiology Unit, Department of Cell Biology, Physiology and Immunology, School of Biosciences, Universitat Autonoma de Barcelona, Cerdanyola del Valles, Spain
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | - Carolina Tafalla
- Animal Health Research Center (CISA-INIA), Valdeolmos (Madrid), Spain
| |
Collapse
|
8
|
Piazzon MC, Galindo-Villegas J, Pereiro P, Estensoro I, Calduch-Giner JA, Gómez-Casado E, Novoa B, Mulero V, Sitjà-Bobadilla A, Pérez-Sánchez J. Differential Modulation of IgT and IgM upon Parasitic, Bacterial, Viral, and Dietary Challenges in a Perciform Fish. Front Immunol 2016; 7:637. [PMID: 28082977 PMCID: PMC5186763 DOI: 10.3389/fimmu.2016.00637] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/12/2016] [Indexed: 02/01/2023] Open
Abstract
Three different immunoglobulin (Ig) isotypes can be found in teleost fish, IgM, IgD, and the teleost-specific IgT. IgM is considered to have a systemic activity, and IgT is attributed a mucosal role, similar to mammalian IgA. In this study, the complete sequence of gilthead sea bream IgM and IgT in their membrane (m) and soluble (s) forms are described for the first time in a perciform fish. Their constitutive gene expression is analyzed in different tissues, and their regulation upon viral, bacterial, parasitic, mucosal vaccination and dietary challenges are studied. GCB IgM and IgT have the prototypical structure when compared to other fish Igs. The constitutive expression of sIgM was the highest overall in all tissues, whereas mIgT expression was highest in mucosal tissues, such as gills and intestine. IgM and IgT were differentially regulated upon infection. IgT was highly upregulated locally upon infection with the intestinal parasite Enteromyxum leei or systemically after Nodavirus infection. Long-term intestinal parasitic infections increased the serum titer of both isotypes. Mucosal vaccination against Photobacterium damselae subsp. piscicida finely regulated the Ig response inducing a systemic increase of IgM titers in serum and a local IgT response in skin mucus when animals were exposed to the pathogen by bath challenge. Interestingly, plant-based diets inhibit IgT upregulation upon intestinal parasitic challenge, which was related to a worse disease outcome. All these results corroborate the mucosal role of IgT and emphasize the importance of a finely tuned regulation of Ig isotypes upon infection, which could be of special interest in vaccination studies.
Collapse
Affiliation(s)
- Maria C Piazzon
- Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC) , Castellón , Spain
| | - Jorge Galindo-Villegas
- Department of Cell Biology and Histology, Faculty of Biology, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University of Murcia , Murcia , Spain
| | - Patricia Pereiro
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (IIM-CSIC) , Vigo , Spain
| | - Itziar Estensoro
- Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC) , Castellón , Spain
| | - Josep A Calduch-Giner
- Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC) , Castellón , Spain
| | - Eduardo Gómez-Casado
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) , Madrid , Spain
| | - Beatriz Novoa
- Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (IIM-CSIC) , Vigo , Spain
| | - Victoriano Mulero
- Department of Cell Biology and Histology, Faculty of Biology, Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University of Murcia , Murcia , Spain
| | - Ariadna Sitjà-Bobadilla
- Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC) , Castellón , Spain
| | - Jaume Pérez-Sánchez
- Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC) , Castellón , Spain
| |
Collapse
|
9
|
Maisey K, Montero R, Corripio-Miyar Y, Toro-Ascuy D, Valenzuela B, Reyes-Cerpa S, Sandino AM, Zou J, Wang T, Secombes CJ, Imarai M. Isolation and Characterization of Salmonid CD4+ T Cells. THE JOURNAL OF IMMUNOLOGY 2016; 196:4150-63. [PMID: 27053758 DOI: 10.4049/jimmunol.1500439] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 02/29/2016] [Indexed: 01/03/2023]
Abstract
This study reports the isolation and functional characterization of rainbow trout (Oncorhynchus mykiss) CD4-1(+) T cells and the establishment of an IL-15-dependent CD4-1(+) T cell line. By using Abs specific for CD4-1 and CD3ε it was possible to isolate the double-positive T cells in spleen and head kidney. The morphology and the presence of transcripts for T cell markers in the sorted CD4-1(+)CD3ε(+) cells were studied next. Cells were found to express TCRα, TCRβ, CD152 (CTLA-4), CD154 (CD40L), T-bet, GATA-3, and STAT-1. The sorted CD4-1(+) T cells also had a distinctive functional attribute of mammalian T lymphocytes, namely they could undergo Ag-specific proliferation, using OVA as a model Ag. The OVA-stimulated cells showed increased expression of several cytokines, including IFN-γ1, IL-4/13A, IL-15, IL-17D, IL-10, and TGF-β1, perhaps indicating that T cell proliferation led to differentiation into distinct effector phenotypes. Using IL-15 as a growth factor, we have selected a lymphoid cell line derived from rainbow trout head kidney cells. The morphology, cell surface expression of CD4-1, and the presence of transcripts of T cell cytokines and transcription factors indicated that this is a CD4-1(+) T cell line. To our knowledge, this is the first demonstration of the presence of CD4-1(+)CD3ε(+) T cells in salmonids. As in mammals, CD4-1(+) T cells may be the master regulators of immune responses in fish, and therefore these findings and the new model T cell line developed will contribute to a greater understanding of T cell function and immune responses in teleost fish.
Collapse
Affiliation(s)
- Kevin Maisey
- Laboratorio de Inmunología, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Santiago, Chile
| | - Ruth Montero
- Laboratorio de Inmunología, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Santiago, Chile
| | - Yolanda Corripio-Miyar
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom; and
| | - Daniela Toro-Ascuy
- Laboratorio de Inmunología, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Santiago, Chile
| | - Beatriz Valenzuela
- Laboratorio de Inmunología, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Santiago, Chile
| | - Sebastián Reyes-Cerpa
- Laboratorio de Inmunología, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Santiago, Chile
| | - Ana María Sandino
- Laboratorio de Virología, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Santiago, Chile
| | - Jun Zou
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom; and
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom; and
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom; and
| | - Mónica Imarai
- Laboratorio de Inmunología, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Santiago, Chile;
| |
Collapse
|
10
|
Castro R, Abós B, González L, Aquilino C, Pignatelli J, Tafalla C. Molecular characterization of CD9 and CD63, two tetraspanin family members expressed in trout B lymphocytes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 51:116-125. [PMID: 25769915 DOI: 10.1016/j.dci.2015.03.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/04/2015] [Accepted: 03/05/2015] [Indexed: 06/04/2023]
Abstract
Tetraspanins are a family of membrane-organizing proteins, characterized by the presence of four highly conserved transmembrane regions that mediate diverse physiological functions. In the current study, we have identified two novel tetraspanin members in rainbow trout (Oncorhynchus mykiss), homologs to mammalian CD9 and CD63. Both genes were expressed in muscle, skin, gills, hindgut, gonad, liver, spleen, head kidney, thymus and peripheral blood leukocytes. Throughout the early life cycle stages, CD9 mRNA levels significantly increased after first feeding, whereas CD63 transcription remained constant during all the developmental stages analyzed. In response to an experimental bath infection with viral hemorrhagic septicemia virus (VHSV), CD9 transcription was down-regulated in the gills, while CD63 mRNA levels were down-regulated in the head kidney. Instead, when the virus was intraperitoneally injected, the transcription of both genes was significantly up-regulated in peritoneal cells at several days post-infection. Additionally, both genes were transcriptionally up-regulated in the muscle of trout injected with a VHSV DNA vaccine. To gain insight on the relation of these tetraspanins with B cell activity we determined their constitutive expression in naive IgM(+) populations from different sources and observed that both molecules were being transcribed by IgM(+) cells in different tissues. Furthermore, CD9 transcription was significantly down-regulated in splenic IgM(+) cells in response to in vitro VHSV exposure. Our results provide insights on the potential role of these tetraspanins on teleost B cell and antiviral immunity.
Collapse
Affiliation(s)
- Rosario Castro
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain
| | - Beatriz Abós
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain
| | - Lucia González
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain
| | - Carolina Aquilino
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain
| | - Jaime Pignatelli
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain
| | - Carolina Tafalla
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain.
| |
Collapse
|
11
|
A Review of Intra- and Extracellular Antigen Delivery Systems for Virus Vaccines of Finfish. J Immunol Res 2015; 2015:960859. [PMID: 26065009 PMCID: PMC4433699 DOI: 10.1155/2015/960859] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 01/04/2023] Open
Abstract
Vaccine efficacy in aquaculture has for a long time depended on evaluating relative percent survival and antibody responses after vaccination. However, current advances in vaccine immunology show that the route in which antigens are delivered into cells is deterministic of the type of adaptive immune response evoked by vaccination. Antigens delivered by the intracellular route induce MHC-I restricted CD8+ responses while antigens presented through the extracellular route activate MHC-II restricted CD4+ responses implying that the route of antigen delivery is a conduit to induction of B- or T-cell immune responses. In finfish, different antigen delivery systems have been explored that include live, DNA, inactivated whole virus, fusion protein, virus-like particles, and subunit vaccines although mechanisms linking these delivery systems to protective immunity have not been studied in detail. Hence, in this review we provide a synopsis of different strategies used to administer viral antigens via the intra- or extracellular compartments. Further, we highlight the differences in immune responses induced by antigens processed by the endogenous route compared to exogenously processed antigens. Overall, we anticipate that the synopsis put together in this review will shed insights into limitations and successes of the current vaccination strategies used in finfish vaccinology.
Collapse
|
12
|
Munang'andu HM, Mutoloki S, Evensen Ø. Acquired immunity and vaccination against infectious pancreatic necrosis virus of salmon. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 43:184-196. [PMID: 23962742 DOI: 10.1016/j.dci.2013.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 08/10/2013] [Accepted: 08/12/2013] [Indexed: 06/02/2023]
Abstract
Acquired immunity plays an important role in the protection of salmonids vaccinated against infectious pancreatic necrosis virus (IPNV) infections. In recent years, vaccine research has taken a functional approach to find the correlates of protective immunity against IPNV infections. Accumulating evidence suggests that the humoral response, specifically IgM is a correlate of vaccine protection against IPNV infections. The role of IgT on the other hand, especially at the sites of virus entry into the host is yet to be established. The kinetics of CD4+ and CD8+ T-cell gene expression have also been shown to correlate with protection in salmonids, suggesting that other arms of the adaptive immune response e.g. cytotoxic T cell responses and Th1 may also be important. Overall, the mechanisms of vaccine protection observed in salmonids are comparable to those seen in other vertebrates suggesting that the immunological basis of vaccine protection has been conserved across vertebrate taxa.
Collapse
Affiliation(s)
- Hetron Mweemba Munang'andu
- Norwegian School of Veterinary Sciences, Department of Basic Sciences and Aquatic Medicine, Section of Aquatic Medicine and Nutrition, P.O. Box 8146 Dep, N-0033 Oslo, Norway
| | - Stephen Mutoloki
- Norwegian School of Veterinary Sciences, Department of Basic Sciences and Aquatic Medicine, Section of Aquatic Medicine and Nutrition, P.O. Box 8146 Dep, N-0033 Oslo, Norway
| | - Øystein Evensen
- Norwegian School of Veterinary Sciences, Department of Basic Sciences and Aquatic Medicine, Section of Aquatic Medicine and Nutrition, P.O. Box 8146 Dep, N-0033 Oslo, Norway.
| |
Collapse
|
13
|
Collet B. Innate immune responses of salmonid fish to viral infections. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 43:160-73. [PMID: 23981327 DOI: 10.1016/j.dci.2013.08.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 08/19/2013] [Accepted: 08/19/2013] [Indexed: 05/07/2023]
Abstract
Viruses are the most serious pathogenic threat to the production of the main aquacultured salmonid species the rainbow trout Oncorhynchus mykiss and the Atlantic salmon Salmo salar. The viral diseases Infectious Pancreatic Necrosis (IPN), Pancreatic Disease (PD), Infectious Haemorrhagic Necrosis (IHN), Viral Haemorrhagic Septicaemia (VHS), and Infectious Salmon Anaemia (ISA) cause massive economic losses to the global salmonid aquaculture industry every year. To date, no solution exists to treat livestock affected by a viral disease and only a small number of efficient vaccines are available to prevent infection. As a consequence, understanding the host immune response against viruses in these fish species is critical to develop prophylactic and preventive control measures. The innate immune response represents an important part of the host defence mechanism preventing viral replication after infection. It is a fast acting response designed to inhibit virus propagation immediately within the host, allowing for the adaptive specific immunity to develop. It has cellular and humoral components which act in synergy. This review will cover inflammation responses, the cell types involved, apoptosis, antimicrobial peptides. Particular attention will be given to the type I interferon system as the major player in the innate antiviral defence mechanism of salmonids. Viral evasion strategies will also be discussed.
Collapse
|
14
|
DNA vaccination against a fish rhabdovirus promotes an early chemokine-related recruitment of B cells to the muscle. Vaccine 2013; 32:1160-8. [PMID: 24291197 DOI: 10.1016/j.vaccine.2013.11.062] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/08/2013] [Accepted: 11/15/2013] [Indexed: 11/20/2022]
Abstract
In fish, intramuscular (i.m) injection of plasmid DNA encoding viral proteins has proved a highly effective vaccination strategy against some viral pathogens. The efficacy of DNA vaccination in teleost fish is based on the high level of viral antigen expression in muscle cells inducing a strong and long-lasting protection. However, the mechanisms through which this protection is established and effectuated in fish are still not fully understood. Moreover, similarities to mammalian models cannot be established since DNA vaccination in mammals usually induces much weaker responses. In this work, we have focused on the characterization of the immune cells that infiltrate the muscle at the site of DNA injection in vaccinated fish and the chemokines and chemokine receptors that may be involved in their infiltration. We have demonstrated through diverse techniques that B lymphocytes, both IgM⁺ and IgT⁺ cells, represented a major infiltrating cell type in fish vaccinated with a viral haemorrhagic septicaemia virus (VHSV) glycoprotein-encoding DNA vaccine, whereas in control fish injected with an oil adjuvant mainly granulocyte/monocyte-type cells were attracted. Among twelve chemokine genes studied, only CXCL11_L1, CK5B and CK6 mRNA levels were up-regulated in DNA vaccinated fish compared to fish injected with the corresponding vector backbone. Furthermore, the transcription of CXCR3B, a possible receptor for CXCL11_L1 was also significantly up-regulated in vaccinated fish. Finally, experiments performed with recombinant trout CK5B and CK6 and chemokine expression plasmids revealed that these chemokines have chemotactic capacities which might explain the recruitment of B cells to the site of DNA injection. Altogether, our results reveal that there is an early chemokine-related B cell recruitment triggered by i.m. DNA vaccination against VHSV which might play an important role in the initial phase of the immune response.
Collapse
|
15
|
Salgado-Miranda C, Loza-Rubio E, Rojas-Anaya E, García-Espinosa G. Viral vaccines for bony fish: past, present and future. Expert Rev Vaccines 2013; 12:567-78. [PMID: 23659303 DOI: 10.1586/erv.13.38] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Since 1970, aquaculture production has grown. In 2010, it had an annual average rate of 6.3% with 59.9 million tons of product and soon could exceed capture fisheries as a source of fishery products. However, the occurrence of viral diseases continues to be a significant limiting factor and its control is important for the development of this sector. In aquaculture farms, fish are reared under intensive culture conditions, and the use of viral vaccines has enabled an increase in production. Several types of vaccines and strategies of vaccination have been developed; however, this approach has not reached the expected goals in the most susceptible stage (fingerlings). Currently, there are inactivated and recombinant commercial vaccines, mainly for salmonids and cyprinids. In addition, updated genomic and proteomic technology has expedited the research and expansion of new vaccine models, such as those comprised of subunits or DNA. The objective of this review is to cover the various types of viral vaccines that have been developed and are available for bony fishes, as well as the advantages and challenges that DNA vaccines present for massive administration in a growing aquaculture, possible risks for the environment, the controversy regarding genetically modified organisms and possible acceptance by consumers.
Collapse
Affiliation(s)
- Celene Salgado-Miranda
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de Mexico, Toluca, 50200, Mexico.
| | | | | | | |
Collapse
|
16
|
The pyloric caeca area is a major site for IgM(+) and IgT(+) B cell recruitment in response to oral vaccination in rainbow trout. PLoS One 2013; 8:e66118. [PMID: 23785475 PMCID: PMC3681912 DOI: 10.1371/journal.pone.0066118] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 05/01/2013] [Indexed: 11/26/2022] Open
Abstract
Although previous studies have characterized some aspects of the immune response of the teleost gut in response to diverse pathogens or stimuli, most studies have focused on the posterior segments exclusively. However, there are still many details of how teleost intestinal immunity is regulated that remain unsolved, including the location of IgM+ and IgT+ B cells along the digestive tract and their role during the course of a local stimulus. Thus, in the current work, we have studied the B cell response in five different segments of the rainbow trout (Oncorhynchus mykiss) digestive tract in both naïve fish and fish orally vaccinated with an alginate-encapsulated DNA vaccine against infectious pancreatic necrosis virus (IPNV). IgM+ and IgT+ cells were identified all along the tract with the exception of the stomach in naïve fish. While IgM+ cells were mostly located in the lamina propria (LP), IgT+ cells were primarily localized as intraepithelial lymphocytes (IELs). Scattered IgM+ IELs were only detected in the pyloric caeca. In response to oral vaccination, the pyloric caeca region was the area of the digestive tract in which a major recruitment of B cells was demonstrated through both real time PCR and immunohistochemistry, observing a significant increase in the number of both IgM+ and IgT+ IELs. Our findings demonstrate that both IgM+ and IgT+ respond to oral stimulation and challenge the paradigm that teleost IELs are exclusively T cells. Unexpectedly, we have also detected B cells in the fat tissue associated to the digestive tract that respond to vaccination, suggesting that these cells surrounded by adipocytes also play a role in mucosal defense.
Collapse
|
17
|
Ordás MC, Castro R, Dixon B, Sunyer JO, Bjork S, Bartholomew J, Korytar T, Köllner B, Cuesta A, Tafalla C. Identification of a novel CCR7 gene in rainbow trout with differential expression in the context of mucosal or systemic infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 38:302-11. [PMID: 22858409 PMCID: PMC3739294 DOI: 10.1016/j.dci.2012.07.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 07/03/2012] [Accepted: 07/05/2012] [Indexed: 05/13/2023]
Abstract
In mammals, CCR7 is the chemokine receptor for the CCL19 and CCL21 chemokines, molecules with a major role in the recruitment of lymphocytes to lymph nodes and Peyer's patches in the intestinal mucosa, especially naïve T lymphocytes. In the current work, we have identified a CCR7 orthologue in rainbow trout (Oncorhynchus mykiss) that shares many of the conserved features of mammalian CCR7. The receptor is constitutively transcribed in the gills, hindgut, spleen, thymus and gonad. When leukocyte populations were isolated, IgM(+) cells, T cells and myeloid cells from head kidney transcribed the CCR7 gene. In blood, both IgM(+) and IgT(+) B cells and myeloid cells but not T lymphocytes were transcribing CCR7, whereas in the spleen, CCR7 mRNA expression was strongly detected in T lymphocytes. In response to infection with viral hemorrhagic septicemia virus (VHSV), CCR7 transcription was down-regulated in spleen and head kidney upon intraperitoneal infection, whereas upon bath infection, CCR7 was up-regulated in gills but remained undetected in the fin bases, the main site of virus entry. Concerning its regulation in the intestinal mucosa, the ex vivo stimulation of hindgut segments with Poly I:C or inactivated bacteria significantly increased CCR7 transcription, while in the context of an infection with Ceratomyxa shasta, the levels of transcription of CCR7 in both IgM(+) and IgT(+) cells from the gut were dramatically increased. All these data suggest that CCR7 plays an important role in lymphocyte trafficking during rainbow trout infections, in which CCR7 appears to be implicated in the recruitment of B lymphocytes into the gut.
Collapse
Affiliation(s)
- M. Camino Ordás
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain
| | - Rosario Castro
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain
| | - Brian Dixon
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - J. Oriol Sunyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarah Bjork
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
| | - Jerri Bartholomew
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
| | - Tomas Korytar
- Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Institute of Infectology, 17493 Greifswald-Insel Riems, Germany
| | - Bernd Köllner
- Friedrich-Loeffler-Institute, Federal Research Institute for Animal Health, Institute of Infectology, 17493 Greifswald-Insel Riems, Germany
| | - Alberto Cuesta
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain
| | - Carolina Tafalla
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain
- Corresponding author. Address: Centro de Investigación en Sanidad Animal (CISA-INIA), Carretera de Algete a El Casar km. 8.1, Valdeolmos 28130, Madrid, Spain. Tel.: +34 91 6202300; fax: +34 91 6202247. (C. Tafalla)
| |
Collapse
|