1
|
Duan Y, Yao X, Li P, Zhao Y, Zhang B, An S, Wei J, Li X. Death-Associated LIM-Only Protein Reduces Cry1Ac Toxicity by Sequestration of Cry1Ac Protoxin and Activated Toxin in Helicoverpa armigera. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18708-18719. [PMID: 39106049 DOI: 10.1021/acs.jafc.4c04657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The extensive use of Bacillus thuringiensis (Bt) in pest management has driven the evolution of pest resistance to Bt toxins, particularly Cry1Ac. Effective management of Bt resistance necessitates a good understanding of which pest proteins interact with Bt toxins. In this study, we screened a Helicoverpa armigera larval midgut cDNA library and captured 208 potential Cry1Ac-interacting proteins. Among these, we further examined the interaction between Cry1Ac and a previously unknown Cry1Ac-interacting protein, HaDALP (H. armigera death-associated LIM-only protein), as well as its role in toxicology. The results revealed that HaDALP specifically binds to both the Cry1Ac protoxin and activated toxin, significantly enhancing cell and larval tolerance to Cry1Ac. Additionally, HaDALP was overexpressed in a Cry1Ac-resistant H. armigera strain. These findings reveal a greater number of Cry1Ac-interacting proteins than previously known and demonstrate, for the first time, that HaDALP reduces Cry1Ac toxicity by sequestering both the protoxin and activated toxin.
Collapse
Affiliation(s)
- Yunpeng Duan
- Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Xue Yao
- Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Pin Li
- Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Yuge Zhao
- Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Bo Zhang
- Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Shiheng An
- Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Jizhen Wei
- Henan International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Xianchun Li
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
2
|
Gondim KC, Majerowicz D. Lipophorin: The Lipid Shuttle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 38874888 DOI: 10.1007/5584_2024_806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Insects need to transport lipids through the aqueous medium of the hemolymph to the organs in demand, after they are absorbed by the intestine or mobilized from the lipid-producing organs. Lipophorin is a lipoprotein present in insect hemolymph, and is responsible for this function. A single gene encodes an apolipoprotein that is cleaved to generate apolipophorin I and II. These are the essential protein constituents of lipophorin. In some physiological conditions, a third apolipoprotein of different origin may be present. In most insects, lipophorin transports mainly diacylglycerol and hydrocarbons, in addition to phospholipids. The fat body synthesizes and secretes lipophorin into the hemolymph, and several signals, such as nutritional, endocrine, or external agents, can regulate this process. However, the main characteristic of lipophorin is the fact that it acts as a reusable shuttle, distributing lipids between organs without being endocytosed or degraded in this process. Lipophorin interacts with tissues through specific receptors of the LDL receptor superfamily, although more recent results have shown that other proteins may also be involved. In this chapter, we describe the lipophorin structure in terms of proteins and lipids, in addition to reviewing what is known about lipoprotein synthesis and regulation. In addition, we reviewed the results investigating lipophorin's function in the movement of lipids between organs and the function of lipophorin receptors in this process.
Collapse
Affiliation(s)
- Katia C Gondim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - David Majerowicz
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Dutta TK, Mandal A, Kundu A, Phani V, Mathur C, Veeresh A, Sreevathsa R. RNAi-mediated knockdown of gut receptor-like genes prohibitin and α-amylase altered the susceptibility of Galleria mellonella to Cry1AcF toxin. BMC Genomics 2022; 23:601. [PMID: 35982422 PMCID: PMC9389788 DOI: 10.1186/s12864-022-08843-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
Background Due to the prolonged usage of Bt-based biopesticides and Bt-transgenic crops worldwide, insects are continually developing resistance against Cry toxins. This resistance may occur if any mechanistic step in the insecticidal process is disrupted possibly because of the alteration in Cry-receptor binding affinity due to mutation in receptor genes. Compared to other lepidopteran insects, Cry receptor-related research has made asymmetric progress in the model insect Galleria mellonella. Results Present study describes the molecular characterization and functional analysis of five Cry toxin receptor-related genes (prohibitin, GLTP, α-amylase, ADAM and UDP-GT) and a gut repair gene (arylphorin) from the gut tissues of G. mellonella. Protein–protein docking analysis revealed that Cry1AcF putatively binds with all the five candidate proteins, suggesting their receptor-like function. These receptor-like genes were significantly overexpressed in the gut tissues of fourth-instar G. mellonella larvae upon early exposure to a sub-lethal dose of Cry1AcF toxin. However, targeted knockdown (by using bacterially-expressed dsRNAs) of these genes led to variable effect on insect susceptibility to Cry1AcF toxin. Insects pre-treated with prohibitin and α-amylase dsRNA exhibited significant reduction in Cry1AcF-induced mortality, suggesting their probable role as Cry receptor. By contrast, insects pre-treated with GLTP, ADAM and UDP-GT dsRNA exhibited no significant decline in mortality. This maybe explained by the possibility of RNAi feedback regulation (as few of the receptors belong to multigene family) or redundant role of GLTP, ADAM and UDP-GT in Cry intoxication process. Conclusion Since the laboratory culture of G. mellonella develop Bt resistance quite rapidly, findings of the current investigation may provide some useful information for future Cry receptor-related research in the model insect. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08843-8.
Collapse
Affiliation(s)
- Tushar K Dutta
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Abhishek Mandal
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Artha Kundu
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Victor Phani
- Department of Agricultural Entomology, College of Agriculture, Uttar Banga Krishi Viswavidyalaya, Dakshin Dinajpur, Balurghat, West Bengal, India
| | - Chetna Mathur
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Arudhimath Veeresh
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Rohini Sreevathsa
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| |
Collapse
|
4
|
Dutta TK, Veeresh A, Phani V, Kundu A, Santhoshkumar K, Mathur C, Sagar D, Sreevathsa R. Molecular characterization and functional analysis of Cry toxin receptor-like genes from the model insect Galleria mellonella. INSECT MOLECULAR BIOLOGY 2022; 31:434-446. [PMID: 35266587 DOI: 10.1111/imb.12770] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Crystal (Cry) toxins produced from the soil bacterium, Bacillus thuringiensis (Bt), have gained worldwide attention for long due to their insecticidal potential. A number of receptor proteins located on the epithelial cells of the larval midgut were shown to be crucial for Cry intoxication in different insect pests belonging to order Lepidoptera, Diptera and Coleoptera. A beehive pest, Galleria mellonella, serves as an excellent insect model for biochemical research. However, information on the Cry receptor-like genes in G. mellonella is limited. In the present study, the full-length sequences of four putative Cry receptor genes (ABC transporter, alkaline phosphatase, aminopeptidase N and cadherin) were cloned from G. mellonella. All these receptor genes were substantially upregulated in the midgut tissue of fourth-instar G. mellonella larvae upon early exposure (6 h) to a sub-lethal dose of Cry1AcF toxin. Oral and independent delivery of bacterially-expressed dsRNAs corresponding to four receptor genes in G. mellonella suppressed the transcription of target receptors which in turn significantly reduced the larval sensitivity to Cry1AcF toxin. As the laboratory populations of G. mellonella develop Bt resistance in a relatively short time, molecular characterization of Cry receptor genes in G. mellonella performed in the present study may provide some useful information for future research related to the genetic basis of Bt resistance in the model insect.
Collapse
Affiliation(s)
- Tushar K Dutta
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Arudhimath Veeresh
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Victor Phani
- Department of Agricultural Entomology, College of Agriculture, Uttar Banga Krishi Viswavidyalaya, Dakshin Dinajpur, West Bengal, India
| | - Artha Kundu
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Chetna Mathur
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Doddachowdappa Sagar
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | |
Collapse
|
5
|
Lee J, Lee DW. Insecticidal Serralysin of Serratia marcescens Is Detoxified in M3 Midgut Region of Riptortus pedestris. Front Microbiol 2022; 13:913113. [PMID: 35711769 PMCID: PMC9197470 DOI: 10.3389/fmicb.2022.913113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/06/2022] [Indexed: 11/18/2022] Open
Abstract
Riptortus pedestris insect indiscriminately acquires not only the symbiotic bacterium Burkholderia insecticola, but also entomopathogens that are abundant in the soil via feeding. However, it is unclear how the host insect survives oral infections of entomopathogens. A previous study suggested that serralysin, a potent virulence factor produced by Serratia marcescens, suppresses cellular immunity by degrading adhesion molecules, thereby contributing to bacterial pathogenesis. Here, we observed that S. marcescens orally administered to R. pedestris stably colonized the insect midgut, while not exhibiting insecticidal activity. Additionally, oral infection with S. marcescens did not affect the host growth or fitness. When co-incubated with the midgut lysates of R. pedestris, serralysin was remarkably degraded. The detoxification activity against serralysin was enhanced in the midgut extract of gut symbiont-colonizing insects. The mRNA expression levels of serralysin genes were negligible in M3-colonizing S. marcescens. M3-colonizing S. marcescens did not produce serralysin toxin. Immunoblot analyses revealed that serralysin was not detected in the M3 midgut region. The findings of our study suggest that orally infected S. marcescens lose entomopathogenicity through host-derived degrading factors and suppression of serralysin.
Collapse
Affiliation(s)
- Junbeom Lee
- Metabolomics Research Center for Functional Materials, Kyungsung University, Busan, South Korea
| | - Dae-Weon Lee
- Metabolomics Research Center for Functional Materials, Kyungsung University, Busan, South Korea.,Department of SmartBio, Kyungsung University, Busan, South Korea
| |
Collapse
|
6
|
Coates BS, Deleury E, Gassmann AJ, Hibbard BE, Meinke LJ, Miller NJ, Petzold-Maxwell J, French BW, Sappington TW, Siegfried BD, Guillemaud T. Up-regulation of apoptotic- and cell survival-related gene pathways following exposures of western corn rootworm to B. thuringiensis crystalline pesticidal proteins in transgenic maize roots. BMC Genomics 2021; 22:639. [PMID: 34479486 PMCID: PMC8418000 DOI: 10.1186/s12864-021-07932-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/04/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Resistance of pest insect species to insecticides, including B. thuringiensis (Bt) pesticidal proteins expressed by transgenic plants, is a threat to global food security. Despite the western corn rootworm, Diabrotica virgifera virgifera, being a major pest of maize and having populations showing increasing levels of resistance to hybrids expressing Bt pesticidal proteins, the cell mechanisms leading to mortality are not fully understood. RESULTS Twenty unique RNA-seq libraries from the Bt susceptible D. v. virgifera inbred line Ped12, representing all growth stages and a range of different adult and larval exposures, were assembled into a reference transcriptome. Ten-day exposures of Ped12 larvae to transgenic Bt Cry3Bb1 and Gpp34/Tpp35Ab1 maize roots showed significant differential expression of 1055 and 1374 transcripts, respectively, compared to cohorts on non-Bt maize. Among these, 696 were differentially expressed in both Cry3Bb1 and Gpp34/Tpp35Ab1 maize exposures. Differentially-expressed transcripts encoded protein domains putatively involved in detoxification, metabolism, binding, and transport, were, in part, shared among transcripts that changed significantly following exposures to the entomopathogens Heterorhabditis bacteriophora and Metarhizium anisopliae. Differentially expressed transcripts in common between Bt and entomopathogen treatments encode proteins in general stress response pathways, including putative Bt binding receptors from the ATP binding cassette transporter superfamily. Putative caspases, pro- and anti-apoptotic factors, as well as endoplasmic reticulum (ER) stress-response factors were identified among transcripts uniquely up-regulated following exposure to either Bt protein. CONCLUSIONS Our study suggests that the up-regulation of genes involved in ER stress management and apoptotic progression may be important in determining cell fate following exposure of susceptible D. v. virgifera larvae to Bt maize roots. This study provides novel insights into insect response to Bt intoxication, and a possible framework for future investigations of resistance mechanisms.
Collapse
Affiliation(s)
- Brad S Coates
- USDA-ARS, Corn Insects & Crop Genetics Research Unit, 103 Genetics Laboratory, Iowa State University, Ames, IA, 50011, USA.
| | | | | | | | - Lance J Meinke
- Department of Entomology, University of Nebraska, Lincoln, NE, USA
| | | | | | - B Wade French
- USDA-ARS, North Central Agricultural Research Laboratory, Brookings, SD, USA
| | - Thomas W Sappington
- USDA-ARS, Corn Insects & Crop Genetics Research Unit, 103 Genetics Laboratory, Iowa State University, Ames, IA, 50011, USA
| | | | | |
Collapse
|
7
|
Pinos D, Andrés-Garrido A, Ferré J, Hernández-Martínez P. Response Mechanisms of Invertebrates to Bacillus thuringiensis and Its Pesticidal Proteins. Microbiol Mol Biol Rev 2021; 85:e00007-20. [PMID: 33504654 PMCID: PMC8549848 DOI: 10.1128/mmbr.00007-20] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Extensive use of chemical insecticides adversely affects both environment and human health. One of the most popular biological pest control alternatives is bioinsecticides based on Bacillus thuringiensis This entomopathogenic bacterium produces different protein types which are toxic to several insect, mite, and nematode species. Currently, insecticidal proteins belonging to the Cry and Vip3 groups are widely used to control insect pests both in formulated sprays and in transgenic crops. However, the benefits of B. thuringiensis-based products are threatened by insect resistance evolution. Numerous studies have highlighted that mutations in genes coding for surrogate receptors are responsible for conferring resistance to B. thuringiensis Nevertheless, other mechanisms may also contribute to the reduction of the effectiveness of B. thuringiensis-based products for managing insect pests and even to the acquisition of resistance. Here, we review the relevant literature reporting how invertebrates (mainly insects and Caenorhabditis elegans) respond to exposure to B. thuringiensis as either whole bacteria, spores, and/or its pesticidal proteins.
Collapse
Affiliation(s)
- Daniel Pinos
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, Burjassot, Spain
| | - Ascensión Andrés-Garrido
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, Burjassot, Spain
| | - Juan Ferré
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, Burjassot, Spain
| | - Patricia Hernández-Martínez
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Department of Genetics, Universitat de València, Burjassot, Spain
| |
Collapse
|
8
|
Guo Y, Carballar-Lejarazú R, Sheng L, Fang Y, Wang S, Liang G, Hu X, Wang R, Zhang F, Wu S. Identification and Characterization of Aminopeptidase-N as a Binding Protein for Cry3Aa in the Midgut of Monochamus alternatus (Coleoptera: Cerambycidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:2259-2268. [PMID: 32623464 DOI: 10.1093/jee/toaa130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Indexed: 06/11/2023]
Abstract
Bacillus thuringiensis Cry proteins have been widely used over the past decades for many different insect pests, which are safe for users and the environment. The coleopteran-specific Cry3Aa toxin from B. thuringiensis exhibits toxicity to the larvae of Monochamus alternatus. Receptors play a key role in the mechanisms underlying the toxic action of Cry. However, the binding receptor for Cry3Aa has yet to be identified in the midgut of M. alternatus larvae. Therefore, the aim of this study was to identify the receptor for Cry3Aa toxin in the brush border membrane vesicles (BBMVs) of M. alternatus larvae. Our results indicate that the Cry3Aa toxin binds to the BBMVs (Kd = 247 nM) of M. alternatus via a 107 kDa aminopeptidase N (APN) (Kd = 57 nM). In silico analysis of the APN protein predicted that an 18 amino acid sequence in the N-terminal acted as a signal peptide, and that the Asn residue, located at position 918 in the C-terminus is an anchored site for glycosyl phosphatidyl inositol. Further analysis showed that M. alternatus APN exhibits 75% homology to the APN from Anoplophora glabripenis. Our work, therefore, confirmed that APN, which is localized in the BBMVs in the midgut of M. alternatus larvae, acts as a binding protein for Cry3Aa toxins.
Collapse
Affiliation(s)
- Yajie Guo
- College of Forestry, Fujian Province University
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Liangjing Sheng
- College of Forestry, Fujian Province University
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University
| | - Yan Fang
- College of Forestry, Fujian Province University
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University
| | - Shaozhen Wang
- College of Forestry, Fujian Province University
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University
| | - Guanghong Liang
- College of Forestry, Fujian Province University
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University
| | - Xia Hu
- College of Forestry, Fujian Province University
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University
| | - Rong Wang
- College of Forestry, Fujian Province University
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University
| | - Feiping Zhang
- College of Forestry, Fujian Province University
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University
| | - Songqing Wu
- College of Forestry, Fujian Province University
- Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
9
|
The role of midgut nonspecific esterase in the susceptibility of Galleria mellonella larvae to Bacillus thuringiensis. J Invertebr Pathol 2019; 166:107208. [DOI: 10.1016/j.jip.2019.107208] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 06/06/2019] [Accepted: 06/12/2019] [Indexed: 11/20/2022]
|
10
|
Souza CSF, Silveira LCP, Paula DP, Andow DA, Mendes SM. Transfer of Cry1F from Bt maize to eggs of resistant Spodoptera frugiperda. PLoS One 2018; 13:e0203791. [PMID: 30208091 PMCID: PMC6135484 DOI: 10.1371/journal.pone.0203791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 08/27/2018] [Indexed: 01/28/2023] Open
Abstract
The intergenerational transfer of plant defense compounds by aposematic insects is well documented, and since 2006, has been shown for Cry toxins. Cry toxins are proteins naturally produced by the soil bacterium Bacillus thuringiensis (Bt) and its genes have been expressed in plants to confer insect pest resistance. In this work we tested if non-aposematic larvae of a major maize pest, Spodoptera frugiperda, with resistance to Cry1F, could transfer Cry1F from a genetically engineered maize variety to their offspring. Resistant 10-day-old larvae that fed on Cry1F Bt maize until pupation were sexed and pair-mated to produce eggs. Using ELISA we found that Cry1F was transferred to offspring (1.47-4.42 ng Cry1F/10 eggs), a toxin concentration about 28-83 times less than that detected in Cry1F Bt maize leaves. This occurred when only one or both sexes were exposed, and more was transferred when both parents were exposed, with transitory detection in the first five egg masses. This work is an unprecedented demonstration that a non-aposematic, but resistant, species can transfer Cry1F to their offspring when exposed to Bt host plant leaves as immatures.
Collapse
Affiliation(s)
- Camila S. F. Souza
- Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
- Embrapa Milho e Sorgo, Sete Lagoas, Minas Gerais, Brazil
| | | | - Débora P. Paula
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, Brasília, Federal District, Brazil
- * E-mail:
| | - David A. Andow
- University of Minnesota, St. Paul, Minnesota, United States of America
| | | |
Collapse
|
11
|
Wei J, Liang G, Wu K, Gu S, Guo Y, Ni X, Li X. Cytotoxicity and binding profiles of activated Cry1Ac and Cry2Ab to three insect cell lines. INSECT SCIENCE 2018; 25:655-666. [PMID: 28247982 DOI: 10.1111/1744-7917.12451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 11/24/2016] [Accepted: 01/03/2017] [Indexed: 06/06/2023]
Abstract
While Cry1Ac has been known to bind with larval midgut proteins cadherin, APN (amino peptidase N), ALP (alkaline phosphatase) and ABCC2 (adenosine triphosphate-binding cassette transporter subfamily C2), little is known about the receptors of Cry2Ab. To provide a clue to the receptors of Cry2Ab, we tested the baseline cytotoxicity of activated Cry1Ac and Cry2Ab against the midgut and fat body cell lines of Helicoverpa zea and the ovary cell line of Spodoptera frugiperda (SF9). As expected, the descending order of cytotoxicity of Cry1Ac against the three cell lines in terms of 50% lethal concetration (LC50 ) was midgut (31.0 μg/mL) > fat body (59.0 μg/mL) and SF9 cell (99.6 μg/mL). By contrast, the fat body cell line (LC50 = 7.55 μg/mL) was about twice more susceptible to Cry2Ab than the midgut cell line (16.0 μg/mL), the susceptibility of which was not significantly greater than that of SF9 cells (27.0 μg/mL). Further, ligand blot showed the binding differences between Cry1Ac and Cry2Ab in the three cell lines. These results indicated that the receptors of Cry2Ab were enriched in fat body cells and thus largely different from the receptors of Cry1Ac, which were enriched in midgut cells.
Collapse
Affiliation(s)
- Jizhen Wei
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | - Gemei Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shaohua Gu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuyuan Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinzhi Ni
- USDA-ARS, Crop Genetics and Breeding Research Unit, Tifton, GA, USA
| | - Xianchun Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
12
|
Using phage display technology to obtain Crybodies active against non-target insects. Sci Rep 2017; 7:14922. [PMID: 29097681 PMCID: PMC5668233 DOI: 10.1038/s41598-017-09384-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/26/2017] [Indexed: 11/09/2022] Open
Abstract
The insecticidal Cry toxins produced by Bacillus thuringiensis (Bt) are increasingly important in the biological control of insect pests and vectors of human disease. Markets for Bt products and transgenic plants expressing their toxins are driven by their specificity, safety and the move away from chemical control agents. However, the high specificity of Cry toxins can also prove to be a limitation when there is no known Cry toxin active against a particular target. Novel activities can be discovered by screening natural Bt isolates or through modifications of the Cry proteins. Here we demonstrate the use of λ-phage displaying Cry1Aa13 toxin variants modified in domain II loop 2 (Crybodies) to select retargeted toxins. Through biopanning using gut tissue from larvae of the non-target insect Aedes aegypti, we isolated a number of phage for further testing. Two of the overexpressed Cry toxin variants showed significant activity against A. aegypti larvae while another induced mortality at the pupal stage. We present the first report of the use of phage display to identify novel activities toward insects from distant taxonomic Orders and establish this technology based on the use of Crybodies as a powerful tool for developing tailor-made insecticides against new target insects.
Collapse
|
13
|
Greenwood JM, Milutinović B, Peuß R, Behrens S, Esser D, Rosenstiel P, Schulenburg H, Kurtz J. Oral immune priming with Bacillus thuringiensis induces a shift in the gene expression of Tribolium castaneum larvae. BMC Genomics 2017; 18:329. [PMID: 28446171 PMCID: PMC5405463 DOI: 10.1186/s12864-017-3705-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 04/12/2017] [Indexed: 12/22/2022] Open
Abstract
Background The phenomenon of immune priming, i.e. enhanced protection following a secondary exposure to a pathogen, has now been demonstrated in a wide range of invertebrate species. Despite accumulating phenotypic evidence, knowledge of its mechanistic underpinnings is currently very limited. Here we used the system of the red flour beetle, Tribolium castaneum and the insect pathogen Bacillus thuringiensis (Bt) to further our molecular understanding of the oral immune priming phenomenon. We addressed how ingestion of bacterial cues (derived from spore supernatants) of an orally pathogenic and non-pathogenic Bt strain affects gene expression upon later challenge exposure, using a whole-transcriptome sequencing approach. Results Whereas gene expression of individuals primed with the orally non-pathogenic strain showed minor changes to controls, we found that priming with the pathogenic strain induced regulation of a large set of distinct genes, many of which are known immune candidates. Intriguingly, the immune repertoire activated upon priming and subsequent challenge qualitatively differed from the one mounted upon infection with Bt without previous priming. Moreover, a large subset of priming-specific genes showed an inverse regulation compared to their regulation upon challenge only. Conclusions Our data demonstrate that gene expression upon infection is strongly affected by previous immune priming. We hypothesise that this shift in gene expression indicates activation of a more targeted and efficient response towards a previously encountered pathogen, in anticipation of potential secondary encounter. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3705-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jenny M Greenwood
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149, Münster, Germany
| | - Barbara Milutinović
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149, Münster, Germany.,Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria
| | - Robert Peuß
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149, Münster, Germany.,Current Address: Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO, 64110, USA
| | - Sarah Behrens
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149, Münster, Germany
| | - Daniela Esser
- Institute of Clinical Molecular Biology, Christian-Albrechts University Kiel, Schittenhelmstr. 12, 24105, Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts University Kiel, Schittenhelmstr. 12, 24105, Kiel, Germany
| | - Hinrich Schulenburg
- Zoological Institute, Christian-Albrechts University Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Joachim Kurtz
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149, Münster, Germany.
| |
Collapse
|
14
|
Structural classification of insecticidal proteins – Towards an in silico characterisation of novel toxins. J Invertebr Pathol 2017; 142:16-22. [DOI: 10.1016/j.jip.2016.07.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/01/2016] [Accepted: 07/28/2016] [Indexed: 11/23/2022]
|
15
|
Milutinović B, Kurtz J. Immune memory in invertebrates. Semin Immunol 2016; 28:328-42. [PMID: 27402055 DOI: 10.1016/j.smim.2016.05.004] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/11/2016] [Accepted: 05/17/2016] [Indexed: 12/21/2022]
Abstract
Evidence for innate immune memory (or 'priming') in invertebrates has been accumulating over the last years. We here provide an in-depth review of the current state of evidence for immune memory in invertebrates, and in particular take a phylogenetic viewpoint. Invertebrates are a very heterogeneous group of animals and accordingly, evidence for the phenomenon of immune memory as well as the hypothesized molecular underpinnings differ largely for the diverse invertebrate taxa. The majority of research currently focuses on Arthropods, while evidence from many other groups of invertebrates is fragmentary or even lacking. We here concentrate on immune memory that is induced by pathogenic challenges, but also extent our view to a non-pathogenic context, i.e. allograft rejection, which can also show forms of memory and can inform us about general principles of specific self-nonself recognition. We discuss definitions of immune memory and a number of relevant aspects such as the type of antigens used, the route of exposure, and the kinetics of reactions following priming.
Collapse
Affiliation(s)
- Barbara Milutinović
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
| | - Joachim Kurtz
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, 48149 Münster, Germany.
| |
Collapse
|
16
|
Zhou Z, Wang Z, Liu Y, Liang G, Shu C, Song F, Zhou X, Bravo A, Soberón M, Zhang J. Identification of ABCC2 as a binding protein of Cry1Ac on brush border membrane vesicles from Helicoverpa armigera by an improved pull-down assay. Microbiologyopen 2016; 5:659-69. [PMID: 27037552 PMCID: PMC4985599 DOI: 10.1002/mbo3.360] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 02/29/2016] [Accepted: 03/08/2016] [Indexed: 01/28/2023] Open
Abstract
Cry1Ac toxin‐binding proteins from Helicoverpa armigera brush border membrane vesicles were identified by an improved pull‐down method that involves coupling Cry1Ac to CNBr agarose combined with liquid chromatography–tandem mass spectrometry (LC‐MS/MS). According to the LC‐MS/MS results, Cry1Ac toxin could bind to six classes of aminopeptidase‐N, alkaline phosphatase, cadherin‐like protein, ATP‐binding cassette transporter subfamily C protein (ABCC2), actin, ATPase, polycalin, and some other proteins not previously characterized as Cry toxin‐binding molecules such as dipeptidyl peptidase or carboxyl/choline esterase and some serine proteases. This is the first report that suggests the direct binding of Cry1Ac toxin to ABCC2 in H. armigera.
Collapse
Affiliation(s)
- Zishan Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, No. 866 Yuhangtang Road, Xihu District, Hangzhou, 310012, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Zeyu Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, No. 866 Yuhangtang Road, Xihu District, Hangzhou, 310012, China
| | - Yuxiao Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Gemei Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Changlong Shu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Fuping Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, No. 866 Yuhangtang Road, Xihu District, Hangzhou, 310012, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Alejandra Bravo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Apdo. Postal 510-3, Morelos, 62250, Mexico
| | - Mario Soberón
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Apdo. Postal 510-3, Morelos, 62250, Mexico
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| |
Collapse
|
17
|
Dubovskiy IM, Grizanova EV, Whitten MMA, Mukherjee K, Greig C, Alikina T, Kabilov M, Vilcinskas A, Glupov VV, Butt TM. Immuno-physiological adaptations confer wax moth Galleria mellonella resistance to Bacillus thuringiensis. Virulence 2016; 7:860-870. [PMID: 27029421 PMCID: PMC5160394 DOI: 10.1080/21505594.2016.1164367] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Microevolutionary mechanisms of resistance to a bacterial pathogen were explored in a population of the Greater wax moth, Galleria mellonella, selected for an 8.8-fold increased resistance against the entomopathogenic bacterium Bacillus thuringiensis (Bt) compared with a non-selected (suspectible) line. Defense strategies of the resistant and susceptible insect lines were compared to uncover mechanisms underpinning resistance, and the possible cost of those survival strategies. In the uninfected state, resistant insects exhibited enhanced basal expression of genes related to regeneration and amelioration of Bt toxin activity in the midgut. In addition, these insects also exhibited elevated activity of genes linked to inflammation/stress management and immune defense in the fat body. Following oral infection with Bt, the expression of these genes was further elevated in the fat body and midgut of both lines and to a greater extent some of them in resistant line than the susceptible line. This gene expression analysis reveals a pattern of resistance mechanisms targeted to sites damaged by Bt with the insect placing greater emphasis on tissue repair as revealed by elevated expression of these genes in both the fat body and midgut epithelium. Unlike the susceptible insects, Bt infection significantly reduced the diversity and richness (abundance) of the gut microbiota in the resistant insects. These observations suggest that the resistant line not only has a more intact midgut but is secreting antimicrobial factors into the gut lumen which not only mitigate Bt activity but also affects the viability of other gut bacteria. Remarkably the resistant line employs multifactorial adaptations for resistance to Bt without any detected negative trade off since the insects exhibited higher fecundity.
Collapse
Affiliation(s)
- Ivan M Dubovskiy
- a Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Science , Novosibirsk , Russia
| | - Ekaterina V Grizanova
- a Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Science , Novosibirsk , Russia
| | - Miranda M A Whitten
- b Institute of Life Science, College of Medicine, Swansea University , Swansea , Wales , UK
| | - Krishnendu Mukherjee
- c Department of Bioresources , Fraunhofer Institute for Molecular Biology and Applied Ecology , Giessen , Germany
| | - Carolyn Greig
- d Department of Biosciences , College of Science, Swansea University , Swansea , Wales , UK
| | - Tatiana Alikina
- e Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Science , Novosibirsk , Russia
| | - Marsel Kabilov
- e Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Science , Novosibirsk , Russia
| | - Andreas Vilcinskas
- f Institute for Insect Biotechnology, Justus-Liebig University , Giessen , Germany
| | - Viktor V Glupov
- a Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Science , Novosibirsk , Russia
| | - Tariq M Butt
- d Department of Biosciences , College of Science, Swansea University , Swansea , Wales , UK
| |
Collapse
|
18
|
Wei J, Guo Y, Liang G, Wu K, Zhang J, Tabashnik BE, Li X. Cross-resistance and interactions between Bt toxins Cry1Ac and Cry2Ab against the cotton bollworm. Sci Rep 2015; 5:7714. [PMID: 25586723 PMCID: PMC4293620 DOI: 10.1038/srep07714] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 12/08/2014] [Indexed: 11/09/2022] Open
Abstract
To delay evolution of pest resistance to transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt), the "pyramid" strategy uses plants that produce two or more toxins that kill the same pest. We conducted laboratory diet experiments with the cotton bollworm, Helicoverpa armigera, to evaluate cross-resistance and interactions between two toxins in pyramided Bt cotton (Cry1Ac and Cry2Ab). Selection with Cry1Ac for 125 generations produced 1000-fold resistance to Cry1Ac and 6.8-fold cross-resistance to Cry2Ab. Selection with Cry2Ab for 29 generations caused 5.6-fold resistance to Cry2Ab and 61-fold cross-resistance to Cry1Ac. Without exposure to Bt toxins, resistance to both toxins decreased. For each of the four resistant strains examined, 67 to 100% of the combinations of Cry1Ac and Cry2Ab tested yielded higher than expected mortality, reflecting synergism between these two toxins. Results showing minor cross-resistance to Cry2Ab caused by selection with Cry1Ac and synergism between these two toxins against resistant insects suggest that plants producing both toxins could prolong the efficacy of Bt cotton against this pest in China. Including toxins against which no cross-resistance occurs and integrating Bt cotton with other control tactics could also increase the sustainability of management strategies.
Collapse
Affiliation(s)
- Jizhen Wei
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuyuan Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Gemei Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kongming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bruce E Tabashnik
- Department of Entomology, University of Arizona, Tucson, AZ, 85721, USA
| | - Xianchun Li
- Department of Entomology, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
19
|
Quantitative proteome analysis of Caenorhabditis elegans upon exposure to nematicidal Bacillus thuringiensis. J Proteomics 2014; 113:337-50. [PMID: 25452134 DOI: 10.1016/j.jprot.2014.09.027] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/25/2014] [Accepted: 09/29/2014] [Indexed: 11/21/2022]
Abstract
UNLABELLED Caenorhabditis elegans can be infected by a plethora of pathogens, most of them are also pathogenic for humans. Consequently, the nematode has emerged as a powerful surrogate host to model microbial human infectious diseases in a non-vertebrate, for the study of innate immunity and host-pathogen interactions. Signaling cascades are well investigated that face bacterial or fungal pathogens. We analyzed the downstream processes of these cascades, i.e. the differential expression of effector and regulatory molecules due to a microbial challenge with a pathogenic strain of the bacterium Bacillus thuringiensis (Bt) in comparison to a non-pathogenic Bt strain. The protein abundance profile of the nematode was studied by quantitative proteomics using iTRAQ labeling and 2D-LC-MS analysis. We developed (i) a novel method for the preparation of defined C. elegans samples; (ii) a pooling strategy for fractions in 2D-LC separation schemes; and (iii) an isobaric labeling scheme reducing the number of necessary LC-MS experiments. More than 3,600 proteins were quantified, 288 of which showed altered abundances, implicating protein classes such as lectins, lysozymes, and transthyretin-like proteins to be involved in the nematode innate immune defense. A number of gene products previously only identified by transcriptomic profiling could be verified at the protein level. Moreover, several other protein classes such as proteases, proteins related to autophagy and apoptosis, structural proteins, and proteins involved in chromatin organization were detected. The results provide an overview of the physiological response towards a pathogen at protein level in the important model organism C. elegans, giving insights into highly complex host-pathogen interactions. BIOLOGICAL SIGNIFICANCE This study identified system-wide effects of Bt intoxication on C. elegans at protein level, expanding the catalogue of immune effectors potentially acting towards the pathogen, and provide verification for numerous gene products implicated in previous transcriptomic studies. The data present evidence in support of both a general defense response as well as a specific reaction against the Bt toxin within the nematode. The described findings will also contribute to a deeper understanding of host-microbe interaction in other organisms, including humans, and may provide key information that touches far reaching aspects of coevolutionary processes.
Collapse
|
20
|
Grizanova EV, Dubovskiy IM, Whitten MMA, Glupov VV. Contributions of cellular and humoral immunity of Galleria mellonella larvae in defence against oral infection by Bacillus thuringiensis. J Invertebr Pathol 2014; 119:40-6. [PMID: 24735783 DOI: 10.1016/j.jip.2014.04.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 04/02/2014] [Accepted: 04/04/2014] [Indexed: 01/12/2023]
Abstract
In this study the cellular and humoral immune reactions of the Greater wax moth Galleria mellonella have been investigated during bacterial infection caused by oral administration of Bacillus thuringiensis. Two different dose strengths were investigated to assess the contribution of immune parameters to induced Bt resistance. Low-dose (sublethal LC15) infection resulted in significantly elevated haemolymph phenoloxidase and lysozyme-like activity, enhanced phagocytic activity of haemocytes, and increased encapsulation responses in infected larvae at 48 and 72 h post infection. Higher doses of Bt (half-lethal LC50) also triggered significantly elevated haemolymph phenoloxidase and lysozyme-like activity, but decreased the coagulation index and activity of phenoloxidase in haemocytes of infected larvae. In both types of infection, the pool of circulating haemocytes became depleted. The importance of cellular and humoral immune reactions in induced insect resistance to intestinal bacterial infection Bt is herein discussed.
Collapse
Affiliation(s)
- E V Grizanova
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Science, Frunze Street 11, 630091 Novosibirsk, Russia
| | - I M Dubovskiy
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Science, Frunze Street 11, 630091 Novosibirsk, Russia.
| | - M M A Whitten
- Institute of Life Science, College of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - V V Glupov
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Science, Frunze Street 11, 630091 Novosibirsk, Russia
| |
Collapse
|
21
|
Bel Y, Jakubowska AK, Costa J, Herrero S, Escriche B. Comprehensive analysis of gene expression profiles of the beet armyworm Spodoptera exigua larvae challenged with Bacillus thuringiensis Vip3Aa toxin. PLoS One 2013; 8:e81927. [PMID: 24312604 PMCID: PMC3846680 DOI: 10.1371/journal.pone.0081927] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 10/17/2013] [Indexed: 01/03/2023] Open
Abstract
Host-pathogen interactions result in complex relationship, many aspects of which are not completely understood. Vip proteins, which are Bacillus thuringensis (Bt) insecticidal toxins produced during the vegetative stage, are selectively effective against specific insect pests. This new group of Bt proteins represents an interesting alternative to the classical Bt Cry toxins because current data suggests that they do not share the same mode of action. We have designed and developed a genome-wide microarray for the beet armyworm Spodoptera exigua, a serious lepidopteran pest of many agricultural crops, and used it to better understand how lepidopteran larvae respond to the treatment with the insecticidal protein Vip3Aa. With this approach, the goal of our study was to evaluate the changes in gene expression levels caused by treatment with sublethal doses of Vip3Aa (causing 99% growth inhibition) at 8 and 24 h after feeding. Results indicated that the toxin provoked a wide transcriptional response, with 19% of the microarray unigenes responding significantly to treatment. The number of up- and down-regulated unigenes was very similar. The number of genes whose expression was regulated at 8 h was similar to the number of genes whose expression was regulated after 24 h of treatment. The up-regulated sequences were enriched for genes involved in innate immune response and in pathogen response such as antimicrobial peptides (AMPs) and repat genes. The down-regulated sequences were mainly unigenes with homology to genes involved in metabolism. Genes related to the mode of action of Bt Cry proteins were found, in general, to be slightly overexpressed. The present study is the first genome-wide analysis of the response of lepidopteran insects to Vip3Aa intoxication. An insight into the molecular mechanisms and components related to Vip intoxication will allow designing of more effective management strategies for pest control.
Collapse
Affiliation(s)
- Yolanda Bel
- Department of Genetics, University of Valencia, Burjassot, Valencia, Spain
| | | | - Juliana Costa
- Department of Applied Biology, UNESP, Jaboticabal, Sao Paulo, Brazil
| | - Salvador Herrero
- Department of Genetics, University of Valencia, Burjassot, Valencia, Spain
| | - Baltasar Escriche
- Department of Genetics, University of Valencia, Burjassot, Valencia, Spain
| |
Collapse
|
22
|
Contreras E, Schoppmeier M, Real MD, Rausell C. Sodium solute symporter and cadherin proteins act as Bacillus thuringiensis Cry3Ba toxin functional receptors in Tribolium castaneum. J Biol Chem 2013; 288:18013-21. [PMID: 23645668 DOI: 10.1074/jbc.m113.474445] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Understanding how Bacillus thuringiensis (Bt) toxins interact with proteins in the midgut of susceptible coleopteran insects is crucial to fully explain the molecular bases of Bt specificity and insecticidal action. In this work, aminopeptidase N (TcAPN-I), E-cadherin (TcCad1), and sodium solute symporter (TcSSS) have been identified by ligand blot as putative Cry3Ba toxin-binding proteins in Tribolium castaneum (Tc) larvae. RNA interference knockdown of TcCad1 or TcSSS proteins resulted in decreased susceptibility to Cry3Ba toxin, demonstrating the Cry toxin receptor functionality for these proteins. In contrast, TcAPN-I silencing had no effect on Cry3Ba larval toxicity, suggesting that this protein is not relevant in the Cry3Ba toxin mode of action in Tc. Remarkable features of TcSSS protein were the presence of cadherin repeats in its amino acid sequence and that a TcSSS peptide fragment containing a sequence homologous to a binding epitope found in Manduca sexta and Tenebrio molitor Bt cadherin functional receptors enhanced Cry3Ba toxicity. This is the first time that the involvement of a sodium solute symporter protein as a Bt functional receptor has been demonstrated. The role of this novel receptor in Bt toxicity against coleopteran insects together with the lack of receptor functionality of aminopeptidase N proteins might account for some of the differences in toxin specificity between Lepidoptera and Coleoptera insect orders.
Collapse
Affiliation(s)
- Estefanía Contreras
- Departamento de Genética, Facultad de Ciencias Biológicas, Universidad de Valencia, Burjassot 46100, Valencia, Spain
| | | | | | | |
Collapse
|
23
|
Pardo-López L, Soberón M, Bravo A. Bacillus thuringiensisinsecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection. FEMS Microbiol Rev 2013; 37:3-22. [DOI: 10.1111/j.1574-6976.2012.00341.x] [Citation(s) in RCA: 473] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 04/10/2012] [Accepted: 04/16/2012] [Indexed: 11/30/2022] Open
|
24
|
Ma G, Schmidt O, Keller M. Pre-feeding of a glycolipid binding protein LEC-8 from Caenorhabditis elegans revealed enhanced tolerance to Cry1Ac toxin in Helicoverpa armigera. RESULTS IN IMMUNOLOGY 2012; 2:97-103. [PMID: 24371572 DOI: 10.1016/j.rinim.2012.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 05/04/2012] [Accepted: 05/04/2012] [Indexed: 12/01/2022]
Abstract
Crystal toxins from Bacillus thuringiensis bind to glycolipids and glycoproteins using two different lectin domains in the toxin protein. Our previous observations suggested that the sequestration of crystal toxin depends on the functional interaction of a toxin lectin with glycolipids. Given the finding that competition of a galectin LEC-8 with Cry5B for binding to glycolipids resulting in reduced Bt toxicity in nematode, it is interesting to explore the role of LEC-8 in insects. Here, we reported that the LEC-8 can also be exploited by insect for their survival when they were fed with Bt toxin food. Bioassay with LEC-8 showed that pre-feeding of Helicoverpa armigera larvae reduced the Cry1Ac susceptibility. Both LEC-8 and Cry1Ac bind to the midgut glycolipid in a similar way. Further ELISA indicated that LEC-8 interacts with glycolipid from insect midgut, thus reduce Cry1Ac binding to glycolipid. This in turn enhances insect tolerance to Cry1Ac toxin. The sugar determinants of LEC-8 were studied by using haemagglutination (HA) and haemagglutination inhibition (HAI) assay. It was suggested that the terminal sugar of LEC-8 has multiple sugar binding property.
Collapse
Affiliation(s)
- Gang Ma
- School of Agriculture Food and Wine, Waite Campus, University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Otto Schmidt
- School of Agriculture Food and Wine, Waite Campus, University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Mike Keller
- School of Agriculture Food and Wine, Waite Campus, University of Adelaide, Glen Osmond, SA 5064, Australia
| |
Collapse
|