1
|
Jiang X, Tian L, Ren W, Li C, Hu X, Ge Y, Cheng L, Shi X, Jia Z. Cloning and Identification of Common Carp ( Cyprinus carpio) PI3KC3 and Its Expression in Response to CyHV-3 Infection. Curr Issues Mol Biol 2024; 46:11714-11728. [PMID: 39451576 PMCID: PMC11506267 DOI: 10.3390/cimb46100696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
Phosphoinositide 3-kinases (PI3Ks) are a class of key regulatory factors in eukaryotes that can inhibit viral replication by influencing autophagy. Currently, cyprinid herpesvirus 3 (CyHV-3) poses a serious threat to common carp culture. However, PI3K has not yet been identified in common carp. In this study, full-length PI3KC3 from common carp (CcPI3KC3), consisting of an open reading frame (ORF) of 2664 bp encoding a polypeptide of 887 amino acids, with a predicted molecular mass of 101.19 kDa and a theoretical isoelectric point (pI) of 5.97, was cloned. The amino acid and nucleotide sequences of CcPI3KC3 displayed high similarity to yellow catfish's (Tachysurus fulvidraco) PI3KC3. The tissue expression profile revealed that the mRNA levels of CcPI3KC3 in the liver, spleen, and head kidney were significantly greater than those in the brain, heart, intestines, gills, eyes, testes, and ovaries of common carp. We compared the expression patterns of CcPI3KC3 between "Longke-11" mirror carp (CyHV-3-resistant carp) and German mirror carp (non-resistant to CyHV-3) at different times (0, 48, 96, 144 h, 192, 240, 288 h post-infection (hpi)) after CyHV-3 infection. The results revealed that CcPI3KC3 mRNA expression significantly increased in the early infection stage. In the CyHV-3-resistant mirror carp variety, the relative expression of CcPI3KC3 was significantly greater at 48, 96, and 144 hpi compared with the nonbreeding strain groups after infection (p < 0.001). These results indicate that the full-length CcPI3KC3 sequence was successfully cloned from common carp for the first time, and it might play an important role in the immune system of common carp against CyHV-3 infection. This study provides a theoretical basis for the molecular mechanism of CyHV-3 resistance.
Collapse
Affiliation(s)
- Xiaona Jiang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150076, China; (X.J.); (L.T.); (W.R.); (C.L.); (X.H.); (Y.G.); (L.C.); (X.S.)
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150076, China
| | - Lijing Tian
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150076, China; (X.J.); (L.T.); (W.R.); (C.L.); (X.H.); (Y.G.); (L.C.); (X.S.)
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150076, China
| | - Wanying Ren
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150076, China; (X.J.); (L.T.); (W.R.); (C.L.); (X.H.); (Y.G.); (L.C.); (X.S.)
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150076, China
| | - Chitao Li
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150076, China; (X.J.); (L.T.); (W.R.); (C.L.); (X.H.); (Y.G.); (L.C.); (X.S.)
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150076, China
| | - Xuesong Hu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150076, China; (X.J.); (L.T.); (W.R.); (C.L.); (X.H.); (Y.G.); (L.C.); (X.S.)
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150076, China
| | - Yanlong Ge
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150076, China; (X.J.); (L.T.); (W.R.); (C.L.); (X.H.); (Y.G.); (L.C.); (X.S.)
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150076, China
| | - Lei Cheng
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150076, China; (X.J.); (L.T.); (W.R.); (C.L.); (X.H.); (Y.G.); (L.C.); (X.S.)
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150076, China
| | - Xiaodan Shi
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150076, China; (X.J.); (L.T.); (W.R.); (C.L.); (X.H.); (Y.G.); (L.C.); (X.S.)
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150076, China
| | - Zhiying Jia
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150076, China; (X.J.); (L.T.); (W.R.); (C.L.); (X.H.); (Y.G.); (L.C.); (X.S.)
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150076, China
| |
Collapse
|
2
|
Dorfman B, Marcos-Hadad E, Tadmor-Levi R, David L. Disease resistance and infectivity of virus susceptible and resistant common carp strains. Sci Rep 2024; 14:4677. [PMID: 38409362 PMCID: PMC10897132 DOI: 10.1038/s41598-024-55133-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 02/20/2024] [Indexed: 02/28/2024] Open
Abstract
Infectious diseases challenge health and welfare of humans and animals. Unlike for humans, breeding of genetically resistant animals is a sustainable solution, also providing unique research opportunities. Chances to survive a disease are improved by disease resistance, but depend also on chances to get infected and infect others. Considerable knowledge exists on chances of susceptible and resistant animals to survive a disease, yet, almost none on their infectivity and if and how resistance and infectivity correlate. Common carp (Cyprinus carpio) is widely produced in aquaculture, suffering significantly from a disease caused by cyprinid herpes virus type 3 (CyHV-3). Here, the infectivity of disease-resistant and susceptible fish types was tested by playing roles of shedders (infecting) and cohabitants (infected) in all four type-role combinations. Resistant shedders restricted spleen viral load and survived more than susceptible ones. However, mortality of susceptible cohabitants infected by resistant shedders was lower than that of resistant cohabitants infected by susceptible shedders. Virus levels in water were lower in tanks with resistant shedders leading to lower spleen viral loads in cohabitants. Thus, we empirically demonstrated that disease resistant fish survive better and infect less, with implications to epidemiology in general and to the benefit of aquaculture production.
Collapse
Affiliation(s)
- Batya Dorfman
- Department of Animal Sciences, RH Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Evgeniya Marcos-Hadad
- Department of Animal Sciences, RH Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Roni Tadmor-Levi
- Department of Animal Sciences, RH Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Lior David
- Department of Animal Sciences, RH Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
3
|
Khan Q, Yousafzai AM. Plant based synthesis of silver nanoparticles, antimicrobial efficiency, and toxicological assessment using freshwater fish (Cyprinus carpio). Microsc Res Tech 2024; 87:53-64. [PMID: 37728059 DOI: 10.1002/jemt.24411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/26/2023] [Accepted: 08/20/2023] [Indexed: 09/21/2023]
Abstract
Silver nanoparticles (AgNPs) are widely used and have various applications, including medicine, electronics, and textiles. However, their increasing use raises concern about their potential environmental impact, particularly on aquatic organisms, such as fish, which are the primary consumers of aquatic environments and can be exposed to AgNPs through various routes. For this purpose, the leaves of the plant species Bellis perennis were used as a reductive agent to convert silver nitrate into AgNPs, to assess its toxicity against fish. Well-dispersed and undersized AgNPs were obtained and confirmed using analytical techniques, including Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). Moreover, the AgNPs have shown significant antibacterial activity against Aeromonas hydrophila (25.71 ± 0.63) and Vibrio harveyi (22.39 ± 0.29). In addition, the toxicity of the obtained AgNPs was assessed by exposing Cyprinus carpio to various concentrations, including 0.06, 0.1, and 0.2 mg/L. The findings revealed that the AgNPs were significantly accumulated in the intestine, followed by the gills, liver, muscles, kidney, and brain. This bioaccumulation led to histological alterations and destruction in the villi of the intestine, regeneration of liver cells, and degeneration of the gill lamella. RESEARCH HIGHLIGHTS: Plants based synthesis of AgNPs is mostly considered as eco-friendly A significant antibacterial activity was obtained The plant mediated AgNPs were found less toxic The AgNPs was profoundly accumulated and causes histological alterations.
Collapse
Affiliation(s)
- Qaisar Khan
- Department of Zoology, Islamia College University, Peshawar, Pakistan
| | | |
Collapse
|
4
|
Lee X, Fan Z, Huang Z, Guo M, Peng D, Luo W, Qin Q, Wang S, Wei S, Yang M. Common carp (Cyprinus carpio) CD81 promoting CyHV-3 virus replication via regulating autophagy and RLRs-interferon signaling pathway. FISH & SHELLFISH IMMUNOLOGY 2023; 143:109181. [PMID: 37871756 DOI: 10.1016/j.fsi.2023.109181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/25/2023]
Abstract
Cyprinid herpesvirus type 3 (CyHV-3), also called Koi herpesvirus (KHV), which leads to mass cyprinid mortality and enormous economic losses. To establish an infection, CyHV-3 needs to counteract host antiviral responses. CD81 belongs to the evolutionary conserved tetraspanin family of proteins. Several studies have shown that different members of the tetraspanin superfamily modulates different virus infectious processes. Here we aimed at analysing the role of CD81 in CyHV-3 infection. In this study, we cloned and characterized the CD81 of Common Carp, the open reading frame of CcCD81 gene was 702 bp, which encoded 234 amino acids with four transmembrane domains (TM1 to TM4), a small extracellular loop (SEL), and a large extracellular loop (LEL). Tissue distribution analysis showed that CcCD81 was widely expressed in all the tested tissues with the highest expression in head kidney, followed by a high expression in brain. Subsequently, expression levels of CcCD81 were significantly increased in CCB cells within the first 3h after infection, meanwhile, the expression of viral gene VP136 was reduced after CcCD81 knockdown in CCB cells post CyHV-3 infection. Furthermore, CcCD81 knockdown can significantly reduce the autophagy process and increase the promoter activity of ISRE and IFN-1 in the CCB cells after viral infection, as well as other genes involved in the IFN signaling pathway, including RIG-1、MDA5、MAVS、TBK1 and IRF3. Taking the data together, we revealed that CcCD81 mediates autophagy and blocks RIG-1-mediated antiviral signaling and negatively regulates the promoter activity of type I interferon (IFN) promoting virus replication. These results reveal a new link between autophagy and four-transmembrane-domain protein superfamily and contribute to elucidate the mechanism of CyHV-3 infection.
Collapse
Affiliation(s)
- Xuezhu Lee
- College of Marine Sciences of South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China
| | - Zihan Fan
- College of Marine Sciences of South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China
| | - Zhihong Huang
- College of Marine Sciences of South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China
| | - Min Guo
- College of Marine Sciences of South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China
| | - Dikuang Peng
- College of Marine Sciences of South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China
| | - Wei Luo
- College of Marine Sciences of South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China
| | - Qiwei Qin
- College of Marine Sciences of South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China
| | - Shaowen Wang
- College of Marine Sciences of South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China
| | - Shina Wei
- College of Marine Sciences of South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China
| | - Min Yang
- College of Marine Sciences of South China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China.
| |
Collapse
|
5
|
Yi S, Wu Y, Gu X, Cheng Y, Zhang Z, Yuan Z, Xie H, Qian S, Huang M, Fei H, Yang S. Infection dynamic of Micropterus salmoides rhabdovirus and response analysis of largemouth bass after immersion infection. FISH & SHELLFISH IMMUNOLOGY 2023; 139:108922. [PMID: 37393061 DOI: 10.1016/j.fsi.2023.108922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/03/2023]
Abstract
Largemouth bass (Micropterus salmoides) is an important economic freshwater aquaculture fish originating from North America. However, the frequent outbreaks of Micropterus salmoides rhabdovirus (MSRV) have seriously limited the healthy development of Micropterus salmoides farming industry. In the present study, a strain of MSRV was isolated and identified from infected largemouth bass by PCR, transmission electron micrograph observation and genome sequences analysis, and tentatively named MSRV-HZ01 strain. Phylogenetic analyses showed that the MSRV-HZ01 presented the highest similarity to MSRV-2021, followed by MSRV-FJ985 and MSRV-YH01. The various tissues of juvenile largemouth bass exhibited significant pathological damage following MSRV-HZ01 immersion infection, and the mortality reached 90%. We also found that intestine was the key organ for MSRV to enter the fish body initially by dynamic analysis of viral infection, and the head kidney was the susceptible tissue of virus. Moreover, the MSRV was also transferred to the external mucosal tissue in later stage of viral infection to achieve horizontal transmission. In addition, the genes of IFN γ and IFN I-C were significantly up-regulated after MSRV infection to exert antiviral functions. The genes of cGAS and Sting might play an important role in the regulation of interferon expression. In conclusion, we investigated the virus infection dynamics and fish response following MSRV immersion infection, which would promote our understanding of the interaction between MSRV and largemouth bass under natural infection.
Collapse
Affiliation(s)
- Shunfa Yi
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China
| | - Youjun Wu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China
| | - Xie Gu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China
| | - Yan Cheng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China
| | - Zesheng Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China
| | - Zhenzhen Yuan
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China
| | - Hongbao Xie
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China
| | - Shichao Qian
- Huzhou Baijiayu Biotech Co., Ltd., 313000, Huzhou, China
| | - Mengmeng Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Hui Fei
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Shun Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, 310018, China; Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
6
|
Yang Z, Luo W, Huang Z, Guo M, He X, Fan Z, Wang Q, Qin Q, Yang M, Lee X. Genome-Wide Analysis of Differentially Expressed mRNAs and lncRNAs in Koi Carp Infected with Koi Herpesvirus. Viruses 2022; 14:v14112555. [PMID: 36423164 PMCID: PMC9694643 DOI: 10.3390/v14112555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) constitute an emerging group of ncRNAs that modulate gene expression at the transcriptional or translational level. Koi herpesvirus (KHV), also known as Cyprinus herpesvirus type 3 (CyHV-3) and characterized by high pathogenicity and high mortality, has caused substantial economic losses in the common carp and koi carp fisheries industry. In this work, we sequenced the lncRNA and mRNA of host koi carp infected with KHV. A total of 20,178 DEmRNAs were obtained, of which 5021 mRNAs were upregulated and 15,157 mRNAs were downregulated. Both KEGG pathways and GO terms were enriched in many important immune pathways. The KEGG analysis showed that DEGs were significantly enriched in many important immune pathways, such as apoptosis, NOD-like receptor signaling pathway, Jak-STAT signaling pathway, TNF signaling pathway, IL-17 signaling pathway, NF-kappa B signaling pathway, and so on. Furthermore, a total of 32,697 novel lncRNA transcripts were obtained from koi carp immune tissues; 9459 of these genes were differentially expressed. Through antisense, cis-acting, and trans-acting analyses, the target genes of differentially expressed lncRNAs (DElncRNAs) were predicted. Gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses showed that the DElncRNA expression pattern was consistent with the differential mRNA expression pattern. The lncRNA-mRNA network analysis, which included many immune pathways, showed that after KHV infection, the expression of most lncRNAs and their target mRNAs were downregulated, suggesting that these lncRNAs engage in a positive regulatory relationship with their target mRNAs. Considering that many studies have shown that herpesviruses can escape the immune system by negatively regulating these immune pathways, we speculated that these lncRNAs play a significant role in KHV's escape from host immunity. Furthermore, 10 immune-related genes and 20 lncRNAs were subsequently verified through RT-qPCR, to confirm the accuracy of the high-throughput sequencing results. In this study, we aimed to explore lncRNA functions in the immune response of lower vertebrates and provide a theoretical basis for the study of noncoding RNAs in teleosts. Therefore, exploring lncRNA expression in KHV-infected koi carp helped us better understand the biological role played by lncRNA-dependent pathways in aquaculture animal viral infection.
Collapse
Affiliation(s)
- Zimin Yang
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bio Resource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Wei Luo
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bio Resource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zhihong Huang
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bio Resource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Min Guo
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bio Resource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiaochuan He
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bio Resource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zihan Fan
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bio Resource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qing Wang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development of Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangzhou 510380, China
| | - Qiwei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bio Resource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
| | - Min Yang
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bio Resource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (M.Y.); (X.L.)
| | - Xuezhu Lee
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bio Resource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (M.Y.); (X.L.)
| |
Collapse
|
7
|
Development of an attenuated vaccine against Koi Herpesvirus Disease (KHVD) suitable for oral administration and immersion. NPJ Vaccines 2022; 7:106. [PMID: 36068296 PMCID: PMC9448810 DOI: 10.1038/s41541-022-00525-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 08/05/2022] [Indexed: 12/02/2022] Open
Abstract
Since the end of the1990ies, Cyprinid herpesvirus 3 (also known as koi herpesvirus, KHV) has caused mass mortality events of koi and common carp all over the globe. This induced a high economic impact, since the KHV disease cannot be cured up to now, but only prevented by vaccination. Unfortunately, there is only one commercial vaccine available which is not approved in most countries. Therefore, there is an urgent need for new, safe and available vaccines. In this study, a live attenuated vaccine virus was generated by cell culture passages of virulent KHV, and shown to protect carp or koi after immersion or oral application against wild type challenge. An advantage of boost immunization was demonstrated, especially after oral application. Vaccination induced no or mild clinical signs and protecting antibodies have been measured. Additionally, the vaccine virus allowed differentiation of infected from vaccinated animals (DIVA) by PCR. The attenuation of the newly generated vaccine was tracked down to a partial deletion of open reading frame 150. This was confirmed by the generation of engineered ORF150 deletion mutants of wild-type KHV which exhibited a similar attenuation in vivo.
Collapse
|
8
|
Machat R, Pojezdal L, Gebauer J, Matiasovic J, Tesarik R, Minarova H, Hodkovicova N, Faldyna M. Early immune response of two common carp breeds to koi herpesvirus infection. FISH & SHELLFISH IMMUNOLOGY 2022; 128:206-215. [PMID: 35940535 DOI: 10.1016/j.fsi.2022.07.064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/19/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Economic importance of common carp (Cyprinus carpio L.) increases every year. Viral diseases are major threat for carp aquaculture and cause significant economic losses. Koi herpesvirus (KHV) is one of the most serious carp diseases. Current study is focused on confirmation of possible differences in early immune response to KHV depending on level of resistance. Class I interferon signalling, complement cascade and cell-mediated cytotoxicity are hypothesized as major mechanisms of early innate immune response against KHV. Different breeds of common carp show distinct level of resistance to KHV. Two breeds of common carp with completely different susceptibility to KHV were chosen for current research: amur wild carp (AS) as highly resistant and koi carp (KOI) as very susceptible breed. KHV infection caused no mortalities, but the viral load in selected tissues increased during infection. Levels of expressions of chosen genes was examined using qRT-PCR and overall change in protein expression profiles was analysed by mass spectrometry. Significant differences in immune response between AS and KOI were detected mostly at the level of protein expression. Although cell-mediated cytotoxicity showed minimal influence during KHV infection, many immune response parameters related to class I interferon signalling pathway and complement cascade were increased earlier during KHV infection in AS comparing to KOI.
Collapse
Affiliation(s)
- Radek Machat
- Department of Infection Diseases and Preventive Medicine, Veterinary Research Institute, Brno, 621 00, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, 625 00, Czech Republic
| | - Lubomir Pojezdal
- Department of Infection Diseases and Preventive Medicine, Veterinary Research Institute, Brno, 621 00, Czech Republic
| | - Jan Gebauer
- Department of Infection Diseases and Preventive Medicine, Veterinary Research Institute, Brno, 621 00, Czech Republic
| | - Jan Matiasovic
- Department of Infection Diseases and Preventive Medicine, Veterinary Research Institute, Brno, 621 00, Czech Republic
| | - Radek Tesarik
- Department of Infection Diseases and Preventive Medicine, Veterinary Research Institute, Brno, 621 00, Czech Republic
| | - Hana Minarova
- Department of Infection Diseases and Preventive Medicine, Veterinary Research Institute, Brno, 621 00, Czech Republic; Department of Ecology & Diseases of Zoo Animals, Game, Fish and Bees, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, 612 42, Czech Republic
| | - Nikola Hodkovicova
- Department of Infection Diseases and Preventive Medicine, Veterinary Research Institute, Brno, 621 00, Czech Republic
| | - Martin Faldyna
- Department of Infection Diseases and Preventive Medicine, Veterinary Research Institute, Brno, 621 00, Czech Republic.
| |
Collapse
|
9
|
de Lucca Maganha SR, Cardoso PHM, de Carvalho Balian S, de Almeida-Queiroz SR, Fernandes AM, de Sousa RLM. Molecular detection and phylogenetic analysis of Cyprinid herpesvirus 3 in Brazilian ornamental fish. Braz J Microbiol 2022; 53:1807-1815. [PMID: 35867280 PMCID: PMC9679093 DOI: 10.1007/s42770-022-00797-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/07/2022] [Indexed: 01/13/2023] Open
Abstract
Cyprinid herpesvirus 3 has a worldwide distribution and presents high mortality rates in species of Cyprinus carpio, causing serious economic loss to the global aquaculture industry. The description of this infection in other ornamental fish species is still limited. For this purpose, 100 ornamental fish from 24 different species were tested by PCR for Cyprinid hespesvirus 3 and the positive samples represented 6% of the tested samples. Phylogenetic reconstruction, based on the Thymidine Kinase gene, revealed the existence of two distinct clades. One clade grouped a Brazilian sample with European and Asian genotypes of CyHV-3 and a second clade, containing only Brazilian sequences described in this study. All of the Brazilian sequences showed identity values greater than 97.7% when compared to each other. This is the first report of the occurrence of Cyprinid herpesvirus 3 in ornamental fish species in Brazil. These results in association with further studies of viral isolation and characterization can help in establishing effective surveillance and disease control program.
Collapse
Affiliation(s)
- Samara Rita de Lucca Maganha
- Faculty of Animal Science and Food Engineering, University of Sao Paulo, Avenue Duque de Caxias Norte, Jardim Elite, Pirassununga, Sao Paulo, 225, Brazil.
| | | | | | - Sabrina Ribeiro de Almeida-Queiroz
- Faculty of Animal Science and Food Engineering, University of Sao Paulo, Avenue Duque de Caxias Norte, Jardim Elite, Pirassununga, Sao Paulo, 225, Brazil
| | - Andrezza Maria Fernandes
- Faculty of Animal Science and Food Engineering, University of Sao Paulo, Avenue Duque de Caxias Norte, Jardim Elite, Pirassununga, Sao Paulo, 225, Brazil
| | - Ricardo Luiz Moro de Sousa
- Faculty of Animal Science and Food Engineering, University of Sao Paulo, Avenue Duque de Caxias Norte, Jardim Elite, Pirassununga, Sao Paulo, 225, Brazil
| |
Collapse
|
10
|
Adamek M, Matras M, Rebl A, Stachnik M, Falco A, Bauer J, Miebach AC, Teitge F, Jung-Schroers V, Abdullah M, Krebs T, Schröder L, Fuchs W, Reichert M, Steinhagen D. Don't Let It Get Under Your Skin! - Vaccination Protects the Skin Barrier of Common Carp From Disruption Caused by Cyprinid Herpesvirus 3. Front Immunol 2022; 13:787021. [PMID: 35173716 PMCID: PMC8842664 DOI: 10.3389/fimmu.2022.787021] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/11/2022] [Indexed: 12/14/2022] Open
Abstract
Vaccination is the best form of protecting fish against viral diseases when the pathogen cannot be contained by biosecurity measures. Vaccines based on live attenuated viruses seem to be most effective for vaccination against challenging pathogens like Cyprinid herpesvirus 3. However, there are still knowledge gaps how these vaccines effectively protect fish from the deadly disease caused by the epitheliotropic CyHV-3, and which aspects of non-direct protection of skin or gill integrity and function are important in the aquatic environment. To elucidate some elements of protection, common carp were vaccinated against CyHV-3 using a double deletion vaccine virus KHV-T ΔDUT/TK in the absence or presence of a mix of common carp beta-defensins 1, 2 and 3 as adjuvants. Vaccination induced marginal clinical signs, low virus load and a minor upregulation of cd4, cd8 and igm gene expression in vaccinated fish, while neutralisation activity of blood serum rose from 14 days post vaccination (dpv). A challenge infection with CyHV-3 induced a severe disease with 80-100% mortality in non-vaccinated carp, while in vaccinated carp, no mortality was recorded and the virus load was >1,000-fold lower in the skin, gill and kidney. Histological analysis showed strongest pathological changes in the skin, with a complete destruction of the epidermis in non-vaccinated carp. In the skin of non-vaccinated fish, T and B cell responses were severely downregulated, inflammation and stress responses were increased upon challenge, whereas vaccinated fish had boosted neutrophil, T and B cell responses. A disruption of skin barrier elements (tight and adherence junction, desmosomes, mucins) led to an uncontrolled increase in skin bacteria load which most likely exacerbated the inflammation and the pathology. Using a live attenuated virus vaccine, we were able to show that increased neutrophil, T and B cell responses provide protection from CyHV-3 infection and lead to preservation of skin integrity, which supports successful protection against additional pathogens in the aquatic environment which foster disease development in non-vaccinated carp.
Collapse
Affiliation(s)
- Mikolaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Marek Matras
- Laboratory of Fish Diseases, National Veterinary Research Institute, Pulawy, Poland
| | - Alexander Rebl
- Fish Genetics Unit, Research Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Dummerstorf, Germany
| | - Magdalena Stachnik
- Laboratory of Fish Diseases, National Veterinary Research Institute, Pulawy, Poland
| | - Alberto Falco
- Institute of Research, Development, and Innovation in Healthcare Biotechnology in Elche (IDiBE), Miguel Hernández University (UMH), Elche, Spain
| | - Julia Bauer
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Anne-Carina Miebach
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Felix Teitge
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Verena Jung-Schroers
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Muhammad Abdullah
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Torben Krebs
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Lars Schröder
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Walter Fuchs
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Michal Reichert
- Laboratory of Fish Diseases, National Veterinary Research Institute, Pulawy, Poland
| | - Dieter Steinhagen
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
11
|
Fan ZH, Xu Y, Luo W, He XC, Zheng TT, Zhang JJ, Xu XY, Qin QW, Lee XZ. Molecular cloning and characterization of CD63 in common carp infected with koi herpesvirus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 121:104102. [PMID: 33862099 DOI: 10.1016/j.dci.2021.104102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
CD63 is a member of the four-transmembrane-domain protein superfamily and is the first characterized tetraspanin protein. In the present study, we cloned the common carp (Cyprinus Carpio) CD63 (ccCD63) sequence and found that the ccCD63 ORF contained 711 bp and encoded a protein of 236 amino acids. Homology analysis revealed that the complete ccCD63 sequence had 84.08% amino acid similarity to CD63 of Sinocyclocheilus anshuiensis. Subcellular localization analysis revealed that ccCD63 was localized in the cytoplasm. Quantitative real-time PCR (qRT-PCR) analysis indicated that ccCD63 was expressed in the gill, intestine, liver, spleen, brain and kidney, with higher expression in spleen and brain tissues than in the other examined tissues. After koi herpesvirus (KHV) infection, these tissues exhibited various expression levels of ccCD63. The expression level was the lowest in the liver and highest in the brain; the expression level in the brain was 8.7-fold higher than that in the liver. Furthermore, knockdown of ccCD63 promoted KHV infection. Moreover, ccCD63 was correlated with the regulation of RIG-I/MAVS/TRAF3/TBK1/IRF3 and may be involved in the antiviral response through the RIG-I viral recognition signalling pathway in a TRAF3/TBK1-dependent manner. Taken together, our results suggested that ccCD63 upregulated the interaction of KHV with the host immune system and suppressed the dissemination of KHV.
Collapse
Affiliation(s)
- Z H Fan
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Y Xu
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - W Luo
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - X C He
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - T T Zheng
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - J J Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - X Y Xu
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Q W Qin
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - X Z Lee
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
12
|
Jia Z, Wu N, Jiang X, Li H, Sun J, Shi M, Li C, Ge Y, Hu X, Ye W, Tang Y, Shan J, Cheng Y, Xia XQ, Shi L. Integrative Transcriptomic Analysis Reveals the Immune Mechanism for a CyHV-3-Resistant Common Carp Strain. Front Immunol 2021; 12:687151. [PMID: 34290708 PMCID: PMC8287582 DOI: 10.3389/fimmu.2021.687151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/14/2021] [Indexed: 12/19/2022] Open
Abstract
Anti-disease breeding is becoming the most promising solution to cyprinid herpesvirus-3 (CyHV-3) infection, the major threat to common carp aquaculture. Virus challenging studies suggested that a breeding strain of common carp developed resistance to CyHV-3 infection. This study illustrates the immune mechanisms involved in both sensitivity and anti-virus ability for CyHV3 infection in fish. An integrative analysis of the protein-coding genes and long non-coding RNAs (lncRNAs) using transcriptomic data was performed. Tissues from the head kidney of common carp were extracted at days 0 (the healthy control) and 7 after CyHV-3 infection (the survivors) and used to analyze the transcriptome through both Illumina and PacBio sequencing. Following analysis of the GO terms and KEGG pathways involved, the immune-related terms and pathways were merged. To dig out details on the immune aspect, the DEGs were filtered using the current common carp immune gene library. Immune gene categories and their corresponding genes in different comparison groups were revealed. Also, the immunological Gene Ontology terms for lncRNA modulation were retained. The weighted gene co-expression network analysis was used to reveal the regulation of immune genes by lncRNA. The results demonstrated that the breeding carp strain develops a marked resistance to CyHV-3 infection through a specific innate immune mechanism. The featured biological processes were autophagy, phagocytosis, cytotoxicity, and virus blockage by lectins and MUC3. Moreover, the immune-suppressive signals, such as suppression of IL21R on STAT3, PI3K mediated inhibition of inflammation by dopamine upon infection, as well as the inhibition of NLRC3 on STING during a steady state. Possible susceptible factors for CyHV-3, such as ITGB1, TLR18, and CCL4, were also revealed from the non-breeding strain. The results of this study also suggested that Nramp and PAI regulated by LncRNA could facilitate virus infection and proliferation for infected cells respectively, while T cell leukemia homeobox 3 (TLX3), as well as galectin 3 function by lncRNA, may play a role in the resistance mechanism. Therefore, immune factors that are immunogenetically insensitive or susceptible to CyHV-3 infection have been revealed.
Collapse
Affiliation(s)
- Zhiying Jia
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China.,National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Harbin, China.,Key Laboratory of Aquatic Genomics, Ministry of Agriculture, Chinese Academy of Fishery Sciences, Beijing, China
| | - Nan Wu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaona Jiang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China.,National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Harbin, China
| | - Heng Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiaxin Sun
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China.,National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Harbin, China
| | - Mijuan Shi
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Chitao Li
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China.,National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Harbin, China
| | - Yanlong Ge
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China.,National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Harbin, China
| | - Xuesong Hu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China.,National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Harbin, China
| | - Weidong Ye
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Tang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Junwei Shan
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Yingyin Cheng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xiao-Qin Xia
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.,The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Lianyu Shi
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China.,National and Local Joint Engineering Laboratory for Freshwater Fish Breeding, Harbin, China
| |
Collapse
|
13
|
Adamek M, Davies J, Beck A, Jordan L, Becker AM, Mojzesz M, Rakus K, Rumiac T, Collet B, Brogden G, Way K, Bergmann SM, Zou J, Steinhagen D. Antiviral Actions of 25-Hydroxycholesterol in Fish Vary With the Virus-Host Combination. Front Immunol 2021; 12:581786. [PMID: 33717065 PMCID: PMC7943847 DOI: 10.3389/fimmu.2021.581786] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 01/04/2021] [Indexed: 12/22/2022] Open
Abstract
Cholesterol is essential for building and maintaining cell membranes and is critical for several steps in the replication cycle of viruses, especially for enveloped viruses. In mammalian cells virus infections lead to the accumulation of the oxysterol 25-hydroxycholesterol (25HC), an antiviral factor, which is produced from cholesterol by the cholesterol 25 hydroxylase (CH25H). Antiviral responses based on CH25H are not well studied in fish. Therefore, in the present study putative genes encoding for CH25H were identified and amplified in common carp and rainbow trout cells and an HPLC-MS method was applied for determination of oxysterol concentrations in these cells under virus infection. Our results give some evidence that the activation of CH25H could be a part of the antiviral response against a broad spectrum of viruses infecting fish, in both common carp and rainbow trout cells in vitro. Quantification of oxysterols showed that fibroblastic cells are capable of producing 25HC and its metabolite 7α,25diHC. The oxysterol 25HC showed an antiviral activity by blocking the entry of cyprinid herpesvirus 3 (CyHV-3) into KFC cells, but not spring viremia of carp virus (SVCV) or common carp paramyxovirus (Para) in the same cells, or viral haemorrhagic septicaemia virus (VHSV) and infectious pancreatic necrosis virus (IPNV) into RTG-2 cells. Despite the fact that the CH25H based antiviral response coincides with type I IFN responses, the stimulation of salmonid cells with recombinant type I IFN proteins from rainbow trout could not induce ch25h_b gene expression. This provided further evidence, that the CH25H-response is not type I IFN dependent. Interestingly, the susceptibility of CyHV-3 to 25HC is counteracted by a downregulation of the expression of the ch25h_b gene in carp fibroblasts during CyHV-3 infection. This shows a unique interplay between oxysterol based immune responses and immunomodulatory abilities of certain viruses.
Collapse
Affiliation(s)
- Mikolaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Jonathan Davies
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany.,School of Life Sciences, Keele University, Keele, United Kingdom
| | - Alexander Beck
- Institute of Bioprocess Engineering, Friedrich-Alexander-University, Erlangen, Germany
| | - Lisa Jordan
- Institute of Bioprocess Engineering, Friedrich-Alexander-University, Erlangen, Germany
| | - Anna M Becker
- Institute of Bioprocess Engineering, Friedrich-Alexander-University, Erlangen, Germany
| | - Miriam Mojzesz
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Krzysztof Rakus
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Typhaine Rumiac
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Bertrand Collet
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Graham Brogden
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany.,Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany.,Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Keith Way
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Weymouth, United Kingdom
| | - Sven M Bergmann
- Institute of Infectology, Friedrich-Loeffler-Institut (FLI), Greifswald, Germany
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.,National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Dieter Steinhagen
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
14
|
Tadmor-Levi R, Doron-Faigenboim A, Marcos-Hadad E, Petit J, Hulata G, Forlenza M, Wiegertjes GF, David L. Different transcriptional response between susceptible and resistant common carp (Cyprinus carpio) fish hints on the mechanism of CyHV-3 disease resistance. BMC Genomics 2019; 20:1019. [PMID: 31878870 PMCID: PMC6933926 DOI: 10.1186/s12864-019-6391-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/12/2019] [Indexed: 02/08/2023] Open
Abstract
Background Infectious disease outbreaks form major setbacks to aquaculture production and to further development of this important sector. Cyprinid herpes virus-3 (CyHV-3) is a dsDNA virus widely hampering production of common carp (Cyprinus carpio), one of the most farmed fish species worldwide. Genetically disease resistant strains are highly sought after as a sustainable solution to this problem. To study the genetic basis and cellular pathways underlying disease resistance, RNA-Seq was used to characterize transcriptional responses of susceptible and resistant fish at day 4 after CyHV-3 infection. Results In susceptible fish, over four times more differentially expressed genes were up-regulated between day 0 and 4 compared to resistant fish. Susceptible and resistant fish responded distinctively to infection as only 55 (9%) of the up-regulated genes were shared by these two fish types. Susceptible fish elicited a typical anti-viral response, involving interferon and interferon responsive genes, earlier than resistant fish did. Furthermore, chemokine profiles indicated that the two fish types elicited different cellular immunity responses. A comparative phylogenetic approach assisted in chemokine copies annotation pointing to different orthologous copies common to bony-fishes and even carp-specific paralogs that were differentially regulated and contributed to the different response of these two fish types. Susceptible fish up-regulated more ccl19 chemokines, which attract T-cells and macrophages, the anti-viral role of which is established, whereas resistant fish up-regulated more cxcl8/il8 chemokines, which attract neutrophils, the antiviral role of which is unfamiliar. Conclusions Taken together, by pointing out transcriptional differences between susceptible and resistant fish in response to CyHV-3 infection, this study unraveled possible genes and pathways that take part in disease resistance mechanisms in fish and thus, enhances our understanding of fish immunogenetics and supports the development of sustainable and safe aquaculture.
Collapse
Affiliation(s)
- Roni Tadmor-Levi
- Department of Animal Sciences, RH Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.,National Natural History Collections and Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Evgeniya Marcos-Hadad
- Department of Animal Sciences, RH Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Jules Petit
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands.,Aquaculture and Fisheries Group, Wageningen University & Research, Wageningen, Netherlands
| | - Gideon Hulata
- Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Maria Forlenza
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Geert F Wiegertjes
- Aquaculture and Fisheries Group, Wageningen University & Research, Wageningen, Netherlands
| | - Lior David
- Department of Animal Sciences, RH Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
15
|
Lu J, Shen Z, Lu L, Xu D. Cyprinid Herpesvirus 2 miR-C12 Attenuates Virus-Mediated Apoptosis and Promotes Virus Propagation by Targeting Caspase 8. Front Microbiol 2019; 10:2923. [PMID: 31921084 PMCID: PMC6930231 DOI: 10.3389/fmicb.2019.02923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/04/2019] [Indexed: 12/27/2022] Open
Abstract
DNA viruses, most notably members of the herpesvirus family, generally encode miRNAs to mediate both virus and host genes expression. We previously demonstrated that Cyprinid herpesvirus 2 (CyHV-2) encodes 17 miRNAs that are involved in innate immune signaling pathways. In this study, the function of CyHV-2-encoded miRNA was further investigated in GiCF cells. We found that miR-C4 promoted CyHV-2-induced apoptosis, while miR-C12 decreased CyHV-2-induced apoptosis. miR-C12 targeted to 3' UTR sequence of caspase 8 and suppressed the expression of caspase 8. Besides, the silencing of caspase 8 by specific siRNA led to the attenuation of CyHV-2-induced apoptosis. Furthermore, caspase 8 was downregulated in cells transfected with miR-C12 during CyHV-2 infection. Overexpression of miR-C12 significantly suppressed CyHV-2-induced apoptosis, while silencing of miR-C12 promoted CyHV-2-induced apoptosis. Finally, inhibition of miR-C12 resulted in suppression of CyHV-2 propagation, overexpression of miR-C12, and CASP8-siRNA-1 facilitated CyHV-2 propagation. Taken together, our results demonstrated that CyHV-2-encoded miR-C12 to suppress virus-induced apoptosis and promoted virus replication by targeting caspase 8.
Collapse
Affiliation(s)
- Jianfei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Zhaoyuan Shen
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China.,National Experimental Teaching Demonstration Center for Fishery Sciences, Shanghai Ocean University, Shanghai, China
| | - Liqun Lu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China.,National Experimental Teaching Demonstration Center for Fishery Sciences, Shanghai Ocean University, Shanghai, China
| | - Dan Xu
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Aquaculture Ministry for Freshwater Aquatic Genetic Resources, Shanghai Ocean University, Shanghai, China.,National Experimental Teaching Demonstration Center for Fishery Sciences, Shanghai Ocean University, Shanghai, China.,Guangxi Key Laboratory for Marine Biotechnology, Guangxi Institute of Oceanography, Guangxi Academy of Sciences, Beihai, China
| |
Collapse
|
16
|
Multiple interacting QTLs affect disease challenge survival in common carp (Cyprinus carpio). Heredity (Edinb) 2019; 123:565-578. [PMID: 31036952 DOI: 10.1038/s41437-019-0224-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 03/20/2019] [Accepted: 04/12/2019] [Indexed: 11/08/2022] Open
Abstract
With the steady growth of the human population, food security becomes a prime challenge. Aquaculture is the fastest growing sector providing proteins from an animal source, but outbreaks of infectious diseases repeatedly hamper the production and further development of this sector. Breeding of disease-resistant strains is a desired sustainable solution to this problem. Cyprinid herpes virus-3 (CyHV-3) is a dsDNA virus damaging production of common carp, an important food and ornamental fish. Previously, we have demonstrated successful introgression of CyHV-3 resistance from a feral strain to commercial strains. Here, we used genotyping by sequencing to identify two novel quantitative trait loci (QTLs) for disease survival that map to different linkage groups than two other QTLs that we previously identified. Effects of these four QTLs were validated and further studied in 14 families with various levels of disease resistance. CyHV-3 survival was found to be a quantitative trait conditioned by mild additive QTL effects and by intricate dominant allelic and epistatic QTL-QTL interactions. Both rare feral alleles and alleles common to feral and cultured strains contributed to survival. This and other advantages of feral alleles introgression were demonstrated. These QTLs, which affected survival of individuals within families, had no significant effect on variation in cumulative family % survival, suggesting that more between family variation remains to be explored. Unraveling the underlying genetics of survival is important for enhancing the breeding of resistant strains and our knowledge of disease resistance mechanisms.
Collapse
|
17
|
Miest JJ, Politis SN, Adamek M, Tomkiewicz J, Butts IAE. Molecular ontogeny of larval immunity in European eel at increasing temperatures. FISH & SHELLFISH IMMUNOLOGY 2019; 87:105-119. [PMID: 30590168 DOI: 10.1016/j.fsi.2018.12.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/12/2018] [Accepted: 12/23/2018] [Indexed: 06/09/2023]
Abstract
Temperature is a major factor that modulates the development and reactivity of the immune system. Only limited knowledge exists regarding the immune system of the catadromous European eel, Anguilla anguilla, especially during the oceanic early life history stages. Thus, a new molecular toolbox was developed, involving tissue specific characterisation of 3 housekeeping genes, 9 genes from the innate and 3 genes from the adaptive immune system of this species. The spatial pattern of immune genes reflected their function, e.g. complement component c3 was mainly produced in liver and il10 in the head kidney. Subsequently, the ontogeny of the immune system was studied in larvae reared from hatch to first-feeding at four temperatures, spanning their thermal tolerance range (16, 18, 20, and 22 °C). Expression of some genes (c3 and igm) declined post hatch, whilst expression of most other genes (mhc2, tlr2, il1β, irf3, irf7) increased with larval age. At the optimal temperature, 18 °C, this pattern of immune-gene expression revealed an immunocompromised phase between hatch (0 dph) and teeth-development (8 dph). The expression of two of the studied genes (mhc2, lysc) was temperature dependent, leading to increased mRNA levels at 22 °C. Additionally, at the lower end of the thermal spectrum (16 °C) immune competency appeared reduced, whilst close to the upper thermal limit (22 °C) larvae showed signs of thermal stress. Thus, protection against pathogens is probably impaired at temperatures close to the critical thermal maximum (CTmax), impacting survival and productivity in hatcheries and natural recruitment.
Collapse
Affiliation(s)
- Joanna J Miest
- Evolutionary Ecology of Marine Fish, GEOMAR Helmholtz Centre for Ocean Research, 24148 Kiel, Germany; School of Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK.
| | - Sebastian N Politis
- National Institute of Aquatic Resources, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Mikolaj Adamek
- Fish Disease Research Unit, Centre of Infectious Diseases, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Jonna Tomkiewicz
- National Institute of Aquatic Resources, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Ian A E Butts
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
18
|
Ke F, Zhang QY. Aquatic animal viruses mediated immune evasion in their host. FISH & SHELLFISH IMMUNOLOGY 2019; 86:1096-1105. [PMID: 30557608 DOI: 10.1016/j.fsi.2018.12.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/09/2018] [Accepted: 12/13/2018] [Indexed: 06/09/2023]
Abstract
Viruses are important and lethal pathogens that hamper aquatic animals. The result of the battle between host and virus would determine the occurrence of diseases. The host will fight against virus infection with various responses such as innate immunity, adaptive immunity, apoptosis, and so on. On the other hand, the virus also develops numerous strategies such as immune evasion to antagonize host antiviral responses. Here, We review the research advances on virus mediated immune evasions to host responses containing interferon response, NF-κB signaling, apoptosis, and adaptive response, which are executed by viral genes, proteins, and miRNAs from different aquatic animal viruses including Alloherpesviridae, Iridoviridae, Nimaviridae, Birnaviridae, Reoviridae, and Rhabdoviridae. Thus, it will facilitate the understanding of aquatic animal virus mediated immune evasion and potentially benefit the development of novel antiviral applications.
Collapse
Affiliation(s)
- Fei Ke
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Qi-Ya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
19
|
Impacts of an invasive virus (CyHV-3) on established invasive populations of common carp (Cyprinus carpio) in North America. Biol Invasions 2018. [DOI: 10.1007/s10530-017-1655-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Boutier M, Gao Y, Vancsok C, Suárez NM, Davison AJ, Vanderplasschen A. Identification of an essential virulence gene of cyprinid herpesvirus 3. Antiviral Res 2017; 145:60-69. [PMID: 28690142 PMCID: PMC5588920 DOI: 10.1016/j.antiviral.2017.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/01/2017] [Accepted: 07/05/2017] [Indexed: 11/25/2022]
Abstract
The genus Cyprinivirus consists of a growing list of phylogenetically related viruses, some of which cause severe economic losses to the aquaculture industry. The archetypal member, cyprinid herpesvirus 3 (CyHV-3) causes mass mortalities worldwide in koi and common carp. A CyHV-3 mutant was described previously that is attenuated in vivo by a deletion affecting two genes (ORF56 and ORF57). The relative contributions of ORF56 and ORF57 to the safety and efficacy profile of this vaccine candidate have now been assessed by analysing viruses individually deleted for ORF56 or ORF57. Inoculation of these viruses into carp demonstrated that the absence of ORF56 did not affect virulence, whereas the absence of ORF57 led to an attenuation comparable to, though slightly less than, that of the doubly deleted virus. To demonstrate further the role of ORF57 as a key virulence factor, a mutant retaining the ORF57 region but unable to express the ORF57 protein was produced by inserting multiple in-frame stop codons into the coding region. Analysis of this virus in vivo revealed a safety and efficacy profile comparable to that of the doubly deleted virus. These findings show that ORF57 encodes an essential CyHV-3 virulence factor. They also indicate that ORF57 orthologues in other cypriniviruses may offer promising targets for the rational design of attenuated recombinant vaccines. Cyprinid herpesvirus 3 (CyHV-3) causes a lethal disease in common and koi carp and is the archetypal fish alloherpesvirus. CyHV-3 ORF57 encodes an essential virulence factor and ORF57 deleted viruses represent attenuated vaccine candidates. ORF57 orthologues in other alloherpesviruses may offer promising targets for the design of attenuated recombinant vaccines.
Collapse
Affiliation(s)
- Maxime Boutier
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Yuan Gao
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Catherine Vancsok
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Nicolás M Suárez
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Andrew J Davison
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Alain Vanderplasschen
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium.
| |
Collapse
|
21
|
Tadmor-Levi R, Asoulin E, Hulata G, David L. Studying the Genetics of Resistance to CyHV-3 Disease Using Introgression from Feral to Cultured Common Carp Strains. Front Genet 2017; 8:24. [PMID: 28344591 PMCID: PMC5344895 DOI: 10.3389/fgene.2017.00024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/16/2017] [Indexed: 11/13/2022] Open
Abstract
Sustainability and further development of aquaculture production are constantly challenged by outbreaks of fish diseases, which are difficult to prevent or control. Developing fish strains that are genetically resistant to a disease is a cost-effective and a sustainable solution to address this challenge. To do so, heritable genetic variation in disease resistance should be identified and combined together with other desirable production traits. Aquaculture of common carp has suffered substantial losses from the infectious disease caused by the cyprinid herpes virus type 3 (CyHV-3) virus and the global spread of outbreaks indicates that many cultured strains are susceptible. In this research, CyHV-3 resistance from the feral strain “Amur Sassan” was successfully introgressed into two susceptible cultured strains up to the first backcross (BC1) generation. Variation in resistance of families from F1 and BC1 generations was significantly greater compared to that among families of any of the susceptible parental lines, a good starting point for a family selection program. Considerable additive genetic variation was found for CyHV-3 resistance. This phenotype was transferable between generations with contributions to resistance from both the resistant feral and the susceptible cultured strains. Reduced scale coverage (mirror phenotype) is desirable and common in cultured strains, but so far, cultured mirror carp strains were found to be susceptible. Here, using BC1 families ranging from susceptible to resistant, no differences in resistance levels between fully scaled and mirror full-sib groups were found, indicating that CyHV-3 resistance was successfully combined with the desirable mirror phenotype. In addition, the CyHV-3 viral load in tissues throughout the infection of susceptible and resistant fish was followed. Although resistant fish get infected, viral loads in tissues of these fish are significantly lesser than in those of susceptible fish, allowing them to survive the disease. Taken together, in this study we have laid the foundation for breeding CyHV-3-resistant strains and started to address the mechanisms underlying the phenotypic differences in resistance to this disease.
Collapse
Affiliation(s)
- Roni Tadmor-Levi
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem Rehovot, Israel
| | - Efrat Asoulin
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem Rehovot, Israel
| | - Gideon Hulata
- Institute of Animal Science, Agricultural Research Organization, Volcani Center Rishon LeZion, Israel
| | - Lior David
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem Rehovot, Israel
| |
Collapse
|
22
|
Torrent F, Villena A, Lee PA, Fuchs W, Bergmann SM, Coll JM. The amino-terminal domain of ORF149 of koi herpesvirus is preferentially targeted by IgM from carp populations surviving infection. Arch Virol 2016; 161:2653-65. [PMID: 27383208 DOI: 10.1007/s00705-016-2934-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 06/13/2016] [Indexed: 12/25/2022]
Abstract
Recombinantly expressed fragments of the protein encoded by ORF149 (pORF149), a structural protein from the common- and koi-carp-infecting cyprinid herpesvirus-3 (CyHV-3) that was previously shown to be antigenic, were used to obtain evidence that its amino-terminal part contains immunodominant epitopes in fish populations that survived the infection. To obtain such evidence, nonspecific binding of carp serum tetrameric IgM had to be overcome by a novel ELISA protocol (rec2-ELISA). Rec2-ELISA involved pre-adsorption of carp sera with a heterologous recombinant fragment before incubation with pORF149 fragments and detection with anti-carp IgM monoclonal antibodies. Only in this way was it possible to distinguish between sera from uninfected and survivor carp populations. Although IgM from survivors recognised pORF149 fragments to a lesser degree than whole virus, specificity was confirmed by correlation of rec2- and CyHV-3-ELISAs, inhibition of rec2-ELISA by an excess of frgIIORF149, ELISA using IgM-capture, Western blotting, and reduction of reactivity in CyHV-3-ELISA by pre-adsorption of sera with frgIIORF149. The similarity of IgM-binding profiles between frgIORF149 (amino acid residues 42-629) and frgIIORF149 (42-159) and their reactivities with previously described anti-CyHV-3 monoclonal antibodies confirmed that most pORF149 epitopes were localised in its amino-terminal part.
Collapse
Affiliation(s)
- F Torrent
- Escuela Superior de Ingenieros de Montes, Universidad Politécnica de Madrid (UPM), Piscifactoría, Madrid, Spain
| | - A Villena
- Departamento de Biología Molecular, Universidad de León, Leon, Spain
| | - P A Lee
- Graduate Institute of Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan
- GeneReach Biotechnology, Taichung, Taiwan
| | - W Fuchs
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - S M Bergmann
- Institute of Infectology, German Reference Laboratory for KHVD, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - J M Coll
- Departamento Biotecnología, Instituto Nacional Investigaciones y Tecnologías Agrarias y Alimentarias, INIA, Madrid, Spain.
| |
Collapse
|
23
|
Cui LC, Guan XT, Liu ZM, Tian CY, Xu YG. Recombinant lactobacillus expressing G protein of spring viremia of carp virus (SVCV) combined with ORF81 protein of koi herpesvirus (KHV): A promising way to induce protective immunity against SVCV and KHV infection in cyprinid fish via oral vaccination. Vaccine 2015; 33:3092-9. [PMID: 25981489 DOI: 10.1016/j.vaccine.2015.05.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 04/07/2015] [Accepted: 05/01/2015] [Indexed: 11/28/2022]
Abstract
Spring viremia of carp virus (SVCV) and koi herpesvirus (KHV) are highly contagious and pathogenic to cyprinid fish, causing enormous economic losses in aquaculture. Although DNA vaccines reported in recent years could induce protective immune responses in carps against these viruses via injection, there are a number of consequences and uncertainties related to DNA vaccination. Therefore, more effective and practical method to induce protective immunity such as oral administration would be highly desirable. In this study, we investigated the utilities of a genetically engineered Lactobacillus plantarum (L. plantarum) coexpressing glycoprotein (G) of SVCV and ORF81 protein of KHV as oral vaccine to induce protective immunity in carps via oral vaccination. The surface-displayed recombinant plasmid pYG-G-ORF81 was electroporated into L. plantarum, giving rise to LP/pYG-G-ORF81, where expression and localization of G-ORF81 fusion protein from the LP/pYG-G-ORF81 was identified by SDS-PAGE, Western blotting and immunofluorescence assay. Bait feed particles containing the LP/pYG-G-ORF81 were used as vaccine to immunize carps via gastrointestinal route. Compared to control groups, the carps orally immunized with the LP/pYG-G-ORF81 were induced significant levels of immunoglobulin M (IgM), and its immunogenicity was confirmed by viral loads reduction detected by PCR assay after virus challenge followed by an effective protection rate 71% in vaccinated carps and 53% in vaccinated koi until at days 65 post challenge, respectively. Our study here demonstrates, for the first time, the ability of recombinant L. plantarum as oral vaccine against SVCV and KHV infection in carps, suggesting a practical multivalent strategy for the control of spring viremia of carp and koi herpesvirus disease.
Collapse
Affiliation(s)
- Li-Chun Cui
- College of Wildlife Resource, Northeast Forestry University, Harbin, China
| | - Xue-Ting Guan
- College of Wildlife Resource, Northeast Forestry University, Harbin, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Zhong-Mei Liu
- Technology Center, Heilongjiang Entry-Exit Inspection and Quarantine Bureau, Harbin, China
| | | | - Yi-Gang Xu
- College of Wildlife Resource, Northeast Forestry University, Harbin, China; College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
24
|
Boutier M, Ronsmans M, Rakus K, Jazowiecka-Rakus J, Vancsok C, Morvan L, Peñaranda MMD, Stone DM, Way K, van Beurden SJ, Davison AJ, Vanderplasschen A. Cyprinid Herpesvirus 3: An Archetype of Fish Alloherpesviruses. Adv Virus Res 2015; 93:161-256. [PMID: 26111587 DOI: 10.1016/bs.aivir.2015.03.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The order Herpesvirales encompasses viruses that share structural, genetic, and biological properties. However, members of this order infect hosts ranging from molluscs to humans. It is currently divided into three phylogenetically related families. The Alloherpesviridae family contains viruses infecting fish and amphibians. There are 12 alloherpesviruses described to date, 10 of which infect fish. Over the last decade, cyprinid herpesvirus 3 (CyHV-3) infecting common and koi carp has emerged as the archetype of fish alloherpesviruses. Since its first description in the late 1990s, this virus has induced important economic losses in common and koi carp worldwide. It has also had negative environmental implications by affecting wild carp populations. These negative impacts and the importance of the host species have stimulated studies aimed at developing diagnostic and prophylactic tools. Unexpectedly, the data generated by these applied studies have stimulated interest in CyHV-3 as a model for fundamental research. This review intends to provide a complete overview of the knowledge currently available on CyHV-3.
Collapse
Affiliation(s)
- Maxime Boutier
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Maygane Ronsmans
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Krzysztof Rakus
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Joanna Jazowiecka-Rakus
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Catherine Vancsok
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Léa Morvan
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Ma Michelle D Peñaranda
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - David M Stone
- The Centre for Environment, Fisheries and Aquaculture Science, Weymouth Laboratory, Weymouth, Dorset, United Kingdom
| | - Keith Way
- The Centre for Environment, Fisheries and Aquaculture Science, Weymouth Laboratory, Weymouth, Dorset, United Kingdom
| | - Steven J van Beurden
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Andrew J Davison
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Alain Vanderplasschen
- Immunology-Vaccinology (B43b), Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium.
| |
Collapse
|
25
|
Boutier M, Ronsmans M, Ouyang P, Fournier G, Reschner A, Rakus K, Wilkie GS, Farnir F, Bayrou C, Lieffrig F, Li H, Desmecht D, Davison AJ, Vanderplasschen A. Rational development of an attenuated recombinant cyprinid herpesvirus 3 vaccine using prokaryotic mutagenesis and in vivo bioluminescent imaging. PLoS Pathog 2015; 11:e1004690. [PMID: 25700279 PMCID: PMC4336323 DOI: 10.1371/journal.ppat.1004690] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 01/20/2015] [Indexed: 12/27/2022] Open
Abstract
Cyprinid herpesvirus 3 (CyHV-3) is causing severe economic losses worldwide in common and koi carp industries, and a safe and efficacious attenuated vaccine compatible with mass vaccination is needed. We produced single deleted recombinants using prokaryotic mutagenesis. When producing a recombinant lacking open reading frame 134 (ORF134), we unexpectedly obtained a clone with additional deletion of ORF56 and ORF57. This triple deleted recombinant replicated efficiently in vitro and expressed an in vivo safety/efficacy profile compatible with use as an attenuated vaccine. To determine the role of the double ORF56-57 deletion in the phenotype and to improve further the quality of the vaccine candidate, a series of deleted recombinants was produced and tested in vivo. These experiments led to the selection of a double deleted recombinant lacking ORF56 and ORF57 as a vaccine candidate. The safety and efficacy of this strain were studied using an in vivo bioluminescent imaging system (IVIS), qPCR, and histopathological examination, which demonstrated that it enters fish via skin infection similar to the wild type strain. However, compared to the parental wild type strain, the vaccine candidate replicated at lower levels and spread less efficiently to secondary sites of infection. Transmission experiments allowing water contamination with or without additional physical contact between fish demonstrated that the vaccine candidate has a reduced ability to spread from vaccinated fish to naïve sentinel cohabitants. Finally, IVIS analyses demonstrated that the vaccine candidate induces a protective mucosal immune response at the portal of entry. Thus, the present study is the first to report the rational development of a recombinant attenuated vaccine against CyHV-3 for mass vaccination of carp. We also demonstrated the relevance of the CyHV-3 carp model for studying alloherpesvirus transmission and mucosal immunity in teleost skin. Common carp, and its colorful ornamental variety koi, is one of the most economically valuable species in aquaculture. Since the late 1990s, the common and koi carp culture industries have suffered devastating worldwide losses due to cyprinid herpesvirus 3 (CyHV-3). In the present study, we report the development of an attenuated recombinant vaccine against CyHV-3. Two genes were deleted from the viral genome, leading to a recombinant virus that is no longer capable of causing the disease but can be propagated in cell culture (for vaccine production) and infect fish when added to the water, thereby immunizing the fish. This attenuated recombinant vaccine also had a drastic defect in spreading from vaccinated to non-vaccinated cohabitant fish. The vaccine induced a protective mucosal immune response capable of preventing the entry of virulent CyHV-3 and is compatible with the simultaneous vaccination of a large number of carp by simply immersing the fish in water containing the vaccine. This vaccine represents a promising tool for controlling the most dreadful disease ever encountered by the carp culture industries. In addition, the present study highlights the importance of the CyHV-3 - carp model for studying alloherpesvirus transmission and mucosal immunity in teleost skin.
Collapse
Affiliation(s)
- Maxime Boutier
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Maygane Ronsmans
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Ping Ouyang
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Guillaume Fournier
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Anca Reschner
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Krzysztof Rakus
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Gavin S. Wilkie
- MRC—University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Frédéric Farnir
- Biostatistics and Bioinformatics, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Calixte Bayrou
- Pathology, Department of Morphology and Pathology, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - François Lieffrig
- Fish Pathology Lab, Department of Biotechnology, CER Groupe, Marloie, Belgium
| | - Hong Li
- USDA-ARS-ADRU, Washington State University, Pullman, Pullman, Washington, United States of America
| | - Daniel Desmecht
- Pathology, Department of Morphology and Pathology, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Andrew J. Davison
- MRC—University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Alain Vanderplasschen
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
- * E-mail:
| |
Collapse
|
26
|
Virus genomes and virus-host interactions in aquaculture animals. SCIENCE CHINA-LIFE SCIENCES 2015; 58:156-69. [DOI: 10.1007/s11427-015-4802-y] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 10/29/2014] [Indexed: 12/20/2022]
|
27
|
Miest JJ, Adamek M, Pionnier N, Harris S, Matras M, Rakus KŁ, Irnazarow I, Steinhagen D, Hoole D. Differential effects of alloherpesvirus CyHV-3 and rhabdovirus SVCV on apoptosis in fish cells. Vet Microbiol 2014; 176:19-31. [PMID: 25596969 DOI: 10.1016/j.vetmic.2014.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 11/28/2014] [Accepted: 12/01/2014] [Indexed: 01/06/2023]
Abstract
Whilst Herpesviridae, which infect higher vertebrates, actively influence host immune responses to ensure viral replication, it is mostly unknown if Alloherpesviridae, which infect lower vertebrates, possess similar abilities. An important antiviral response is clearance of infected cells via apoptosis, which in mammals influences the outcome of infection. Here, we utilise common carp infected with CyHV-3 to determine the effect on the expression of genes encoding apoptosis-related proteins (p53, Caspase 9, Apaf-1, IAP, iNOS) in the pronephros, spleen and gills. The influence of CyHV-3 on CCB cells was also studied and compared to SVCV (a rhabdovirus) which induces apoptosis in carp cell lines. Although CyHV-3 induced iNOS expression in vivo, significant induction of the genetic apoptosis pathway was only seen in the pronephros. In vitro CyHV-3 did not induce apoptosis or apoptosis-related expression whilst SVCV did stimulate apoptosis. This suggests that CyHV-3 possesses mechanisms similar to herpesviruses of higher vertebrates to inhibit the antiviral apoptotic process.
Collapse
Affiliation(s)
- Joanna J Miest
- Institute of Science and Technology in Medicine, School of Life Sciences, Keele University, ST5 5BG Keele, United Kingdom.
| | - Mikolaj Adamek
- Fish Diseases Research Unit, Institute of Parasitology, University of Veterinary Medicine in Hanover, Bünteweg 17, 30559 Hanover, Germany.
| | - Nicolas Pionnier
- Institute of Science and Technology in Medicine, School of Life Sciences, Keele University, ST5 5BG Keele, United Kingdom.
| | - Sarah Harris
- Institute of Science and Technology in Medicine, School of Life Sciences, Keele University, ST5 5BG Keele, United Kingdom; Fish Diseases Research Unit, Institute of Parasitology, University of Veterinary Medicine in Hanover, Bünteweg 17, 30559 Hanover, Germany.
| | - Marek Matras
- Laboratory of Fish Diseases, National Veterinary Research Institute, Partyzantów 57, 24-100 Puławy, Poland.
| | - Krzysztof Ł Rakus
- Polish Academy of Sciences, Institute of Ichthyobiology & Aquaculture in Gołysz, Kalinowa 2, 43-520 Chybie, Poland.
| | - Ilgiz Irnazarow
- Polish Academy of Sciences, Institute of Ichthyobiology & Aquaculture in Gołysz, Kalinowa 2, 43-520 Chybie, Poland.
| | - Dieter Steinhagen
- Fish Diseases Research Unit, Institute of Parasitology, University of Veterinary Medicine in Hanover, Bünteweg 17, 30559 Hanover, Germany.
| | - Dave Hoole
- Institute of Science and Technology in Medicine, School of Life Sciences, Keele University, ST5 5BG Keele, United Kingdom.
| |
Collapse
|
28
|
Adamek M, Rakus KL, Brogden G, Matras M, Chyb J, Hirono I, Kondo H, Aoki T, Irnazarow I, Steinhagen D. Interaction between type I interferon and Cyprinid herpesvirus 3 in two genetic lines of common carp Cyprinus carpio. DISEASES OF AQUATIC ORGANISMS 2014; 111:107-118. [PMID: 25266898 DOI: 10.3354/dao02773] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Cyprinid herpesvirus 3 (CyHV-3) infection in common carp Cyprinus carpio L. and its ornamental koi varieties can induce the severe systemic disease known as koi herpesvirus disease. This disease is characterised by a rapid replication and spreading of the virus through multiple organs and results in a fast onset of mortality (starting on Day 6 post infection) in up to 100% of infected fish. During the first phase of viral infections, type I interferons (IFNs) have generally been proven to be essential in inducing an innate immune response; however, very little is known about the type I IFN response to herpesviruses in fish. The aim of this work was to study the type I IFN responses during CyHV-3 infection in 2 genetically divergent lines of common carp which presented differing survival rates. Our results show that CyHV-3 induced a systemic type I IFN response in carp, and the magnitude of type I IFN expression is correlated with the virus load found in skin and head kidney. In this in vivo experimental setup, the level of type I IFN response cannot be linked with higher survival of carp during CyHV-3 infection.
Collapse
Affiliation(s)
- Mikołaj Adamek
- Fish Disease Research Unit, Centre of Infectious Diseases, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|