1
|
Jia Y, Liu Y, Zhang W, Wang R, Sun Y, Zhang J. Identification and functional analysis of a novel L-type lectin (NdLTL1) from Neocaridina denticulata sinensis. FISH & SHELLFISH IMMUNOLOGY 2025; 157:110116. [PMID: 39793909 DOI: 10.1016/j.fsi.2025.110116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/13/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
This study investigates an L-type lectin, NdLTL1, derived from Neocaridina denticulata sinensis, emphasizing its role in immune defense through carbohydrate binding and bacterial agglutination. Bioinformatics analysis identified 179 lectin sequences, leading to subsequent investigations into the structure and function of NdLTL1. The open reading frame (ORF) of NdLTL1 spans 966 bp and encodes a protein consisting of 321 amino acids (36.25 kDa), which features a signal peptide, a transmembrane domain and Lectin_leg-like domain. Three-dimensional modeling revealed three antiparallel β-sheets characteristic of Lectin_leg-like domain, confirming evolutionary links with proteins such as VIP36. Protein-carbohydrate and protein-protein interaction studies showed that NdLTL1 binds to both carbohydrates like N-acetylglucosamine, peptidoglycan, lipopolysaccharides (LPS), and mannose, as well as sorting proteins (COPI/COPII). Gene expression analyses indicated that NdLTL1 exhibits the highest expression levels in cardiac tissues and significant upregulation in gills following exposure to Vibrio parahaemolyticus. Recombinant NdLTL1 expressed in Escherichia coli was shown to bind multiple bacterial strains and exhibit calcium-dependent agglutination properties. Enzyme-linked immunosorbent assay (ELISA) confirmed concentration-dependent carbohydrate binding, particularly rapid for LPS. In vitro experiments suggested that recombinant NdLTL1 may promote bacterial growth under nutrient-limited conditions while potentially triggering immune defenses indirectly.
Collapse
Affiliation(s)
- Yuewen Jia
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, China
| | - Yijie Liu
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, China
| | - Wenli Zhang
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, China
| | - Rongxiao Wang
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, China
| | - Yuying Sun
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
| | - Jiquan Zhang
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
| |
Collapse
|
2
|
Shi C, Lin TH, Qu C. The role of pattern recognition receptors in the innate immune system of Chinese mitten crab (Eriocheir sinensis). FISH & SHELLFISH IMMUNOLOGY 2024; 154:109946. [PMID: 39370020 DOI: 10.1016/j.fsi.2024.109946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/09/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Eriocheir sinensis (Chinese mitten crab) is one of the main economic species in China, which has evolved an extremely sophisticated innate immune system to fend off disease invasions. However, bacterial and viral infections have caused significant financial losses for the E. sinensis aquaculture in recent years. Making well-informed judgments for the control microbial infections would require a thorough understanding and clarification of the intricate innate immune system of E. sinensis. Innate immunity is essential for the host's defense against invasive pathogens. Pattern recognition receptors (PRRs) initially recognize pathogen-associated molecular patterns (PAMPs) and trigger an innate immune response, causing the generation of inflammatory cytokine and promoting the clearance and control of pathogens. In E. sinensis, Toll/Toll-like receptors, lipopolysaccharide and β-1,3-glucan binding proteins, C-type lectins, galactoside-binding lectins, L-type lectins, scavenger receptors, and down syndrome cell adhesion molecules have been identified to be PRRs that are involved in the recognition of bacteria, fungi, and viruses. In this review, we give a comprehensive overview of the literature regarding PRRs' roles in the immunological defenses of E. sinensis, with the aim of providing clues to the mechanisms of innate immunity.
Collapse
Affiliation(s)
- Chenchen Shi
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Ta-Hui Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian, 361102, China; Fujian Provincial Key Laboratory of Functional and Clinical Translational Medicine, Xiamen Medical College, Xiamen, Fujian, 361023, China.
| | - Chen Qu
- Department of Chemical Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
3
|
Jiang FH, Huang Y, Yu XY, Cui LF, Shi Y, Song XR, Zhao Z. Identification and characterization of an L-type lectin from obscure puffer Takifugu obscurus in response to bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109283. [PMID: 38092094 DOI: 10.1016/j.fsi.2023.109283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/18/2023]
Abstract
L-type lectins (LTLs) contain a carbohydrate recognition domain homologous to leguminous lectins, and have functions in selective protein trafficking, sorting and targeting in the secretory pathway of animals. In this study, a novel LTL, designated as ToERGIC-53, was cloned and identified from obscure puffer Takifugu obscurus. The open reading frame of ToERGIC-53 contained 1554 nucleotides encoding 517 amino acid residues. The deduced ToERGIC-53 protein consisted of a signal peptide, a leguminous lectin domain (LTLD), a coiled-coil region, and a transmembrane region. Quantitative real-time PCR showed that ToERGIC-53 was expressed in all examined tissues, with the highest expression level in the liver. The expression of ToERGIC-53 was significantly upregulated after infection with Vibrio harveyi and Staphylococcus aureus. Recombinant ToERGIC-53-LTLD (rToERGIC-53-LTLD) protein could not only agglutinate and bind to one Gram-positive bacterium (S. aureus) and three Gram-negative bacteria (V. harveyi, V. parahaemolyticus and Aeromonas hydrophila), but also bind to glycoconjugates on the surface of bacteria such as lipopolysaccharide, peptidoglycan, mannose and galactose. In addition, rToERGIC-53-LTLD inhibited the growth of bacteria in vitro. All these results suggested that ToERGIC-53 might be a pattern recognition receptor involved in antibacterial immune response of T. obscurus.
Collapse
Affiliation(s)
- Fu-Hui Jiang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210098, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China
| | - Ying Huang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210098, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China
| | - Xin-Yue Yu
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210098, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China
| | - Li-Fan Cui
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210098, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China
| | - Yan Shi
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210098, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China
| | - Xiao-Rui Song
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210098, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China
| | - Zhe Zhao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210098, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
4
|
Huang Y, Yu XY, Luo P, Jiang FH, Cui LF, Shi Y, Song XR, Zhao Z. Three novel L-type lectins from obscure puffer Takifugu obscurus promote antimicrobial immune response. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 149:105046. [PMID: 37619908 DOI: 10.1016/j.dci.2023.105046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
L-type lectins (LTLs) have leguminous lectin domains that bind to high-mannose-type oligosaccharides. LTLs are involved in glycoprotein secretory pathways and associated with many immune responses. In the present research, three LTL homologs from obscure puffer Takifugu obscurus, designated as ToVIP36-1, ToVIP36-2, and ToVIP36-3, were first cloned and identified. The open reading frames of ToVIP36-1, ToVIP36-2, and ToVIP36-3 were 1068, 1002, and 1086 bp in length, respectively, and encode polypeptides with 355, 333, and 361 amino acids, respectively. Key conserved residues and functional domains, including lectin_leg-like domain (LTLD), transmembrane region, and C-terminal trafficking signal KRFY, were identified in all ToVIP36s. Quantitative real-time PCR analysis showed that the three ToVIP36s were widely expressed in six examined tissues and had relatively high expression levels in the liver and intestine. The expression levels of ToVIP36s were remarkably altered in the liver and kidney after induction by Vibrio harveyi and Staphylococcus aureus. Subsequently, the recombinant LTLDs of ToVIP36s (rToVIP36-LTLDs) were prepared by prokaryotic expression. Three rToVIP36-LTLD proteins agglutinated with S. aureus, V. harveyi, Vibrio parahaemolyticus, and Aeromonas hydrophila in a calcium-dependent manner. In the absence of calcium, rToVIP36-LTLD proteins bound to the bacteria by binding to lipopolysaccharides, peptidoglycans, d-mannose, and d-galactose and inhibited the growth of S. aureus and V. harveyi. Our results indicated that ToVIP36s function as pattern-recognition receptors in T. obscurus immunity, providing insights into the role of LTLs in the antibacterial immunity of fishes.
Collapse
Affiliation(s)
- Ying Huang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Nanjing, 210098, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China
| | - Xin-Yue Yu
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Nanjing, 210098, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China
| | - Peng Luo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 501301, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou, 510301, China
| | - Fu-Hui Jiang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Nanjing, 210098, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China
| | - Li-Fan Cui
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Nanjing, 210098, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China
| | - Yan Shi
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Nanjing, 210098, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China
| | - Xiao-Rui Song
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Nanjing, 210098, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China
| | - Zhe Zhao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Nanjing, 210098, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
5
|
Nguyen PTT, Dinh TT, Tran-Van H. Construction of L-type lectin displaying Saccharomyces cerevisiae for Vibrio parahaemolyticus agglutination. Int Microbiol 2023:10.1007/s10123-023-00440-3. [PMID: 37889383 DOI: 10.1007/s10123-023-00440-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023]
Abstract
The utilization of Aga1P anchor protein in the display system for expressing heterologous proteins on the surface of Saccharomyces cerevisiae has been shown to be an ideal approach. This system has the ability to improve the expression of target proteins beyond the cell surface, resulting in increased activity and stability of the expression system. Recent studies have demonstrated that a new L-type lectin from Litopenaeus vannamei (LvLTLC1) has been found to possess the capability of agglutinating Vibrio parahaemolyticus, a pathogen responsible for causing acute hepatopancreatic necrosis disease (AHPND) in shrimp. In this study, LvLTLC1 protein was designed to be expressed on the surface of S. cerevisiae via Aga1P anchor. The expression of LvLTLC1 protein on the surface of S. cerevisiae::pYIP-LvLTLC1-Aga1P was confirmed through the use of analytical techniques including SDS-PAGE, dot blot, and fluorescent immunoassay with LvLTC1-specific antibody. Subsequently, the newly generated yeast strain was evaluated for its ability to agglutinate V. parahaemolyticus and A. hydrophila. The obtained results indicated that S. cerevisiae expressing LvLTLC1 protein on its surface had the ability to agglutinate both AHPND-causing V. parahaemolyticus and A. hydrophila. This newly generated yeast strain could be served as a feed supplement for controlling bacteria in general and AHPND in particular.
Collapse
Affiliation(s)
- Phuong-Thao Thi Nguyen
- Department of Molecular and Environmental Biotechnology; Laboratory of Biosensors, Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City, Vietnam
- Laboratory of Molecular Biotechnology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
- Faculty of Agriculture and Food Technology, Tien Giang University, My Tho, Vietnam
| | - Thuan-Thien Dinh
- Department of Molecular and Environmental Biotechnology; Laboratory of Biosensors, Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City, Vietnam
- Laboratory of Molecular Biotechnology, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Hieu Tran-Van
- Department of Molecular and Environmental Biotechnology; Laboratory of Biosensors, Faculty of Biology and Biotechnology, University of Science, Ho Chi Minh City, Vietnam.
- Laboratory of Molecular Biotechnology, University of Science, Ho Chi Minh City, Vietnam.
- Vietnam National University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
6
|
Baliarsingh S, Sahoo S, Jo YH, Han YS, Sarkar A, Lee YS, Mohanty J, Patnaik BB. Molecular cloning, sequence characterization, and expression analysis of C-type lectin (CTL) and ER-Golgi intermediate compartment 53-kDa protein (ERGIC-53) homologs from the freshwater prawn, Macrobrachium rosenbergii. AQUACULTURE INTERNATIONAL : JOURNAL OF THE EUROPEAN AQUACULTURE SOCIETY 2022; 30:1011-1035. [PMID: 35153391 PMCID: PMC8816683 DOI: 10.1007/s10499-022-00845-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
UNLABELLED Lectin protein families are diverse and multi-functional in crustaceans. The carbohydrate-binding domains (CRDs) of lectins recognize the molecular patterns associated with pathogens and orchestrate important roles in crustacean defense. In this study, two lectin homologs, a single CRD containing C-type lectin (CTL) and an L-type lectin (LTL) domain containing endoplasmic reticulum Golgi intermediate compartment 53 kDa protein (ERGIC-53) were identified from the freshwater prawn, Macrobrachium rosenbergii. The open reading frames of MrCTL and MrERGIC-53 were 654 and 1,515 bp, encoding polypeptides of 217 and 504 amino acids, respectively. Further, MrCTL showed a 20-amino acid transmembrane helix region and 10 carbohydrate-binding residues within the CRD. MrERGIC-53 showed a signal peptide region, a type-I transmembrane region, and a coiled-coil region at the C-terminus. Phylogenetic analysis revealed a close relationship between MrCTL and MrLectin and M. nipponense CTL (MnCTL), whereas MrERGIC-53 shared high sequence identity with Eriocheir sinensis ERGIC-53 and Penaeus vannamei MBL-1. A homology-based model predicted small carbohydrate-combining sites with a metal-binding site for ligand binding (Ca2+ binding site) in MrCTL and beta-sheets connected by short loops and beta-bends forming a dome-shaped beta-barrel structure representing the LTL domain of MrERGIC-53. Quantitative real-time polymerase chain reaction detected MrCTL and MrERGIC-53 transcripts in all examined tissues, with particularly high levels observed in hemocytes, hepatopancreas, and mucosal-associated tissues, such as the stomach and intestine. Further, the expression levels of MrCTL and MrERGIC-53 transcripts were remarkably altered after V. harveyi challenge, suggesting putative function in host innate immunity. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10499-022-00845-3.
Collapse
Affiliation(s)
- Snigdha Baliarsingh
- PG Department of Biosciences and Biotechnology, Fakir Mohan University, Vyasa Vihar, Nuapadhi, Balasore, 756089 Odisha India
| | - Sonalina Sahoo
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, 751002 Odisha India
| | - Yong Hun Jo
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture, School of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Yeon Soo Han
- Department of Applied Biology, Institute of Environmentally-Friendly Agriculture, School of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Arup Sarkar
- School of Biotech Sciences, Trident Academy of Creative Technology, Chandaka Industrial Estate, Chandrasekharpur, Bhubaneswar, 751024 Odisha India
| | - Yong Seok Lee
- School of Life Sciences and Biotechnology, College of Natural Sciences, Soonchunhyang University, Asan City, Asan, South Korea
| | - Jyotirmaya Mohanty
- Fish Genetics and Biotechnology Division, ICAR-Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, 751002 Odisha India
| | - Bharat Bhusan Patnaik
- PG Department of Biosciences and Biotechnology, Fakir Mohan University, Vyasa Vihar, Nuapadhi, Balasore, 756089 Odisha India
| |
Collapse
|
7
|
Grinshpan N, Abayed FA, Wahl M, Ner-Gaon H, Manor R, Sagi A, Shay T. The transcriptional landscape of the giant freshwater prawn: Embryonic development and early sexual differentiation mechanisms. Front Endocrinol (Lausanne) 2022; 13:1059936. [PMID: 36568080 PMCID: PMC9767951 DOI: 10.3389/fendo.2022.1059936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
The giant freshwater prawn pjMacrobrachium rosenbergii is one of the best studied species in aquaculture. However, the transcriptional changes associated with embryonic development and the sexual differentiation mechanism of M. rosenbergii remain to be elucidated. To characterize the embryonic development of this prawn and to determine whether differential expression and differential splicing play roles in the early sexual differentiation of M. rosenbergii, we profiled five developmental days of male and female embryos by RNA sequencing. We identified modules of co-expressed genes representing waves of transcription that correspond to physiological processes in early embryonic development (such as the maternal-to-zygotic transition) up to preparation for life outside the egg (development of muscles, cuticle etc.). Additionally, we found that hundreds of genes are differentially expressed between sexes, most of them uncharacterized, suggesting that the sex differentiation mechanism of M. rosenbergii might contain clade-specific elements. The resulting first-of-a-kind transcriptional map of embryonic development of male and female M. rosenbergii will guide future studies to reveal the roles of specific genes and splicing isoforms in the embryonic development and sexual differentiation process of M. rosenbergii.
Collapse
Affiliation(s)
- Nufar Grinshpan
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Faiza A.A. Abayed
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Melody Wahl
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hadas Ner-Gaon
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Rivka Manor
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Amir Sagi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- *Correspondence: Amir Sagi, ; Tal Shay,
| | - Tal Shay
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- *Correspondence: Amir Sagi, ; Tal Shay,
| |
Collapse
|
8
|
Huang Y, Ren Q. Research progress in innate immunity of freshwater crustaceans. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 104:103569. [PMID: 31830502 DOI: 10.1016/j.dci.2019.103569] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 12/07/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
Invertebrates lack adaptive immunity and innate immunity plays important roles in combating foreign invasive pathogens. Freshwater crustaceans, which are invertebrates, depend completely on their innate immune system. In recent years, many immune-related molecules in freshwater crustaceans, as well as their functions, have been identified. Three main immune signaling pathways, namely, Toll, immune deficiency (IMD), and Janus kinase-signal transducer activator of transcription (JAK/STAT) pathways, were found in freshwater crustaceans. A series of pattern recognition receptors (PRRs), including Toll receptors, lectins, lipopolysaccharide and β-1,3-glucan binding protein, scavenger receptors, Down syndrome cell adhesion molecules, and thioester-containing proteins, were reported. Prophenoloxidase activation system and antimicrobial peptide synthesis are two important immune effector systems. These components are involved in the innate immunity of freshwater crustaceans, and they function in the innate immune defense against invading pathogens. This review mainly summarizes innate immune signaling pathways, PRRs, and effector molecules in freshwater crustaceans.
Collapse
Affiliation(s)
- Ying Huang
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu, 210098, China; Postdoctoral Innovation Practice Base, Jiangsu Shuixian Industrial Company Limited, 40 Tonghu Road, Baoying, Yangzhou, Jiangsu, 225800, China
| | - Qian Ren
- Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, 222005, China; College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
9
|
Huang X, Han K, Li T, Wang W, Ren Q. Novel L-type lectin from fresh water prawn, Macrobrachium rosenbergii participates in antibacterial and antiviral immune responses. FISH & SHELLFISH IMMUNOLOGY 2018; 77:304-311. [PMID: 29621634 DOI: 10.1016/j.fsi.2018.03.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/17/2018] [Accepted: 03/31/2018] [Indexed: 06/08/2023]
Abstract
L-type lectins (LTLs) play important roles in the secretory pathway of animals, including selective protein trafficking, sorting, and targeting. They have a leguminous lectin domain and can bind to high-mannose-type oligosaccharides. In this study, a novel LTL, designated as MrVIP36, was identified from Macrobrachium rosenbergii. The full-length cDNA of MrVIP36 was 1687 bp with a 972 bp open reading frame encoding a putative protein of 323 deduced amino acids. The deduced MrVIP36 protein contained an LTL-like domain (LTLD) and a transmembrane domain. Phylogenetic tree analysis indicated that MrVIP36 was a member of invertebrate LTLs. It has a closer evolutionary distance with invertebrate LTLs than vertebrate LTLs. Quantitative real time polymerase chain reaction showed that MrVIP36 is expressed widely in all tested tissues, especially in the hepatopancreas and intestine. MrVIP36 was significantly up-regulated in hemocytes of prawns at different time points after Staphylococcus aureus, Vibrio parahaemolyticus, and White spot syndrome virus (WSSV) infections. The recombinant protein MrLTLD (rMrLTLD) could bind and agglutinate all tested bacteria. Sugar binding assay revealed that rMrLTLD could also bind to the glycoconjugates of the bacterial surface, such as lipopolysaccharide and peptidoglycan. Moreover, rMrLTLD could inhibit the growth activities of microorganisms in vitro and accelerate the bacterial clearance in vivo. rMrLTLD could also inhibit WSSV replication in vivo. Survival rate analysis showed that rMrLTLD could protect prawns against WSSV infection. Taken together, our results suggested that MrVIP36 functioned as a pattern recognition receptor involved in the antibacterial and antiviral immune responses of M. rosenbergii.
Collapse
Affiliation(s)
- Xin Huang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing, 210046, China
| | - Keke Han
- Jiangsu Key Laboratory for Biodiversity and Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing, 210046, China
| | - Tingting Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing, 210046, China
| | - Wen Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing, 210046, China.
| | - Qian Ren
- Jiangsu Key Laboratory for Biodiversity and Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, Nanjing, 210046, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, 222005, China.
| |
Collapse
|
10
|
Lu Z, Ren Z, Mu C, Li R, Ye Y, Song W, Shi C, Liu L, Wang C. Characterisation and functional analysis of an L-type lectin from the swimming crab Portunus trituberculatus. Gene 2018; 664:27-36. [PMID: 29689348 DOI: 10.1016/j.gene.2018.04.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/26/2018] [Accepted: 04/16/2018] [Indexed: 10/17/2022]
Abstract
L-type lectins are involved in glycoprotein secretion and are associated with immune responses. Herein, an L-type lectin was identified in swimming crab (Portunus trituberculatus). The 1347 bp PtLTL cDNA includes a 26 bp 5'-untranslated region (UTR), a 547 bp 3'-UTR with a poly(A) tail, and a 774 bp open reading frame encoding a 257 amino acid protein with a putative 21 residue signalling peptide. The protein includes an L-type lectin carbohydrate recognition domain containing four conserved cysteines. The 714 bp cDNA fragment encoding the mature peptide of PtLTL1 was recombined into pET-21a (+) with a C-terminally hexa-histidine tag fused in-frame and expressed in Escherichia coli Origami (DE3). Recombinant PtLTL1 caused agglutination of all three Gram-positive and Gram-negative bacterial strains tested. In addition, erythrocyte agglutination and LPS-binding activity were observed. PtLTL1 mRNA transcripts were most abundant in P. trituberculatus hepatopancreas and hemocytes, and expression was up-regulated in hemocytes challenged with Vibrio alginolyticus, suggesting PtLTL functions in the immune response against bacterial pathogens.
Collapse
Affiliation(s)
- Zhibin Lu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo 315211, China
| | - Zhiming Ren
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Changkao Mu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China.
| | - Ronghua Li
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Yangfang Ye
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Weiwei Song
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Ce Shi
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Lei Liu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Chunlin Wang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
11
|
Tian Y, Chen T, Huang W, Luo P, Huo D, Yun L, Hu C, Cai Y. A new L-type lectin (LvLTLC1) from the shrimp Litopenaeus vannamei facilitates the clearance of Vibrio harveyi. FISH & SHELLFISH IMMUNOLOGY 2018; 73:185-191. [PMID: 29246810 DOI: 10.1016/j.fsi.2017.12.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/13/2017] [Accepted: 12/10/2017] [Indexed: 06/07/2023]
Abstract
According to structures and functions of lectins found in shrimp, they are classified into seven types, namely, L-type, C-type, P-type, M-type, galectins, fibrinogen-like domain lectins, and calnexin/calreticulin. Until now, the researches of shrimp lectins are mainly focused on C-type lectins. In this study, we identified a new L-type lectin, designated as LvLTLC1, from the shrimp Litopenaeus vannamei. The cDNA of LvLTLC1 is 1184 bp with an open reading frame of 990 bp encoding a protein of 329 amino acids. The LvLTLC1 protein contained a putative signal peptide, an L-type lectin-like domain, and a transmembrane helix region. Phylogenetic analysis showed that LvLTLC1 belonged to VIP36-like family. LvLTLC1 was expressed in all examined tissues but had higher expression level in gills and hepatopancreas than other tissues. LvLTLC1 expression was up-regulated after immune challenge by Vibrio harveyi and lipopolysaccharide. The recombinant LvLTLC1 agglutinated Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (V. harveyi, V. parahaemolyticus, V. alginolyticus, V. cholerae, V. vulnificus, Pseudomonas aeruginosa, P. fluorescens) in a calcium-independent manner. Recombinant LvLTLC1 exerted the ability of enhancing the clearance of V. harveyi injected in shrimp. Our results indicated that LvLTLC1 functions in anti-pathogen innate immunity of shrimp.
Collapse
Affiliation(s)
- Yushun Tian
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 501301, PR China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 501301, PR China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510301, PR China
| | - Wen Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 501301, PR China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510301, PR China
| | - Peng Luo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 501301, PR China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510301, PR China.
| | - Da Huo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 501301, PR China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Yun
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 501301, PR China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaoqun Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 501301, PR China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510301, PR China
| | - Yiming Cai
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 501301, PR China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510301, PR China
| |
Collapse
|
12
|
XU W, CHEN S. Genomics and genetic breeding in aquatic animals: progress and prospects. FRONTIERS OF AGRICULTURAL SCIENCE AND ENGINEERING 2017; 4:305. [DOI: 10.15302/j-fase-2017154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
13
|
Internalization of a novel, huge lectin from Ibacus novemdentatus (slipper lobster) induces apoptosis of mammalian cancer cells. Glycoconj J 2016; 34:85-94. [PMID: 27658397 DOI: 10.1007/s10719-016-9731-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/23/2016] [Accepted: 09/06/2016] [Indexed: 10/21/2022]
Abstract
An N-acetyl sugar-binding lectin (termed iNoL) displaying cytotoxic activity against human cancer cells was isolated from the slipper lobster Ibacus novemdentatus (family Scyllaridae). iNoL recognized monosaccharides containing N-acetyl group, and glycoproteins (e.g., BSM) containing oligosaccharides with N-acetyl sugar. iNoL was composed of five subunits (330, 260, 200, 140, and 30 kDa), which in turn consisted of 70-, 40-, and 30-kDa polypeptides held together by disulfide bonds. Electron microscopic observations and gel permeation chromatography indicated that iNoL was a huge (500-kDa) molecule and had a polygonal structure under physiological conditions. iNoL displayed cytotoxic (apoptotic) effects against human cancer cell lines MCF7 and T47D (breast), HeLa (ovarian), and Caco2 (colonic), through incorporation (internalization) into cells. The lectin was transported into lysosomes via endosomes. Its cytotoxic effect and incorporation into cells were inhibited by the co-presence of N-acetyl-D-mannosamine (ManNAc). Treatment of HeLa cells with iNoL resulted in DNA fragmentation and chromatin condensation, through activation of caspase-9 and -3. In summary, the novel crustacean lectin iNoL is incorporated into mammalian cancer cells through glycoconjugate interaction, and has cytotoxic (apoptotic) effects.
Collapse
|
14
|
Zhang DL, Lv CH, Yu DH, Wang ZY. Characterization and functional analysis of a tandem-repeat galectin-9 in large yellow croaker Larimichthys crocea. FISH & SHELLFISH IMMUNOLOGY 2016; 52:167-178. [PMID: 26997199 DOI: 10.1016/j.fsi.2016.03.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 03/15/2016] [Accepted: 03/15/2016] [Indexed: 06/05/2023]
Abstract
Galectins are a family of endogenous lectins with β-galactosides affinity, playing significant roles in the innate immunity of vertebrates and invertebrates. In this report, a new galectin-9 cDNA was identified and characterized in large yellow croaker Larimichthys crocea (designated as LcGal-9). The complete cDNA sequence of LcGal-9 was 1795 bp, with an open reading frame (ORF) of 1032 bp encoding 343 amino acids. The putative LcGal-9 protein contained two carbohydrate recognition domains (CRDs) connected by a linker peptide, with each carrying two conserved β-galactoside binding motifs H-NPR and WG-EE-, and it possessed neither a signal peptide nor a transmembrane domain. LcGal-9 protein shared 43-74% identity with galectin-9 sequences from other species. The qRT-PCR analysis revealed that LcGal-9 mRNA was constitutively expressed in all tissues examined, predominately expressed in liver, spleen, gill, kidney, head-kidney and intestine. Western blot analysis showed that LcGal-9 protein was highly expressed in liver, spleen, intestine, kidney, head-kidney, skin, gill, and heart, but not detected in muscle and plasma. LcGal-9 mRNA transcripts were induced by poly I:C in the liver (from 6 h to 48 h), spleen (at 12 h) and head-kidney (at 12 h and 24 h). In contrast, Vibrio parahaemolyticus caused a significant down-regulation in these three tissues, except for in spleen of 48 h and head-kidney of 3 h. Post-infection with Cryptocaryon irritans, the transcripts were dramatically up-regulated in gill, skin, spleen and head-kidney during initial infection period, while significant down-regulation afterward was also observed both in spleen and head-kidney. The recombinant LcGal-9 (named as rLcGal-9) purified from Escherichia coli BL21 (DE3) demonstrated hemagglutination against human, rabbit and L. crocea in a Ca(2+)-independent manner, which was inhibited by α-Lactose and LPS. The results of bacterial agglutination assays showed that rLcGal-9 was able to agglutinate Gram-negative bacteria V. alginolyticus and Aeromonas hydrophila in a Ca(2+)-independent manner. By immunohistochemistry assay, significant increases of LcGal-9 protein appeared in the spleen stimulated with poly I:C (for 12 h) and V. parahaemolyticus (for 48 h) compared with the control. Based on the collective data, LcGal-9 might play an important role in innate immune responses, especially defense against Gram-negative bacteria in L. crocea.
Collapse
Affiliation(s)
- Dong Ling Zhang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, PR China
| | - Chang Huan Lv
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, PR China
| | - Da Hui Yu
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China
| | - Zhi Yong Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, PR China.
| |
Collapse
|
15
|
Bulat T, Smidak R, Sialana FJ, Jung G, Rattei T, Bilban M, Sattmann H, Lubec G, Aradska J. Transcriptomic and Proteomic Analysis of Arion vulgaris--Proteins for Probably Successful Survival Strategies? PLoS One 2016; 11:e0150614. [PMID: 26986963 PMCID: PMC4795696 DOI: 10.1371/journal.pone.0150614] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/17/2016] [Indexed: 11/18/2022] Open
Abstract
The Spanish slug, Arion vulgaris, is considered one of the hundred most invasive species in Central Europe. The immense and very successful adaptation and spreading of A. vulgaris suggest that it developed highly effective mechanisms to deal with infections and natural predators. Current transcriptomic and proteomic studies on gastropods have been restricted mainly to marine and freshwater gastropods. No transcriptomic or proteomic study on A. vulgaris has been carried out so far, and in the current study, the first transcriptomic database from adult specimen of A. vulgaris is reported. To facilitate and enable proteomics in this non-model organism, a mRNA-derived protein database was constructed for protein identification. A gel-based proteomic approach was used to obtain the first generation of a comprehensive slug mantle proteome. A total of 2128 proteins were unambiguously identified; 48 proteins represent novel proteins with no significant homology in NCBI non-redundant database. Combined transcriptomic and proteomic analysis revealed an extensive repertoire of novel proteins with a role in innate immunity including many associated pattern recognition, effector proteins and cytokine-like proteins. The number and diversity in gene families encoding lectins point to a complex defense system, probably as a result of adaptation to a pathogen-rich environment. These results are providing a fundamental and important resource for subsequent studies on molluscs as well as for putative antimicrobial compounds for drug discovery and biomedical applications.
Collapse
Affiliation(s)
- Tanja Bulat
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Roman Smidak
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | | | - Gangsoo Jung
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Thomas Rattei
- Division of Computational System Biology, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Martin Bilban
- Department of Laboratory Medicine and Core Facility Genomics, Medical University of Vienna, Vienna, Austria
| | - Helmut Sattmann
- Third Zoological Department, Museum of Natural History Vienna, Vienna, Austria
| | - Gert Lubec
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
- * E-mail: (GL); (JA)
| | - Jana Aradska
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
- * E-mail: (GL); (JA)
| |
Collapse
|
16
|
Mu H, Sun J, Fang L, Luan T, Williams GA, Cheung SG, Wong CKC, Qiu JW. Genetic Basis of Differential Heat Resistance between Two Species of Congeneric Freshwater Snails: Insights from Quantitative Proteomics and Base Substitution Rate Analysis. J Proteome Res 2015; 14:4296-308. [PMID: 26290311 DOI: 10.1021/acs.jproteome.5b00462] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We compared the heat tolerance, proteomic responses to heat stress, and adaptive sequence divergence in the invasive snail Pomacea canaliculata and its noninvasive congener Pomacea diffusa. The LT50 of P. canaliculata was significantly higher than that of P. diffusa. More than 3350 proteins were identified from the hepatopancreas of the snails exposed to acute and chronic thermal stress using iTRAQ-coupled mass spectrometry. Acute exposure (3 h exposure at 37 °C with 25 °C as control) resulted in similar numbers (27 in P. canaliculata and 23 in P. diffusa) of differentially expressed proteins in the two species. Chronic exposure (3 weeks of exposure at 35 °C with 25 °C as control) caused differential expression of more proteins (58 in P. canaliculata and 118 in P. diffusa), with many of them related to restoration of damaged molecules, ubiquitinating dysfunctional molecules, and utilization of energy reserves in both species; but only in P. diffusa was there a shift from carbohydrate to lipid catabolism. Analysis of orthologous genes encoding the differentially expressed proteins revealed two genes having clear evidence of positive selection (Ka/Ks > 1) and seven candidates for more detailed analysis of positive selection (Ka/Ks between 0.5 and 1). These nine genes are related to energy metabolism, cellular oxidative homeostasis, signaling, and binding processes. Overall, the proteomic and base substitution rate analyses indicate genetic basis of differential resistance to heat stress between the two species, and such differences could affect their further range expansion in a warming climate.
Collapse
Affiliation(s)
- Huawei Mu
- Department of Biology, Hong Kong Baptist University , Hong Kong, P. R. China
| | - Jin Sun
- Department of Biology, Hong Kong Baptist University , Hong Kong, P. R. China
| | - Ling Fang
- Instrumental Analysis and Research Center, Sun Yat-Sen University , Guangzhou, P. R. China
| | - Tiangang Luan
- Instrumental Analysis and Research Center, Sun Yat-Sen University , Guangzhou, P. R. China.,MOE Key Laboratory of Aquatic Product Safety, School of Life Sciences, Sun Yat-Sen University , Guangzhou, P. R. China
| | - Gray A Williams
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong , Pokfulam Road, Hong Kong, P. R. China
| | - Siu Gin Cheung
- Department of Biology and Chemistry, City University of Hong Kong , Hong Kong, P. R. China
| | - Chris K C Wong
- Department of Biology, Hong Kong Baptist University , Hong Kong, P. R. China
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University , Hong Kong, P. R. China
| |
Collapse
|
17
|
Xiu Y, Wang Y, Jing Y, Qi Y, Ding Z, Meng Q, Wang W. Molecular cloning, characterization, and expression analysis of two different types of lectins from the oriental river prawn, Macrobrachium nipponense. FISH & SHELLFISH IMMUNOLOGY 2015; 45:465-469. [PMID: 25929240 DOI: 10.1016/j.fsi.2015.04.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 04/15/2015] [Accepted: 04/18/2015] [Indexed: 06/04/2023]
Abstract
Lectins, which are widely expressed in invertebrates, play important roles in many biological processes, including protein trafficking, cell signaling, pathogen recognition, as effector molecules, and so on (Wang and Wang, 2013). This study identified one novel M-type lectin and one L-Type lectin, designated as MnMTL1 and MnLTL1, from the oriental river prawn Macrobrachium nipponense. The full-length cDNA of MnMTL1 was 2064 bp with a 1761 bp ORF encoding a putative protein of 586 deduced amino acids. The full-length cDNA of MnLTL1 was 1744 bp with a 972 bp ORF encoding a 323-amino acid peptide. The deduced MnMTL1 protein contained a putative type II transmembrane region and a 440-aa Glycoside hydrolase family 47 (GH47) domain. One luminal carbohydrate recognition domain and a 23-aa type I transmembrane region were identified from the MnLTL1. MnMTL1 shared 78% identity with Marsupenaeus japonicus M-type lectin and MnLTL1 shared 83% similarity with M. japonicus L-type lectin. RT-PCR analysis showed that MnMTL1 and MnLTL1 were expressed in all tested tissues. Quantitative real-time PCR analysis revealed that MnMTL1 and MnLTL1 are substantially fluctuant during Aeromonas hydrophila and Aeromonas veronii infections. Based on immune responses and previous literature, we assumed that MnMTL1 and MnLTL1 might be functioned as pattern recognition receptors and play important roles in the immune response of M. nipponense.
Collapse
Affiliation(s)
- Yunji Xiu
- Jiangsu Key Laboratory for Biodiversity & Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China; Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China
| | - Yinghui Wang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China; Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China
| | - Yunting Jing
- Jiangsu Key Laboratory for Biodiversity & Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China; Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China
| | - Yakun Qi
- Jiangsu Key Laboratory for Biodiversity & Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China
| | - Zhengfeng Ding
- Freshwater Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China
| | - Qingguo Meng
- Jiangsu Key Laboratory for Biodiversity & Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China; Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China.
| | - Wen Wang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China; Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, China.
| |
Collapse
|
18
|
Dias RDO, Machado LDS, Migliolo L, Franco OL. Insights into animal and plant lectins with antimicrobial activities. Molecules 2015; 20:519-41. [PMID: 25569512 PMCID: PMC6272381 DOI: 10.3390/molecules20010519] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/22/2014] [Indexed: 12/11/2022] Open
Abstract
Lectins are multivalent proteins with the ability to recognize and bind diverse carbohydrate structures. The glyco -binding and diverse molecular structures observed in these protein classes make them a large and heterogeneous group with a wide range of biological activities in microorganisms, animals and plants. Lectins from plants and animals are commonly used in direct defense against pathogens and in immune regulation. This review focuses on sources of animal and plant lectins, describing their functional classification and tridimensional structures, relating these properties with biotechnological purposes, including antimicrobial activities. In summary, this work focuses on structural-functional elucidation of diverse lectin groups, shedding some light on host-pathogen interactions; it also examines their emergence as biotechnological tools through gene manipulation and development of new drugs.
Collapse
Affiliation(s)
- Renata de Oliveira Dias
- SInova, Programa de Pós Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900 Campo Grande, MS, Brazil.
| | - Leandro Dos Santos Machado
- SInova, Programa de Pós Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900 Campo Grande, MS, Brazil.
| | - Ludovico Migliolo
- SInova, Programa de Pós Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900 Campo Grande, MS, Brazil.
| | - Octavio Luiz Franco
- SInova, Programa de Pós Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117-900 Campo Grande, MS, Brazil.
| |
Collapse
|