1
|
Louzada-Flores VN, Latrofa MS, Mendoza-Roldan JA, Lucente MS, Epis S, Varotto-Boccazzi I, Bandi C, Otranto D. Expression of key cytokines in dog macrophages infected by Leishmania tarentolae opening new avenues for the protection against Leishmania infantum. Sci Rep 2024; 14:27565. [PMID: 39528528 PMCID: PMC11554803 DOI: 10.1038/s41598-024-78451-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
The detection of Leishmania tarentolae in sympatric areas where Leishmania infantum is endemic raised questions regarding the protective effect exerted in dogs by L. tarentolae when in coinfection. This study aimed monitoring the in vitro gene expression of pro- (IFN- γ; TNF-α; IL-12) and anti-inflammatory (IL-4; IL-6; IL-10) cytokines in primary canine macrophages infected by L. tarentolae and L. infantum in single and in co-infections. Macrophages differentiated from dog blood mononuclear cells were infected with the L. tarentolae field-isolated (RI-325) and laboratory (LEM-124) strains, with L. infantum laboratory strain (IPT1), or both. Infection and the number of amastigotes per infected cell were evaluated microscopically by counting a total of 200 cells between 4 and 96 h. Cytokine gene expression was analyzed by real-time PCR from infected macrophages mRNA. Single infections presented higher expression of the cytokines IL-4 and IL-6, and lower of IL-12. Co-infections induced a lower gene expression of IL-4 and IL-6, and a higher gene expression of IL-12, correlating with the low amastigote burden despite the slight increase of infected cells. Data highlight the potential protective effect of L. tarentolae against L. infantum in co-infection by the reduced anti-inflammatory and increased pro-inflammatory cytokines gene expression, opening new perspectives for a canine vaccine development exploiting the non-pathogenic L. tarentolae.
Collapse
Affiliation(s)
| | | | | | | | - Sara Epis
- Department of Biosciences and Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", University of Milan, Milan, Italy
| | - Ilaria Varotto-Boccazzi
- Department of Biosciences and Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", University of Milan, Milan, Italy
| | - Claudio Bandi
- Department of Biosciences and Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", University of Milan, Milan, Italy
| | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Bari, Italy.
- Department of Veterinary Clinical Sciences, City University of Hong Kong, Kowloon, Hong Kong.
| |
Collapse
|
2
|
Mendoza-Roldan JA, Varotto-Boccazzi I, Louzada-Flores VN, Evans A, Cheikhi IB, Carbonara M, Zatelli A, Epis S, Bandi C, Beugnet F, Otranto D. Saurian-associated Leishmania tarentolae in dogs: Infectivity and immunogenicity evaluation in the canine model. PLoS Pathog 2024; 20:e1012598. [PMID: 39383180 PMCID: PMC11463833 DOI: 10.1371/journal.ppat.1012598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/16/2024] [Indexed: 10/11/2024] Open
Abstract
In canine leishmaniosis endemic areas, Leishmania infantum may occur in sympatry with the non-pathogenic Leishmania tarentolae, which is associated to reptiles. The potential infectivity of L. tarentolae for mammals raises questions about the interactions between the two Leishmania species, and the potential cross-immune protection in dogs. This study aimed to assess the outcome of experimental L. tarentolae infection in dogs, determining: i) the anti-L. tarentolae antibody production, ii) the duration of the immunity and cytokine expression, and iii) the possible pathogenic effect in the canine host. Twelve purpose-bred beagle dogs were randomly allocated to three groups (intravenous inoculation, G1; intradermal inoculation, G2; negative control, G3). G1 and G2 dogs were inoculated twice (day 0, day 28) with 108 promastigotes of L. tarentolae strain (RTAR/IT/21/RI-325) isolated from a Tarentola mauritanica gecko. The animals were followed until day 206. Blood, serum, conjunctival swabs and lymph node aspirate samples were collected monthly and bone marrow, liver and spleen biopsies on day 91. Hematological and biochemical parameters were assessed monthly, as well as serology (IFAT and ELISA) and molecular identification of L. tarentolae. Mononuclear cells (PBMC) were obtained to assess the cytokine expression through in vitro stimulation or (re-) infection. Data from this study demonstrated that DNA from L. tarentolae is detectable up to 3 months post-infection, with seroconversion after day 28. Moreover, the non-pathogenic nature of L. tarentolae was confirmed, with a neutral Th1/Th2 polarization, and a possible shift to Th1 phenotype after derived macrophages (re-) infection, as demonstrated by the expression of IFN-gamma. Therefore, L. tarentolae demonstrated a great potential as a surrogate pathogen and/or immune-prophylaxis/immune-therapy against Leishmania infections in dogs and humans.
Collapse
Affiliation(s)
| | - Ilaria Varotto-Boccazzi
- Department of Biosciences, University of Milan, Milan, Italy
- Pediatric CRC ’Fondazione Romeo ed Enrica Invernizzi’, University of Milan, Milan, Italy
| | | | | | | | | | - Andrea Zatelli
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
| | - Sara Epis
- Department of Biosciences, University of Milan, Milan, Italy
- Pediatric CRC ’Fondazione Romeo ed Enrica Invernizzi’, University of Milan, Milan, Italy
| | - Claudio Bandi
- Department of Biosciences, University of Milan, Milan, Italy
- Pediatric CRC ’Fondazione Romeo ed Enrica Invernizzi’, University of Milan, Milan, Italy
| | | | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari, Valenzano, Italy
- Department of Veterinary Clinical Sciences, City University of Hong Kong, Hong Kong, SAR China
| |
Collapse
|
3
|
Ota Y, Inagaki R, Takanashi Y, Uemachi H, Matsuda K, Matsuoka M, Taoda R, Ohe S, Ishitsubo Y, Nakamura M, Goto M, Ban H, Nagai Y. Targeting Tumor-Associated Macrophages with the Immune-Activating Nanomedicine for Achieving Strong Antitumor Activity with Rapid Clearance from the Body. ACS NANO 2024; 18:23757-23772. [PMID: 39141816 PMCID: PMC11363121 DOI: 10.1021/acsnano.4c08811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024]
Abstract
Toll-like receptors (TLRs) are a class of pattern recognition receptors (PRRs) crucial for the detection of infections and activation of downstream signaling pathways that lead to the production of pro-inflammatory cytokines and interferons. The TLR pathway is an attractive actively studied target pathway. Because of their strong immunostimulatory activity, TLRs are thought to be a "double-edged sword" for systemic treatment, even in the cancer field. To solve this, we have developed dextran-based TAM targeting activating conjugate (D-TAC) technology, which successfully uses tumor-associated macrophages (TAMs) to deliver the TLR7 agonist DSP-0509. We used low molecular weight dextran to target CD206 high M2-type macrophages, activate them, and induce a change in phenotype to antitumor M1-type macrophages with rapid clearance from the body and astonishing antitumor activity. We also demonstrated that the antitumor effect of our best drug candidate 5DEX-0509R is dependent on the abundance of TAMs, which is consistent with their mechanism of action. We believe that 5DEX-0509R generated by D-TAC technology can be a clinically applicable immunotherapy targeting the TLR signaling pathway.
Collapse
Affiliation(s)
- Yosuke Ota
- Cancer
Research Unit, Sumitomo Pharma Co Ltd, Osaka 5540022, Japan
| | - Ryosaku Inagaki
- Cancer
Research Unit, Sumitomo Pharma Co Ltd, Osaka 5540022, Japan
| | - Yosuke Takanashi
- Modality
Research Unit, Sumitomo Pharma Co Ltd, Osaka 5540022, Japan
| | - Hiro Uemachi
- Modality
Research Unit, Sumitomo Pharma Co Ltd, Osaka 5540022, Japan
| | - Kimiya Matsuda
- Cancer
Research Unit, Sumitomo Pharma Co Ltd, Osaka 5540022, Japan
| | - Makoto Matsuoka
- Modality
Research Unit, Sumitomo Pharma Co Ltd, Osaka 5540022, Japan
| | - Risa Taoda
- Cancer
Research Unit, Sumitomo Pharma Co Ltd, Osaka 5540022, Japan
| | - Seina Ohe
- Cancer
Research Unit, Sumitomo Pharma Co Ltd, Osaka 5540022, Japan
| | - Yukari Ishitsubo
- Cancer
Research Unit, Sumitomo Pharma Co Ltd, Osaka 5540022, Japan
| | - Megumi Nakamura
- Cancer
Research Unit, Sumitomo Pharma Co Ltd, Osaka 5540022, Japan
| | - Masashi Goto
- Cancer
Research Unit, Sumitomo Pharma Co Ltd, Osaka 5540022, Japan
| | - Hitoshi Ban
- Oncology, Sumitomo
Pharma Co Ltd, Osaka 5540022, Japan
| | - Yasuhiro Nagai
- Cancer
Research Unit, Sumitomo Pharma Co Ltd, Osaka 5540022, Japan
| |
Collapse
|
4
|
Zhang J, Ren Y, Liu Y, Wang Z, Li Y, Li C, Chang H, Zhang Y. A systematic strategy for investigating the pharmacological effects and mechanism of traditional Chinese medicinal formula: Guilin Xiguashuang as a case. Fundam Clin Pharmacol 2024; 38:238-251. [PMID: 37694887 DOI: 10.1111/fcp.12954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Traditional Chinese medicinal formula (TCMF) has specific advantages in treating diseases. However, the pharmacological effects and mechanism of TCMF composed of traditional Chinese medicines (TCM) with unclear active components or targets have not yet been fully elucidated. OBJECTIVES This research proposed a strategy for elucidating the pharmacological effects and mechanism to address this issue systematically. METHODS With Guilin Xiguashuang (GLXGS) taken as a case, this study newly provided the multi-level assays, which decomposes TCMF into components, TCM, and TCMF levels. The main pharmacological effects were acquired through a comprehensive analysis based on the active components, pharmacological effects of TCM, and clinical efficacy of TCMF, respectively. The core targets and pathways were further identified and verified to elucidate the mechanism. RESULTS The main pharmacological effects of GLXGS were anti-inflammatory, analgesic, antibacterial, immunoregulatory, and wound healing. Moreover, the mechanism analysis demonstrated that GLXGS was involved in the regulation of NF-κB and VEGF signaling pathways and core targets, such as IL-6 and TNF-α. Finally, unproven immunomodulatory and anti-inflammatory mechanism were verified using RAW264.7 and THP-1 cells. GLXGS was verified to down-regulate IL-6, IL-1β, TNF-α, and CD86 in lipopolysaccharides-stimulated RAW264.7 cells, while enhancing polarization in both RAW264.7 and THP-1 cells, which were consistent with analysis results. CONCLUSION The present research provides a systematic strategy for the pharmacological effect prediction and mechanism analysis of TCMF, which is of great significance for studying complex TCMF.
Collapse
Affiliation(s)
- Jianing Zhang
- Key Laboratory of TCM-Information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yue Ren
- Key Laboratory of TCM-Information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yanan Liu
- Key Laboratory of TCM-Information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zian Wang
- Key Laboratory of TCM-Information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yingying Li
- Key Laboratory of TCM-Information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chun Li
- Guangxi Traditional Chinese Medicine Research Center, Guilin, China
| | - Hua Chang
- Guangxi Traditional Chinese Medicine Research Center, Guilin, China
| | - Yanling Zhang
- Key Laboratory of TCM-Information Engineer of State Administration of TCM, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
5
|
Kerboeuf M, Haugeberg DA, Olsen T, Sørling LK, Koppang EO, Moe L, Haaland AH. Tumor-associated macrophages in canine visceral hemangiosarcoma. Vet Pathol 2024; 61:32-45. [PMID: 37341055 PMCID: PMC10687809 DOI: 10.1177/03009858231179947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Canine hemangiosarcoma (HSA) is a highly malignant tumor derived from hematopoietic stem cells and commonly occurs in visceral organs or skin. Visceral HSAs are particularly aggressive and progress rapidly despite multimodal treatment. Tumor-associated macrophages (TAMs) play a central role in carcinogenesis, tumor progression, and metastasis in humans and murine models. In this retrospective study, we investigated the prevalence and phenotype of TAMs in privately owned, treatment-naïve dogs with naturally occurring HSA. We used CD204 as a general macrophage marker and CD206 as a marker for M2-polarized macrophages. Formalin-fixed paraffin-embedded tissues from HSAs in the spleen (n = 9), heart (n = 6), and other locations (n = 12) from 17 dogs were sectioned and immunohistochemically labeled with CD204 and CD206 antibodies. The mean number of log(CD204)- and log(CD206)-positive cells and the ratio of log(CD206/CD204)-positive cells were compared with normal surrounding tissues and between tumor locations. There were significantly more macrophages and M2 macrophages, and a higher ratio of M2 macrophages to total macrophages in tumor hot spots (P = .0002, P < .0001, and P = .0002, respectively) and in tumor tissues outside of hot spots (P = .009, P = .002, and P = .007, respectively) than in normal surrounding tissues. There were no significant differences between tumor locations, but there was a trend toward higher numbers of CD204-positive macrophages within the splenic tumors. There was no association between histological parameters or clinical stage and TAM numbers or phenotype. As in humans, TAMs in dogs with HSA have a predominantly M2-skewed phenotype. Dogs with HSA could serve as excellent models to evaluate new TAM-reprogramming therapies.
Collapse
Affiliation(s)
| | | | - Tobias Olsen
- Norwegian University of Life Sciences, Ås, Norway
| | | | | | - Lars Moe
- Norwegian University of Life Sciences, Ås, Norway
| | | |
Collapse
|
6
|
Lyu Q, Veldhuizen EJA, Ludwig IS, Rutten VPMG, van Eden W, Sijts AJAM, Broere F. Characterization of polarization states of canine monocyte derived macrophages. PLoS One 2023; 18:e0292757. [PMID: 37939066 PMCID: PMC10631683 DOI: 10.1371/journal.pone.0292757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 09/27/2023] [Indexed: 11/10/2023] Open
Abstract
Macrophages can reversibly polarize into multiple functional subsets depending on their micro-environment. Identification and understanding the functionality of these subsets is relevant for the study of immune‑related diseases. However, knowledge about canine macrophage polarization is still in its infancy. In this study, we polarized canine monocytes using GM-CSF/IFN- γ and LPS towards M1 macrophages or M-CSF and IL-4 towards M2 macrophages and compared them to undifferentiated monocytes (M0). Polarized M1 and M2 macrophages were thoroughly characterized for morphology, surface marker features, gene profiles and functional properties. Our results showed that canine M1-polarized macrophages obtained a characteristic large, roundish, or amoeboid shape, while M2-polarized macrophages were smaller and adopted an elongated spindle-like morphology. Phenotypically, all macrophage subsets expressed the pan-macrophage markers CD14 and CD11b. M1-polarized macrophages expressed increased levels of CD40, CD80 CD86 and MHC II, while a significant increase in the expression levels of CD206, CD209, and CD163 was observed in M2-polarized macrophages. RNAseq of the three macrophage subsets showed distinct gene expression profiles, which are closely associated with immune responsiveness, cell differentiation and phagocytosis. However, the complexity of the gene expression patterns makes it difficult to assign clear new polarization markers. Functionally, undifferentiated -monocytes, and M1- and M2- like subsets of canine macrophages can all phagocytose latex beads. M2-polarized macrophages exhibited the strongest phagocytic capacity compared to undifferentiated monocytes- and M1-polarized cells. Taken together, this study showed that canine M1 and M2-like macrophages have distinct features largely in parallel to those of well-studied species, such as human, mouse and pig. These findings enable future use of monocyte derived polarized macrophages particularly in studies of immune related diseases in dogs.
Collapse
Affiliation(s)
- Qingkang Lyu
- Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Immunology Center of Georgia, Augusta University, Augusta, GA, United States of America
| | - Edwin J. A. Veldhuizen
- Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Irene S. Ludwig
- Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Victor P. M. G. Rutten
- Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Veterinary Tropical diseases, Faculty of Veterinary Science, Pretoria University, Pretoria, South Africa
| | - Willem van Eden
- Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Alice J. A. M. Sijts
- Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Femke Broere
- Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Clinical Sciences of Companion Animals, Faculty Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
7
|
Brady RV, Thamm DH. Tumor-associated macrophages: Prognostic and therapeutic targets for cancer in humans and dogs. Front Immunol 2023; 14:1176807. [PMID: 37090720 PMCID: PMC10113558 DOI: 10.3389/fimmu.2023.1176807] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
Macrophages are ancient, phagocytic immune cells thought to have their origins 500 million years ago in metazoan phylogeny. The understanding of macrophages has evolved to encompass their foundational roles in development, homeostasis, tissue repair, inflammation, and immunity. Notably, macrophages display high plasticity in response to environmental cues, capable of a strikingly wide variety of dynamic gene signatures and phenotypes. Macrophages are also involved in many pathological states including neural disease, asthma, liver disease, heart disease, cancer, and others. In cancer, most tumor-associated immune cells are macrophages, coined tumor-associated macrophages (TAMs). While some TAMs can display anti-tumor properties such as phagocytizing tumor cells and orchestrating an immune response, most macrophages in the tumor microenvironment are immunosuppressive and pro-tumorigenic. Macrophages have been implicated in all stages of cancer. Therefore, interest in manipulating macrophages as a therapeutic strategy against cancer developed as early as the 1970s. Companion dogs are a strong comparative immuno-oncology model for people due to documented similarities in the immune system and spontaneous cancers between the species. Data from clinical trials in humans and dogs can be leveraged to further scientific advancements that benefit both species. This review aims to provide a summary of the current state of knowledge on macrophages in general, and an in-depth review of macrophages as a therapeutic strategy against cancer in humans and companion dogs.
Collapse
Affiliation(s)
- Rachel V. Brady
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, United States
| | - Douglas H. Thamm
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, United States
- Flint Animal Cancer Center, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
8
|
Pezzanite LM, Chow L, Griffenhagen GM, Bass L, Goodrich LR, Impastato R, Dow S. Distinct differences in immunological properties of equine orthobiologics revealed by functional and transcriptomic analysis using an activated macrophage readout system. Front Vet Sci 2023; 10:1109473. [PMID: 36876001 PMCID: PMC9978772 DOI: 10.3389/fvets.2023.1109473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/26/2023] [Indexed: 02/18/2023] Open
Abstract
Introduction Multiple biological therapies for orthopedic injuries are marketed to veterinarians, despite a lack of rigorous comparative biological activity data to guide informed decisions in selecting a most effective compound. Therefore, the goal of this study was to use relevant bioassay systems to directly compare the anti-inflammatory and immunomodulatory activity of three commonly used orthobiological therapies (OTs): mesenchymal stromal cells (MSC), autologous conditioned serum (ACS), and platelet rich plasma (PRP). Methods Equine monocyte-derived macrophages were used as the readout system to compare therapies, including cytokine production and transcriptomic responses. Macrophages were stimulated with IL-1ß and treated 24 h with OTs, washed and cultured an additional 24 h to generate supernatants. Secreted cytokines were measured by multiplex immunoassay and ELISA. To assess global transcriptomic responses to treatments, RNA was extracted from macrophages and subjected to full RNA sequencing, using an Illumina-based platform. Data analysis included comparison of differentially expressed genes and pathway analysis in treated vs. untreated macrophages. Results All treatments reduced production of IL-1ß by macrophages. Secretion of IL-10 was highest in MSC-CM treated macrophages, while PRP lysate and ACS resulted in greater downregulation of IL-6 and IP-10. Transcriptomic analysis revealed that ACS triggered multiple inflammatory response pathways in macrophages based on GSEA, while MSC generated significant downregulation of inflammatory pathways, and PRP lysate induced a mixed immune response profile. Key downregulated genes in MSC-treated cultures included type 1 and type 2 interferon response, TNF-α and IL-6. PRP lysate cultures demonstrated downregulation of inflammation-related genes IL-1RA, SLAMF9, ENSECAG00000022247 but concurrent upregulation of TNF-α, IL-2 signaling, and Myc targets. ACS induced upregulation of inflammatory IL-2 signaling, TNFα and KRAS signaling and hypoxia, but downregulation of MTOR signaling and type 1 interferon signaling. Discussion These findings, representing the first comprehensive look at immune response pathways for popular equine OTs, reveal distinct differences between therapies. These studies address a critical gap in our understanding of the relative immunomodulatory properties of regenerative therapies commonly used in equine practice to treat musculoskeletal disease and will serve as a platform from which further in vivo comparisons may build.
Collapse
Affiliation(s)
- Lynn M. Pezzanite
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Lyndah Chow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Gregg M. Griffenhagen
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Luke Bass
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Laurie R. Goodrich
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Renata Impastato
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Steven Dow
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
9
|
Chow L, Soontararak S, Wheat W, Ammons D, Dow S. Canine polarized macrophages express distinct functional and transcriptomic profiles. Front Vet Sci 2022; 9:988981. [PMID: 36387411 PMCID: PMC9663804 DOI: 10.3389/fvets.2022.988981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/13/2022] [Indexed: 11/04/2022] Open
Abstract
Macrophage differentiation and function in disease states is highly regulated by the local microenvironment. For example, macrophage exposure to IFN-γ (interferon gamma) initiates the development of inflammatory (M1) macrophages, which acquire anti-tumoral and antimicrobial activity, while exposure to IL-4 (interleukin-4) and IL-13 (interleukin-13) drives an anti-inflammatory (M2) macrophage phenotype, which promotes healing and suppression of inflammatory responses. Previous studies of canine polarized macrophages have identified several surface markers that distinguished GM-CSF (granulocyte macrophage colony stimulating factor), IFN-γ and LPS (lipopolysaccharide) derived M1 macrophages or M2 macrophages; and reported a subset of genes that can be used to differentiate between polarization states. However, the need remains to understand the underlying biological mechanisms governing canine macrophage polarization states. Therefore, in the present study we used transcriptome sequencing, a larger panel of flow cytometry markers, and the addition of antimicrobial functional assays to further characterize canine macrophage polarization. Transcriptome analysis revealed unique, previously unreported signatures and pathways for polarized canine M1 and M2 macrophages. New flow cytometric markers were also identified, along with new characterization of how macrophage polarization impacted antimicrobial functions. Taken together, the findings reported here provide new insights into canine macrophage biology and identify new tools for the evaluation of polarized macrophages in dogs.
Collapse
Affiliation(s)
- Lyndah Chow
- Flint Animal Cancer Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, CO, United States
| | - Sirikul Soontararak
- Flint Animal Cancer Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, CO, United States
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - William Wheat
- Flint Animal Cancer Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, CO, United States
| | - Dylan Ammons
- Flint Animal Cancer Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, CO, United States
| | - Steven Dow
- Flint Animal Cancer Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, CO, United States
- *Correspondence: Steven Dow
| |
Collapse
|
10
|
Calvo Alvarez E, D’Alessandro S, Proverbio D, Spada E, Perego R, Taramelli D, Basilico N, Parapini S. In Vitro Antiparasitic Activities of Monovalent Ionophore Compounds for Human and Canine Leishmaniases. Animals (Basel) 2022; 12:2337. [PMID: 36139198 PMCID: PMC9495262 DOI: 10.3390/ani12182337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/06/2022] [Accepted: 09/06/2022] [Indexed: 12/03/2022] Open
Abstract
The leishmaniases are vector-borne parasitic diseases affecting humans and animals, with high mortality rates in endemic countries. Infected dogs represent the main reservoir of infection. Disease control is mainly based on chemotherapy, which, at present, shows serious drawbacks both in humans and dogs. Therefore, the discovery or repurposing of new treatments is mandatory. Here, three monovalent ionophores (salinomycin, monensin, nigericin) were tested against promastigotes of Leishmania (L.) infantum, Leishmania tropica, and Leishmania braziliensis, and against amastigotes of L. infantum within human and, for the first time, canine macrophages. All three drugs were leishmanicidal against all Leishmania spp. promastigotes with IC50 values between 7.98 and 0.23 µM. Monensin and nigericin showed IC50 values < 1 µM, whereas salinomycin was the least active compound (IC50 > 4 µM). Notably, the ionophores killed L. infantum amastigotes within human THP-1 cells with IC50 values ranging from 1.67 to 1.93 µM, but they only reduced by 27−37% the parasite burden in L. infantum-infected canine macrophages, showing a host-specific efficacy. Moreover, a selective higher toxicity against canine macrophages was observed. Overall, repurposed ionophores have the potential to be further investigated as anti-Leishmania agents, but different drug options may be required to tackle human or canine leishmaniases.
Collapse
Affiliation(s)
- Estefanía Calvo Alvarez
- Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, Via Pascal, 36, 20133 Milan, Italy
| | - Sarah D’Alessandro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Pascal, 36, 20133 Milan, Italy
| | - Daniela Proverbio
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, Via dell’Università, 1, 26900 Lodi, Italy
| | - Eva Spada
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, Via dell’Università, 1, 26900 Lodi, Italy
| | - Roberta Perego
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, Via dell’Università, 1, 26900 Lodi, Italy
| | - Donatella Taramelli
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Pascal, 36, 20133 Milan, Italy
| | - Nicoletta Basilico
- Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, Via Pascal, 36, 20133 Milan, Italy
| | - Silvia Parapini
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Pascal, 36, 20133 Milan, Italy
| |
Collapse
|
11
|
Soileau AM, Quick CN, Moeller CE, Schaumburg JC, Withers SS. The Effect of Arginase on Canine T-Lymphocyte Functions and its Modulation by All-Trans Retinoid Acid (ATRA) in Canine Monocyte-Derived Macrophages. Vet Sci 2022; 9:vetsci9070374. [PMID: 35878391 PMCID: PMC9320773 DOI: 10.3390/vetsci9070374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/07/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
Immunosuppressive myeloid cells in the tumor microenvironment play a major role in suppressing tumor immunity via the production of arginase, IL-10, and others. The objectives of this study were to determine the ability of all-trans retinoic acid (ATRA) to decrease the expression of arginase and other soluble mediators by canine monocyte-derived macrophages (MDMs) and to determine the inhibitory activity of arginase on canine T-lymphocytes. The immunomodulatory ability of ATRA (2 µM) on canine MDMs was evaluated via reverse transcription quantitative PCR (RT-qPCR), flow cytometry, arginase activity assay, and enzyme-linked immunoassay (ELISA). Arginase effects on T-lymphocyte phenotype and proliferation were then evaluated by flow cytometry. ATRA consistently decreased MDM expression of IL6, TGFB1, NOS2, ARG1, and CIITA transcripts, by approximately 2-4-fold, although this did not reach statistical significance for ARG1 or CIITA. Furthermore, arginase activity was decreased in ATRA-treated MDMs while the MDM phenotype remained unchanged. Arginase decreased the expression of granzyme B on CD8+ T-lymphocytes and inhibited CD4+ and CD8+ T-lymphocyte proliferation. These findings suggested that ATRA could inhibit canine MDM production of soluble inflammatory/immunosuppressive mediators. These data also revealed that arginase decreased canine T-lymphocyte proliferation and granzyme B expression. Further studies are needed to determine whether ATRA could reverse the immunosuppressive effects of myeloid cells on canine T-lymphocytes in vivo.
Collapse
|
12
|
Tani A, Tomiyasu H, Asada H, Lin CS, Goto-Koshino Y, Ohno K, Tsujimoto H. Changes in gene expression profiles and cytokine secretions in peripheral monocytes by treatment with small extracellular vesicles derived from a canine lymphoma cell line. J Vet Med Sci 2022; 84:712-719. [PMID: 35387951 PMCID: PMC9177395 DOI: 10.1292/jvms.21-0506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interactions between tumor and immune cells within the tumor microenvironment play an important role in tumor progression, and small extracellular vesicles (EVs) derived from these tumor
cells have been shown to exert immunomodulatory effects on various immune cells, including macrophages and lymphocytes. Although the immunomodulatory effects of small EVs derived from human
cancer cells have been intensively investigated, few studies have investigated the effects of lymphoma-derived small EVs on macrophages in both human and veterinary medicine. Here, we
evaluated the effects of canine lymphoma-derived small EVs on canine primary monocytes, which are the major source of macrophages in neoplastic tissues. Comprehensive gene expression
analysis of these treated monocytes revealed their distinct activation via the Toll-like receptor (TLR) and NF-κβ signaling pathways. In addition, treatment with lymphoma small EVs increased
the secretion of MCP-1, which induces the infiltration and migration of monocytes and lymphocytes in neoplastic and cancer tissues. The results of this study indicate that canine lymphoma
small EVs activate monocytes, possibly through the activation of TLR and NF-κβ signaling pathways, and induce monocytes to secrete of MCP-1, which might contribute to immune cell
infiltration within the tumor microenvironment.
Collapse
Affiliation(s)
- Akiyoshi Tani
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Hirotaka Tomiyasu
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Hajime Asada
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo.,Present address: Department of Urology, Northwestern University
| | - Chen-Si Lin
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University
| | - Yuko Goto-Koshino
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Koichi Ohno
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Hajime Tsujimoto
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| |
Collapse
|
13
|
Krane GA, O'Dea CA, Malarkey DE, Miller AD, Miller CR, Tokarz DA, Jensen HL, Janardhan KS, Shockley KR, Flagler N, Rainess BA, Mariani CL. Immunohistochemical evaluation of immune cell infiltration in canine gliomas. Vet Pathol 2021; 58:952-963. [PMID: 34196247 PMCID: PMC11404454 DOI: 10.1177/03009858211023946] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Evasion of the immune response is an integral part of the pathogenesis of glioma. In humans, important mechanisms of immune evasion include recruitment of regulatory T cells (Tregs) and polarization of macrophages toward an M2 phenotype. Canine glioma has a robust immune cell infiltrate that has not been extensively characterized. The purpose of this study was to determine the distribution of immune cells infiltrating spontaneous intracranial canine gliomas. Seventy-three formalin-fixed, paraffin-embedded tumor samples were evaluated using immunohistochemistry for CD3, forkhead box 3 (FOXP3), CD20, Iba1, calprotectin (Mac387), CD163, and indoleamine 2,3-dioxygenase (IDO). Immune cell infiltration was present in all tumors. Low-grade and high-grade gliomas significantly differed in the numbers of FoxP3+ cells, Mac387+ cells, and CD163+ cells (P = .006, .01, and .01, respectively). Considering all tumors, there was a significant increase in tumor area fraction of CD163 compared to Mac387 (P < .0001), and this ratio was greater in high-grade tumors than in low-grade tumors (P = .005). These data warrant further exploration into the roles of macrophage repolarization or Treg interference therapy in canine glioma.
Collapse
Affiliation(s)
- Gregory A Krane
- 6857National Institute of Environmental Health Sciences, National Toxicology Program, Cellular and Molecular Pathology Branch, Research Triangle Park, NC, USA
- Department of Clinical Sciences, North Carolina State University, Raleigh, NC, USA
- Comparative Neuroimmunology and Neuro-Oncology Laboratory, North Carolina State University, Raleigh, NC, USA
| | | | - David E Malarkey
- 6857National Institute of Environmental Health Sciences, National Toxicology Program, Cellular and Molecular Pathology Branch, Research Triangle Park, NC, USA
| | | | | | - Debra A Tokarz
- Experimental Pathology Laboratories Inc, Research Triangle Park, NC, USA
| | - Heather L Jensen
- 6857National Institute of Environmental Health Sciences, National Toxicology Program, Cellular and Molecular Pathology Branch, Research Triangle Park, NC, USA
| | | | - Keith R Shockley
- Division of Intramural Research, Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Norris Flagler
- 6857National Institute of Environmental Health Sciences, National Toxicology Program, Cellular and Molecular Pathology Branch, Research Triangle Park, NC, USA
| | - Brittani A Rainess
- Comparative Neuroimmunology and Neuro-Oncology Laboratory, North Carolina State University, Raleigh, NC, USA
| | - Christopher L Mariani
- Comparative Neuroimmunology and Neuro-Oncology Laboratory, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
14
|
Shibasaki S, Karasaki M, Matsui K, Iwasaki T. Functional Evaluation of Anti-TNF-α Affibody Molecules in Biochemical Detection and Inhibition to Signalling Pathways of a Synovial Cell. Curr Pharm Biotechnol 2021; 22:1228-1234. [PMID: 33069194 DOI: 10.2174/1389201021666201016143730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND An affibody molecule obtained from a bioengineered staphylococcal protein was previously shown to act as an affinity binder for a wide range of targets and develop Tumour Necrosis Factor α (TNF-α)-binding clones. METHODS In this study, we demonstrated that affibody molecules against TNF-α could bind to recombinant TNF-α on the membrane for biochemical detection. In addition, we examined whether the affibody molecules could block binding between recombinant TNF-α and its receptor on MH7A synovial cells. RESULTS When a TNF-α-binding affibody was added, the production level of inflammatory mediators IL-6 and MMP-3 in MH7A were found to decrease up to 44%. Additionally, proliferation of synovial cells was also inhibited by the addition of TNF-α to cultivation media. CONCLUSION These results suggest that affibody molecules against TNF-α could be candidate molecules for the detection of TNF-α during biochemical analysis and pharmacotherapy for rheumatoid arthritis.
Collapse
Affiliation(s)
- Seiji Shibasaki
- Department of Internal Medicine, Hyogo College of Medicine, Mukogawa-cho, Nishinomiya, 663-8501, Japan
| | - Miki Karasaki
- General Education Center, Hyogo University of Health Sciences, Minatojima 1-3-6, Kobe, 650-8530, Japan
| | - Kiyoshi Matsui
- Department of Internal Medicine, Hyogo College of Medicine, Mukogawa-cho, Nishinomiya, 663-8501, Japan
| | - Tsuyoshi Iwasaki
- Department of Internal Medicine, Hyogo College of Medicine, Mukogawa-cho, Nishinomiya, 663-8501, Japan
| |
Collapse
|
15
|
Massimini M, Dalle Vedove E, Bachetti B, Di Pierro F, Ribecco C, D'Addario C, Pucci M. Polyphenols and Cannabidiol Modulate Transcriptional Regulation of Th1/Th2 Inflammatory Genes Related to Canine Atopic Dermatitis. Front Vet Sci 2021; 8:606197. [PMID: 33763461 PMCID: PMC7982812 DOI: 10.3389/fvets.2021.606197] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
Canine atopic dermatitis (AD) is a multifactorial allergic disease associated with immune and abnormal skin barrier dysfunction and it is one of the primary causes of pruritus. Using a novel in vitro model of AD, here we tried to revert the alteration of transcriptional regulation of AD canine key genes testing a nutraceutical mixture containing flavonoids, stilbene, and cannabinoids, which are already well-known for their applications within dermatology diseases. The nutraceutical mixture induced in inflamed cells a significant downregulation (p < 0.05) of the gene expression of ccl2, ccl17, and tslp in keratinocytes and of ccl2, ccl17, and il31ra in monocytes. Consistent with the observed alterations of tslp, ccl2, ccl17, and il31ra messenger RNA (mRNA) levels, a significant increase (p < 0.05) of DNA methylation at specific CpG sites on the gene regulatory regions was found. These results lay the foundation for the use of these natural bioactives in veterinary medicine and provide a model for deeper understanding of their mechanisms of action, with potential translation to human research.
Collapse
Affiliation(s)
| | | | | | | | | | - Claudio D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Mariangela Pucci
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
16
|
Sophocleous RA, Miles NA, Ooi L, Sluyter R. P2Y 2 and P2X4 Receptors Mediate Ca 2+ Mobilization in DH82 Canine Macrophage Cells. Int J Mol Sci 2020; 21:ijms21228572. [PMID: 33202978 PMCID: PMC7696671 DOI: 10.3390/ijms21228572] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 02/08/2023] Open
Abstract
Purinergic receptors of the P2 subclass are commonly found in human and rodent macrophages where they can be activated by adenosine 5'-triphosphate (ATP) or uridine 5'-triphosphate (UTP) to mediate Ca2+ mobilization, resulting in downstream signalling to promote inflammation and pain. However, little is understood regarding these receptors in canine macrophages. To establish a macrophage model of canine P2 receptor signalling, the expression of these receptors in the DH82 canine macrophage cell line was determined by reverse transcription polymerase chain reaction (RT-PCR) and immunocytochemistry. P2 receptor function in DH82 cells was pharmacologically characterised using nucleotide-induced measurements of Fura-2 AM-bound intracellular Ca2+. RT-PCR revealed predominant expression of P2X4 receptors, while immunocytochemistry confirmed predominant expression of P2Y2 receptors, with low levels of P2X4 receptor expression. ATP and UTP induced robust Ca2+ responses in the absence or presence of extracellular Ca2+. ATP-induced responses were only partially inhibited by the P2X4 receptor antagonists, 2',3'-O-(2,4,6-trinitrophenyl)-ATP (TNP-ATP), paroxetine and 5-BDBD, but were strongly potentiated by ivermectin. UTP-induced responses were near completely inhibited by the P2Y2 receptor antagonists, suramin and AR-C118925. P2Y2 receptor-mediated Ca2+ mobilization was inhibited by U-73122 and 2-aminoethoxydiphenyl borate (2-APB), indicating P2Y2 receptor coupling to the phospholipase C and inositol triphosphate signal transduction pathway. Together this data demonstrates, for the first time, the expression of functional P2 receptors in DH82 canine macrophage cells and identifies a potential cell model for studying macrophage-mediated purinergic signalling in inflammation and pain in dogs.
Collapse
Affiliation(s)
- Reece Andrew Sophocleous
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (R.A.S.); (N.A.M.); (L.O.)
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Nicole Ashleigh Miles
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (R.A.S.); (N.A.M.); (L.O.)
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (R.A.S.); (N.A.M.); (L.O.)
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Ronald Sluyter
- Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia; (R.A.S.); (N.A.M.); (L.O.)
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
- Correspondence: ; Tel.: +612-4221-5508
| |
Collapse
|
17
|
Liu Y, Wang R. Immunotherapy Targeting Tumor-Associated Macrophages. Front Med (Lausanne) 2020; 7:583708. [PMID: 33251232 PMCID: PMC7674960 DOI: 10.3389/fmed.2020.583708] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/23/2020] [Indexed: 12/24/2022] Open
Abstract
Macrophages are phagocytic cells that play a broad role in maintaining body homeostasis and defense against foreign pathogens; whereas tumor-associated macrophages (TAMs) support tumor growth and metastasis by promoting cancer cell proliferation and invasion, immunosuppression, and angiogenesis, which is closely related to the poor prognosis in almost all solid tumors. Hence, deep-insight knowledge into TAMs can provide an opportunity to discover more effective strategies for cancer therapeutics. So far, a large number of therapeutic agents targeting TAMs are in clinical trials. In this review, we introduce an extensive overview about macrophages and macrophage-targeting agents.
Collapse
Affiliation(s)
- Yafei Liu
- Department of Pharmacy, The Forth Affiliation Hospital of China Medical University, Shenyang, China
| | - Rongsi Wang
- High School of East China Normal University, Shanghai, China
| |
Collapse
|
18
|
IgE Antibodies against Cancer: Efficacy and Safety. Antibodies (Basel) 2020; 9:antib9040055. [PMID: 33081206 PMCID: PMC7709114 DOI: 10.3390/antib9040055] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/25/2020] [Accepted: 10/09/2020] [Indexed: 12/13/2022] Open
Abstract
Immunoglobulin E (IgE) antibodies are well known for their role in allergic diseases and for contributions to antiparasitic immune responses. Properties of this antibody class that mediate powerful effector functions may be redirected for the treatment of solid tumours. This has led to the rise of a new class of therapeutic antibodies to complement the armamentarium of approved tumour targeting antibodies, which to date are all IgG class. The perceived risk of type I hypersensitivity reactions following administration of IgE has necessitated particular consideration in the development of these therapeutic agents. Here, we bring together the properties of IgE antibodies pivotal to the hypothesis for superior antitumour activity compared to IgG, observations of in vitro and in vivo efficacy and mechanisms of action, and a focus on the safety considerations for this novel class of therapeutic agent. These include in vitro studies of potential hypersensitivity, selection of and observations from appropriate in vivo animal models and possible implications of the high degree of glycosylation of IgE. We also discuss the use of ex vivo predictive and monitoring clinical tools, as well as the risk mitigation steps employed in, and the preliminary outcomes from, the first-in-human clinical trial of a candidate anticancer IgE therapeutic.
Collapse
|
19
|
Chakrabarti S, Ai M, Henson FM, Smith ESJ. Peripheral mechanisms of arthritic pain: A proposal to leverage large animals for in vitro studies. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2020; 8:100051. [PMID: 32817908 PMCID: PMC7426561 DOI: 10.1016/j.ynpai.2020.100051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 04/14/2023]
Abstract
Pain arising from musculoskeletal disorders such as arthritis is one of the leading causes of disability. Whereas the past 20-years has seen an increase in targeted therapies for rheumatoid arthritis (RA), other arthritis conditions, especially osteoarthritis, remain poorly treated. Although modulation of central pain pathways occurs in chronic arthritis, multiple lines of evidence indicate that peripherally driven pain is important in arthritic pain. To understand the peripheral mechanisms of arthritic pain, various in vitro and in vivo models have been developed, largely in rodents. Although rodent models provide numerous advantages for studying arthritis pathogenesis and treatment, the anatomy and biomechanics of rodent joints differ considerably to those of humans. By contrast, the anatomy and biomechanics of joints in larger animals, such as dogs, show greater similarity to human joints and thus studying them can provide novel insight for arthritis research. The purpose of this article is firstly to review models of arthritis and behavioral outcomes commonly used in large animals. Secondly, we review the existing in vitro models and assays used to study arthritic pain, primarily in rodents, and discuss the potential for adopting these strategies, as well as likely limitations, in large animals. We believe that exploring peripheral mechanisms of arthritic pain in vitro in large animals has the potential to reduce the veterinary burden of arthritis in commonly afflicted species like dogs, as well as to improve translatability of pain research into the clinic.
Collapse
Affiliation(s)
- Sampurna Chakrabarti
- Department of Neuroscience, Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
- Department of Pharmacology, University of Cambridge, UK
| | - Minji Ai
- Department of Veterinary Medicine, University of Cambridge, UK
| | | | | |
Collapse
|
20
|
Sutton BJ, Davies AM, Bax HJ, Karagiannis SN. IgE Antibodies: From Structure to Function and Clinical Translation. Antibodies (Basel) 2019; 8:E19. [PMID: 31544825 PMCID: PMC6640697 DOI: 10.3390/antib8010019] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/11/2019] [Accepted: 02/15/2019] [Indexed: 12/15/2022] Open
Abstract
Immunoglobulin E (IgE) antibodies are well known for their role in mediating allergic reactions, and their powerful effector functions activated through binding to Fc receptors FcεRI and FcεRII/CD23. Structural studies of IgE-Fc alone, and when bound to these receptors, surprisingly revealed not only an acutely bent Fc conformation, but also subtle allosteric communication between the two distant receptor-binding sites. The ability of IgE-Fc to undergo more extreme conformational changes emerged from structures of complexes with anti-IgE antibodies, including omalizumab, in clinical use for allergic disease; flexibility is clearly critical for IgE function, but may also be exploited by allosteric interference to inhibit IgE activity for therapeutic benefit. In contrast, the power of IgE may be harnessed to target cancer. Efforts to improve the effector functions of therapeutic antibodies for cancer have almost exclusively focussed on IgG1 and IgG4 subclasses, but IgE offers an extremely high affinity for FcεRI receptors on immune effector cells known to infiltrate solid tumours. Furthermore, while tumour-resident inhibitory Fc receptors can modulate the effector functions of IgG antibodies, no inhibitory IgE Fc receptors are known to exist. The development of tumour antigen-specific IgE antibodies may therefore provide an improved immune functional profile and enhanced anti-cancer efficacy. We describe proof-of-concept studies of IgE immunotherapies against solid tumours, including a range of in vitro and in vivo evaluations of efficacy and mechanisms of action, as well as ex vivo and in vivo safety studies. The first anti-cancer IgE antibody, MOv18, the clinical translation of which we discuss herein, has now reached clinical testing, offering great potential to direct this novel therapeutic modality against many other tumour-specific antigens. This review highlights how our understanding of IgE structure and function underpins these exciting clinical developments.
Collapse
Affiliation(s)
- Brian J Sutton
- King's College London, Randall Centre for Cell and Molecular Biophysics, London SE1 1UL, UK.
- Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK.
| | - Anna M Davies
- King's College London, Randall Centre for Cell and Molecular Biophysics, London SE1 1UL, UK.
- Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK.
| | - Heather J Bax
- King's College London, St John's Institute of Dermatology, London SE1 9RT, UK.
| | | |
Collapse
|
21
|
Lokhonina A, Elchaninov A, Fatkhudinov T, Makarov A, Arutyunyan I, Grinberg M, Glinkina V, Surovtsev V, Bolshakova G, Goldshtein D, Sukhikh G. Activated Macrophages of Monocytic Origin Predominantly Express Proinflammatory Cytokine Genes, Whereas Kupffer Cells Predominantly Express Anti-Inflammatory Cytokine Genes. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3912142. [PMID: 30949499 PMCID: PMC6425426 DOI: 10.1155/2019/3912142] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 02/07/2023]
Abstract
In the central nervous system and in the liver, the macrophage populations are represented exclusively by descendants of the hematopoietic progenitor cells of the yolk sac. The reasons for such differential distribution of macrophages are not fully understood. We found that, as can be judged by corresponding changes in the expression of CD86 and CD163 markers, the transient macrophages of monocytic lineage are more sensitive to activating stimuli. The two macrophage populations have distinct patterns of gene expression, which is particularly noticeable for M1- and M2-associated genes. For instance, Kupffer cells more readily develop and longer maintain the elevated expression levels of Il4, Il10, and Il13 upon the activation; by contrast, the macrophages of monocytic lineage express Il1b, Il12a, and Tnfα upon the activation. The obtained results allow us to conclude that the in vitro activated Kupffer cells of the liver are committed to M2 phenotype, whereas the in vitro activated monocyte-derived macrophages show a typical M1 behavior. These observations are likely to reflect the situation in the in vivo microenvironments.
Collapse
Affiliation(s)
- Anastasia Lokhonina
- 1National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia
| | - Andrey Elchaninov
- 1National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia
- 2Pirogov Russian National Research Medical University, Ministry of Healthcare of The Russian Federation, 1 Ostrovitianov Street, Moscow 117997, Russia
| | - Timur Fatkhudinov
- 1National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia
- 3Peoples' Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow 117198, Russia
| | - Andrey Makarov
- 1National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia
- 2Pirogov Russian National Research Medical University, Ministry of Healthcare of The Russian Federation, 1 Ostrovitianov Street, Moscow 117997, Russia
| | - Irina Arutyunyan
- 1National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia
- 4Scientific Research Institute of Human Morphology, 3 Tsurupa Street, Moscow 117418, Russia
| | - Maria Grinberg
- 3Peoples' Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow 117198, Russia
| | - Valeria Glinkina
- 2Pirogov Russian National Research Medical University, Ministry of Healthcare of The Russian Federation, 1 Ostrovitianov Street, Moscow 117997, Russia
| | - Viktor Surovtsev
- 3Peoples' Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow 117198, Russia
| | - Galina Bolshakova
- 4Scientific Research Institute of Human Morphology, 3 Tsurupa Street, Moscow 117418, Russia
| | - Dmitry Goldshtein
- 5Research Centre of Medical Genetics, 1 Moscvorechie, 115478 Moscow, Russia
| | - Gennady Sukhikh
- 1National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia
| |
Collapse
|
22
|
Gharat TP, Diaz-Rodriguez P, Erndt-Marino JD, Jimenez Vergara AC, Munoz Pinto DJ, Bearden RN, Huggins SS, Grunlan M, Saunders WB, Hahn MS. A canine in vitro model for evaluation of marrow-derived mesenchymal stromal cell-based bone scaffolds. J Biomed Mater Res A 2018; 106:2382-2393. [PMID: 29633508 PMCID: PMC6158043 DOI: 10.1002/jbm.a.36430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/18/2018] [Accepted: 03/28/2018] [Indexed: 12/23/2022]
Abstract
Tissue engineered bone grafts based on bone marrow mesenchymal stromal cells (MSCs) are being actively developed for craniomaxillofacial (CMF) applications. As for all tissue engineered implants, the bone-regenerating capacity of these MSC-based grafts must first be evaluated in animal models prior to human trials. Canine models have traditionally resulted in improved clinical translation of CMF grafts relative to other animal models. However, the utility of canine CMF models for evaluating MSC-based bone grafts rests on canine MSCs (cMSCs) responding in a similar manner to scaffold-based stimuli as human MSCs (hMSCs). Herein, cMSC and hMSC responses to polyethylene glycol (PEG)-based scaffolds were therefore compared in the presence or absence of osteoinductive polydimethylsiloxane (PDMS). Notably, the conjugation of PDMS to PEG-based constructs resulted in increases in both cMSC and hMSC osteopontin and calcium deposition. Based on these results, cMSCs were further used to assess the efficacy of tethered bone morphogenic protein 2 (BMP2) in enhancing PEG-PDMS scaffold osteoinductivity. Addition of low doses of tethered BMP2 (100 ng/mL) to PEG-PDMS systems increased cMSC expression of osterix and osteopontin compared to both PEG-PDMS and PEG-BMP2 controls. Furthermore, these increases were comparable to effects seen with up to five-times higher BMP2 doses noted in literature. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A:2382-2393, 2018.
Collapse
Affiliation(s)
- Tanmay P. Gharat
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | | | - Josh D. Erndt-Marino
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | | | - Dany J. Munoz Pinto
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Robert N. Bearden
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Shannon S. Huggins
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Melissa Grunlan
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - W. Brian Saunders
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Mariah S. Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, USA
| |
Collapse
|