1
|
Shi Q, Zhao R, Chen L, Liu T, Di T, Zhang C, Zhang Z, Wang F, Han Z, Sun J, Liu S. Newcastle disease virus activates diverse signaling pathways via Src to facilitate virus entry into host macrophages. J Virol 2024; 98:e0191523. [PMID: 38334327 PMCID: PMC10949470 DOI: 10.1128/jvi.01915-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 12/27/2023] [Indexed: 02/10/2024] Open
Abstract
As an intrinsic cellular mechanism responsible for the internalization of extracellular ligands and membrane components, caveolae-mediated endocytosis (CavME) is also exploited by certain pathogens for endocytic entry [e.g., Newcastle disease virus (NDV) of paramyxovirus]. However, the molecular mechanisms of NDV-induced CavME remain poorly understood. Herein, we demonstrate that sialic acid-containing gangliosides, rather than glycoproteins, were utilized by NDV as receptors to initiate the endocytic entry of NDV into HD11 cells. The binding of NDV to gangliosides induced the activation of a non-receptor tyrosine kinase, Src, leading to the phosphorylation of caveolin-1 (Cav1) and dynamin-2 (Dyn2), which contributed to the endocytic entry of NDV. Moreover, an inoculation of cells with NDV-induced actin cytoskeletal rearrangement through Src to facilitate NDV entry via endocytosis and direct fusion with the plasma membrane. Subsequently, unique members of the Rho GTPases family, RhoA and Cdc42, were activated by NDV in a Src-dependent manner. Further analyses revealed that RhoA and Cdc42 regulated the activities of specific effectors, cofilin and myosin regulatory light chain 2, responsible for actin cytoskeleton rearrangement, through diverse intracellular signaling cascades. Taken together, our results suggest that an inoculation of NDV-induced Src-mediated cellular activation by binding to ganglioside receptors. This process orchestrated NDV endocytic entry by modulating the activities of caveolae-associated Cav1 and Dyn2, as well as specific Rho GTPases and downstream effectors. IMPORTANCE In general, it is known that the paramyxovirus gains access to host cells through direct penetration at the plasma membrane; however, emerging evidence suggests more complex entry mechanisms for paramyxoviruses. The endocytic entry of Newcastle disease virus (NDV), a representative member of the paramyxovirus family, into multiple types of cells has been recently reported. Herein, we demonstrate the binding of NDV to induce ganglioside-activated Src signaling, which is responsible for the endocytic entry of NDV through caveolae-mediated endocytosis. This process involved Src-dependent activation of the caveolae-associated Cav1 and Dyn2, as well as specific Rho GTPase and downstream effectors, thereby orchestrating the endocytic entry process of NDV. Our findings uncover a novel molecular mechanism of endocytic entry of NDV into host cells and provide novel insight into paramyxovirus mechanisms of entry.
Collapse
Affiliation(s)
- Qiankai Shi
- Division of Avian Infectious Diseases, State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ran Zhao
- Division of Avian Infectious Diseases, State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Linna Chen
- Division of Avian Infectious Diseases, State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Tianyi Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Tao Di
- Division of Avian Infectious Diseases, State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chunwei Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhiying Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Fangfang Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zongxi Han
- Division of Avian Infectious Diseases, State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Junfeng Sun
- Division of Avian Infectious Diseases, State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| | - Shengwang Liu
- Division of Avian Infectious Diseases, State Key Laboratory of Animal Disease Control and Prevention, Harbin Veterinary Research Institute, the Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
2
|
Zhang Y, Cui Y, Sun J, Zhou ZH. Multiple conformations of trimeric spikes visualized on a non-enveloped virus. Nat Commun 2022; 13:550. [PMID: 35087065 PMCID: PMC8795420 DOI: 10.1038/s41467-022-28114-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/10/2022] [Indexed: 11/18/2022] Open
Abstract
Many viruses utilize trimeric spikes to gain entry into host cells. However, without in situ structures of these trimeric spikes, a full understanding of this dynamic and essential process of viral infections is not possible. Here we present four in situ and one isolated cryoEM structures of the trimeric spike of the cytoplasmic polyhedrosis virus, a member of the non-enveloped Reoviridae family and a virus historically used as a model in the discoveries of RNA transcription and capping. These structures adopt two drastically different conformations, closed spike and opened spike, which respectively represent the penetration-inactive and penetration-active states. Each spike monomer has four domains: N-terminal, body, claw, and C-terminal. From closed to opened state, the RGD motif-containing C-terminal domain is freed to bind integrins, and the claw domain rotates to expose and project its membrane insertion loops into the cellular membrane. Comparison between turret vertices before and after detachment of the trimeric spike shows that the trimeric spike anchors its N-terminal domain in the iris of the pentameric RNA-capping turret. Sensing of cytosolic S-adenosylmethionine (SAM) and adenosine triphosphate (ATP) by the turret triggers a cascade of events: opening of the iris, detachment of the spike, and initiation of endogenous transcription. Zhang and Cui et al. present in situ cryoEM structures of the trimeric spike of cytoplasmic polyhedrosis virus in both open and close conformations, and demonstrate that spike detachment from the capsid is triggered by the presence of SAM and ATP.
Collapse
Affiliation(s)
- Yinong Zhang
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China.,California Nanosystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA.,Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA, 90095, USA
| | - Yanxiang Cui
- California Nanosystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
| | - Jingchen Sun
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China. .,Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA, 90095, USA.
| | - Z Hong Zhou
- California Nanosystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA. .,Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
3
|
Zhu M, Pan J, Zhang M, Tong X, Zhang Y, Zhang Z, Liang Z, Zhang X, Hu X, Xue R, Cao G, Gong C. Bombyx mori cypovirus (BmCPV) induces PINK1-Parkin mediated mitophagy via interaction of VP4 with host Tom40. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 126:104244. [PMID: 34450127 DOI: 10.1016/j.dci.2021.104244] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
The mechanism by which infection by Bombyx mori cytoplasmic nucleopolyhedrosis virus (BmCPV) causes autophagy has not been studied in detail. Herein we have observed by electron microscopy that infection with BmCPV causes autophagosome and mitochondrial structure damage in Bombyx mori midgut. In BmN cells infected with BmCPV and expressing eGFP-LC3, fluorescence spots and LC3-II levels increased, suggesting that BmCPV infection causes autophagy. Autophagy inducer rapamycin (Rap) and autophagy inhibitor 3-methyladenine (3-MA) were used to monitor the effects of mitophagy on BmCPV proliferation. It was found BmCPV proliferation to be promoted by mitophagy. Transient transfection experiments in cultured BmN cells showed that mitophagy can be triggered by expression of BmCPV structural protein VP4. Moreover, VP4 caused upregulation of p-Drp1, PINK1 and Parkin proteins in the mitophagy pathway and downregulation of mitochondrial membrane protein Tom20. Furthermore, interaction between VP4 with Tom40 was confirmed by Co-IP, western blot and colocalization experiment, and overexpression of Tom40 reduce the level of mitochondrial autophagy induced by VP4. These results suggested that VP4 induced PINK1-Parkin-mediated mitophagy interacting with Tom40. These findings deepen our understanding of the interaction between BmCPV and silkworm and also provide a molecular target for screening anti-BmCPV drugs.
Collapse
Affiliation(s)
- Min Zhu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Jun Pan
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Mingtian Zhang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Xinyu Tong
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Yunshan Zhang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Ziyao Zhang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Zi Liang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Xing Zhang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Xiaolong Hu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Renyu Xue
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Guangli Cao
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China.
| | - Chengliang Gong
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
4
|
Kummer S, Lander A, Goretzko J, Kirchoff N, Rescher U, Schloer S. Pharmacologically induced endolysosomal cholesterol imbalance through clinically licensed drugs itraconazole and fluoxetine impairs Ebola virus infection in vitro. Emerg Microbes Infect 2021; 11:195-207. [PMID: 34919035 PMCID: PMC8745396 DOI: 10.1080/22221751.2021.2020598] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Ebola virus disease (EVD) is a severe and frequently lethal disease caused by Ebola virus (EBOV). The latest occasional EVD outbreak (2013–2016) in Western African, which was accompanied by a high fatality rate, showed the great potential of epidemic and pandemic spread. Antiviral therapies against EBOV are very limited, strain-dependent (only antibody therapies are available) and mostly restricted to symptomatic treatment, illustrating the urgent need for novel antiviral strategies. Thus, we evaluated the effect of the clinically widely used antifungal itraconazole and the antidepressant fluoxetine for a repurposing against EBOV infection. While itraconazole, similar to U18666A, directly binds to and inhibits the endosomal membrane protein Niemann-Pick C1 (NPC1), fluoxetine, which belongs to the structurally unrelated group of weakly basic, amphiphile so-called “functional inhibitors of acid sphingomyelinase” (FIASMA) indirectly acts on the lysosome-residing acid sphingomyelinase via enzyme detachment leading to subsequent lysosomal degradation. Both, the drug-induced endolysosomal cholesterol accumulation and the altered endolysosomal pH, might interfere with the fusion of viral and endolysosomal membrane, preventing infection with EBOV. We further provide evidence that cholesterol imbalance is a conserved cross-species mechanism to hamper EBOV infection. Thus, exploring the endolysosomal host–pathogen interface as a suitable antiviral treatment may offer a general strategy to combat EBOV infection.
Collapse
Affiliation(s)
- Susann Kummer
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Angelika Lander
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Jonas Goretzko
- Research Group Regulatory Mechanisms of Inflammation, Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Muenster, Muenster, Germany.,Interdisciplinary Centre for Clinical Research, University of Muenster, Muenster, Germany.,Cluster of Excellence "Cells in Motion", University of Muenster, Muenster, Germany
| | - Norman Kirchoff
- Center for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Ursula Rescher
- Research Group Regulatory Mechanisms of Inflammation, Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Muenster, Muenster, Germany.,Interdisciplinary Centre for Clinical Research, University of Muenster, Muenster, Germany.,Cluster of Excellence "Cells in Motion", University of Muenster, Muenster, Germany
| | - Sebastian Schloer
- Research Group Regulatory Mechanisms of Inflammation, Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Muenster, Muenster, Germany.,Interdisciplinary Centre for Clinical Research, University of Muenster, Muenster, Germany.,Cluster of Excellence "Cells in Motion", University of Muenster, Muenster, Germany
| |
Collapse
|
5
|
Kuang W, Yan C, Zhan Z, Guan L, Wang J, Chen J, Li J, Ma G, Zhou X, Jin L. Transcriptional responses of Daphnis nerii larval midgut to oral infection by Daphnis nerii cypovirus-23. Virol J 2021; 18:250. [PMID: 34906167 PMCID: PMC8670114 DOI: 10.1186/s12985-021-01721-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Daphnis nerii cypovirus-23 (DnCPV-23) is a new type of cypovirus and has a lethal effect on the oleander hawk moth, Daphnis nerii which feeds on leave of Oleander and Catharanthus et al. After DnCPV-23 infection, the change of Daphnis nerii responses has not been reported. METHODS To better understand the pathogenic mechanism of DnCPV-23 infection, 3rd-instar Daphnis nerii larvae were orally infected with DnCPV-23 occlusion bodies and the transcriptional responses of the Daphnis nerii midgut were analyzed 72 h post-infection using RNA-seq. RESULTS The results showed that 1979 differentially expressed Daphnis nerii transcripts in the infected midgut had been identified. KEGG analysis showed that protein digestion and absorption, Toll and Imd signaling pathway were down-regulated. Based on the result, we speculated that food digestion and absorption in insect midgut might be impaired after virus infection. In addition, the down-regulation of the immune response may make D. nerii more susceptible to bacterial infections. Glycerophospholipid metabolism and xenobiotics metabolism were up-regulated. These two types of pathways may affect the viral replication and xenobiotic detoxification of insect, respectively. CONCLUSION These results may facilitate a better understanding of the changes in Daphnis nerii metabolism during cypovirus infection and serve as a basis for future research on the molecular mechanism of DnCPV-23 invasion.
Collapse
Affiliation(s)
- Wendong Kuang
- Institute of Microbiology, Jiangxi Academy of Sciences, No. 7777 Changdong Road, Nanchang, 330096 China
| | - Chenghua Yan
- School of Life Sciences, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004 China
| | - Zhigao Zhan
- Institute of Microbiology, Jiangxi Academy of Sciences, No. 7777 Changdong Road, Nanchang, 330096 China
| | - Limei Guan
- Institute of Microbiology, Jiangxi Academy of Sciences, No. 7777 Changdong Road, Nanchang, 330096 China
| | - Jinchang Wang
- Institute of Microbiology, Jiangxi Academy of Sciences, No. 7777 Changdong Road, Nanchang, 330096 China
| | - Junhui Chen
- Institute of Microbiology, Jiangxi Academy of Sciences, No. 7777 Changdong Road, Nanchang, 330096 China
| | - Jianghuai Li
- Institute of Microbiology, Jiangxi Academy of Sciences, No. 7777 Changdong Road, Nanchang, 330096 China
| | - Guangqiang Ma
- School of Life Sciences, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004 China
| | - Xi Zhou
- Institute of Microbiology, Jiangxi Academy of Sciences, No. 7777 Changdong Road, Nanchang, 330096 China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences (CAS), Wuhan, 430071 China
| | - Liang Jin
- Institute of Microbiology, Jiangxi Academy of Sciences, No. 7777 Changdong Road, Nanchang, 330096 China
| |
Collapse
|
6
|
Swevers L, Kontogiannatos D, Kolliopoulou A, Ren F, Feng M, Sun J. Mechanisms of Cell Entry by dsRNA Viruses: Insights for Efficient Delivery of dsRNA and Tools for Improved RNAi-Based Pest Control. Front Physiol 2021; 12:749387. [PMID: 34858204 PMCID: PMC8632066 DOI: 10.3389/fphys.2021.749387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/11/2021] [Indexed: 12/18/2022] Open
Abstract
While RNAi is often heralded as a promising new strategy for insect pest control, a major obstacle that still remains is the efficient delivery of dsRNA molecules within the cells of the targeted insects. However, it seems overlooked that dsRNA viruses already have developed efficient strategies for transport of dsRNA molecules across tissue barriers and cellular membranes. Besides protecting their dsRNA genomes in a protective shell, dsRNA viruses also display outer capsid layers that incorporate sophisticated mechanisms to disrupt the plasma membrane layer and to translocate core particles (with linear dsRNA genome fragments) within the cytoplasm. Because of the perceived efficiency of the translocation mechanism, it is well worth analyzing in detail the molecular processes that are used to achieve this feat. In this review, the mechanism of cell entry by dsRNA viruses belonging to the Reoviridae family is discussed in detail. Because of the large amount of progress in mammalian versus insect models, the mechanism of infections of reoviruses in mammals (orthoreoviruses, rotaviruses, orbiviruses) will be treated as a point of reference against which infections of reoviruses in insects (orbiviruses in midges, plant viruses in hemipterans, insect-specific cypoviruses in lepidopterans) will be compared. The goal of this discussion is to uncover the basic principles by which dsRNA viruses cross tissue barriers and translocate their cargo to the cellular cytoplasm; such knowledge subsequently can be incorporated into the design of dsRNA virus-based viral-like particles for optimal delivery of RNAi triggers in targeted insect pests.
Collapse
Affiliation(s)
- Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Dimitrios Kontogiannatos
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Anna Kolliopoulou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Feifei Ren
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
7
|
Tight junction protein claudin-2 promotes cell entry of Bombyx mori cypovirus. Appl Microbiol Biotechnol 2021; 105:6019-6031. [PMID: 34324010 DOI: 10.1007/s00253-021-11456-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/24/2021] [Accepted: 07/03/2021] [Indexed: 10/20/2022]
Abstract
Claudin-2 is a major component of tight junctions (TJs), which play an important role in reovirus entry into host cells. The Bombyx mori cytoplasmic polyhedosis virus (BmCPV) relates to the cypovirus strain of the reovirus family. So far, the role of claudin-2 in the process of BmCPV infection is not known. In the present study, it was observed that increasing expression of the claudin-2 gene (CLDN2) may concomitantly elevate BmCPV infection. Contrarily, knockdown of CLDN2 expression by siRNAs can reduce BmCPV infection. Similarly, antibody-based blockage of claudin-2 could also decrease BmCPV cell entry. These results suggest that claudin-2 can promote BmCPV infection in vitro. Moreover, immunofluorescence (IF) assays showed that claudin-2 can interact with BmCPV during viral infection. Specifically, co-immunoprecipitation experiments indicated that claudin-2 binds the BmCPV VP7 (instead of VP3 proteins). The interaction between VP7 and claudin-2 was further confirmed by bimolecular fluorescence complementation (BIFC). Altogether, our results suggest that BmCPV cell entry can be promoted upon interaction of VP7 with claudin-2. These findings provide new mechanistic insights related to BmCPV infection. KEY POINTS: •Claudin-2 could promote BmCPV infection of cells. •Claudin-2 interacted with BmCPV during BmCPV infection. •Claudin-2 could interact with BmCPV VP7 protein, but not with VP3 proteins.
Collapse
|
8
|
Newcastle Disease Virus Entry into Chicken Macrophages via a pH-Dependent, Dynamin and Caveola-Mediated Endocytic Pathway That Requires Rab5. J Virol 2021; 95:e0228820. [PMID: 33762417 DOI: 10.1128/jvi.02288-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The cellular entry pathways and the mechanisms of Newcastle disease virus (NDV) entry into cells are poorly characterized. In this study, we demonstrated that chicken interferon-induced transmembrane protein 1 (chIFITM1), which is located in the early endosomes, could limit the replication of NDV in chicken macrophage cell line HD11, suggesting the endocytic entry of NDV into chicken macrophages. Then, we presented a systematic study about the entry mechanism of NDV into chicken macrophages. First, we demonstrated that a low-pH condition and dynamin were required during NDV entry. However, NDV entry into chicken macrophages was independent of clathrin-mediated endocytosis. We also found that NDV entry was dependent on membrane cholesterol. The NDV entry and replication were significantly reduced by nystatin and phorbol 12-myristate 13-acetate treatment, overexpression of dominant-negative (DN) caveolin-1, or knockdown of caveolin-1, suggesting that NDV entry depends on caveola-mediated endocytosis. However, macropinocytosis did not play a role in NDV entry into chicken macrophages. In addition, we found that Rab5, rather than Rab7, was involved in the entry and traffic of NDV. The colocalization of NDV with Rab5 and early endosome suggested that NDV virion was transported to early endosomes in a Rab5-dependent manner after internalization. Of particular note, the caveola-mediated endocytosis was also utilized by NDV to enter primary chicken macrophages. Moreover, NDV entered different cell types using different pathways. Collectively, our findings demonstrate for the first time that NDV virion enters chicken macrophages via a pH-dependent, dynamin and caveola-mediated endocytosis pathway and that Rab5 is involved in the traffic and location of NDV. IMPORTANCE Although the pathogenesis of Newcastle disease virus (NDV) has been extensively studied, the detailed mechanism of NDV entry into host cells is largely unknown. Macrophages are the first-line defenders of host defense against infection of pathogens. Chicken macrophages are considered one of the main types of target cells during NDV infection. Here, we comprehensively investigated the entry mechanism of NDV in chicken macrophages. This is the first report to demonstrate that NDV enters chicken macrophages via a pH-dependent, dynamin and caveola-mediated endocytosis pathway that requires Rab5. The result is important for our understanding of the entry of NDV in chicken macrophages, which will further advance the knowledge of NDV pathogenesis and provide useful clues for the development of novel preventive or therapeutic strategies against NDV infection. In addition, this information will contribute to our further understanding of pathogenesis with regard to other members of the Avulavirus genus in the Paramyxoviridae family.
Collapse
|
9
|
Hotterbeekx A, Perneel J, Vieri MK, Colebunders R, Kumar-Singh S. The Secretome of Filarial Nematodes and Its Role in Host-Parasite Interactions and Pathogenicity in Onchocerciasis-Associated Epilepsy. Front Cell Infect Microbiol 2021; 11:662766. [PMID: 33996633 PMCID: PMC8113626 DOI: 10.3389/fcimb.2021.662766] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/13/2021] [Indexed: 12/16/2022] Open
Abstract
Filarial nematodes secrete bioactive molecules which are of interest as potential mediators for manipulating host biology, as they are readily available at the host-parasite interface. The adult parasites can survive for years in the mammalian host, due to their successful modulation of the host immune system and most of these immunomodulatory strategies are based on soluble mediators excreted by the parasite. The secretome of filarial nematodes is a key player in both infection and pathology, making them an interesting target for further investigation. This review summarises the current knowledge regarding the components of the excretory-secretory products (ESPs) of filarial parasites and their bioactive functions in the human host. In addition, the pathogenic potential of the identified components, which are mostly proteins, in the pathophysiology of onchocerciasis-associated epilepsy is discussed.
Collapse
Affiliation(s)
- An Hotterbeekx
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium.,Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Jolien Perneel
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium.,Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Melissa Krizia Vieri
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium.,Global Health Institute, University of Antwerp, Antwerp, Belgium
| | | | - Samir Kumar-Singh
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
10
|
Zhang X, Zhang Y, Shi X, Dai K, Liang Z, Zhu M, Zhang Z, Shen Z, Pan J, Wang C, Hu X, Gong C. Characterization of the lipidomic profile of BmN cells in response to Bombyx mori cytoplasmic polyhedrosis virus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103822. [PMID: 32810558 PMCID: PMC7428682 DOI: 10.1016/j.dci.2020.103822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Bombyx mori cytoplasmic polyhedrosis virus (BmCPV)that belongs to the genus Cypovirus in the family of Reoviridae is one of the problematic pathogens in sericulture. In our previous study, we have found that lipid-related constituents in the host cellular membrane are associated with the BmCPV life cycle. It is important to note that the lipids not only affect the cellular biological processes, they also impact the virus life cycle. However, the intracellular lipid homeostasis in BmN cells after BmCPV infection remains unclear. Here, the lipid metabolism in BmCPV-infected BmN cells was studied by lipidomics analysis. Our results revealed that the intracellular lipid homeostasis was disturbed in BmN cells upon BmCPV infection. Major lipids constituents in cellular membrane were found to be significantly induced upon BmCPV infection, which included triglycerides, phosphatidylcholine, phosphatidylethanolamine, sphingomyelin, phospholipids, glucoside ceramide, monoetherphosphatidylcholin, ceramide, ceramide phosphoethanolamine and cardiolipin. Further analysis of the pathways related to these altered lipids (such as PE and PC) showed that glycerophospholipid metabolism was one of the most enriched pathways. These results suggested that BmCPV may manipulate the lipid metabolism of cells for their own interest. The findings may facilitate a better understanding of the roles of lipid metabolic changes during virus infection in future studies.
Collapse
Affiliation(s)
- Xing Zhang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Yunshan Zhang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Xiu Shi
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Kun Dai
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Zi Liang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Min Zhu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Ziyao Zhang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Zeen Shen
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Jun Pan
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Chonglong Wang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Xiaolong Hu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China.
| | - Chengliang Gong
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
11
|
Swevers L, Feng M, Ren F, Sun J. Antiviral defense against Cypovirus 1 (Reoviridae) infection in the silkworm, Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 103:e21616. [PMID: 31502703 DOI: 10.1002/arch.21616] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
Recent years have shown a large increase in studies of infection of the silkworm (Bombyx mori) with Cypovirus 1 (previously designated as B. mori cytoplasmic polyhedrosis virus), that causes serious damage in sericulture. Cypovirus 1 has a single-layered capsid that encapsulates a segmented double-strand RNA (dsRNA) genome which are attractive features for the establishment of a biotechnological platform for the production of specialized gene silencing agents, either as recombinant viruses or as viral-like particles with nonreplicative dsRNA cargo. For both combatting viral disease and application of Cypovirus-based pest control, however, a better understanding is needed of the innate immune response caused by Cypovirus infection of the midgut of lepidopteran larvae. Studies of deep sequencing of viral small RNAs have indicated the importance of the RNA interference pathway in the control of Cypovirus infection although many functional aspects still need to be elucidated and conclusive evidence is lacking. A considerable number of transcriptome studies were carried out that revealed a complex response that hitherto remains uncharacterized because of a dearth in functional studies. Also, the uptake mechanism of Cypovirus by the midgut cells remains unclarified because of contrasting mechanisms revealed by electron microscopy and functional studies. The field will benefit from an increase in functional studies that will depend on transgenic silkworm technology and reverse genetics systems for Cypovirus 1.
Collapse
Affiliation(s)
- Luc Swevers
- Institute of Biosciences & Applications, National Centre for Scientific Research "Demokritos", Insect Molecular Genetics, Athens, Greece
| | - Min Feng
- Institute of Biosciences & Applications, National Centre for Scientific Research "Demokritos", Insect Molecular Genetics, Athens, Greece
- College of Animal Science, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Feifei Ren
- College of Animal Science, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Jingchen Sun
- College of Animal Science, Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| |
Collapse
|
12
|
Hu X, Chen F, Zhu L, Yu L, Zhu M, Liang Z, Zhang X, Xue R, Cao G, Gong C. Bombyx mori cypovirus encoded small peptide inhibits viral multiplication. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 96:51-57. [PMID: 30822453 DOI: 10.1016/j.dci.2019.02.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/23/2019] [Accepted: 02/24/2019] [Indexed: 06/09/2023]
Abstract
Bombyx mori cypovirus (BmCPV) is one of the most infectious pathogen in sericulture and a member of the family Reoviridae. It specifically infects the midgut of silkworm. The BmCPV genome consists of 10 dsRNAs segments (S1-S10), which have generally been assumed to be monocistronic. In this study, a small open reading frame encoding the peptide S5-sORF, containing 27 amino acid residues, was predicted in a region of the negative (-) strand of BmCPV segment S5. An immunofluorescence assay detected S5-sORF in the cytoplasm and nuclei of BmCPV-infected cells, and it was also detected in the virion with western blotting, suggesting that S5-sORF may be assembled into the BmCPV virion. Viral gene expression was inhibited by overexpressed S5-sORF, and viral multiplication was dose-dependently suppressed by the S5-sORF peptide. A viable recombinant virus, BmCPV-S5-sORFmut, in which the start codon (ATG) of S5-sORF was mutated to a stop codon (TGA), was generated with reverse genetics. The proliferation of BmCPV was increased by the abolition of S5-sORF expression. Furthermore, the RNA transcript of S5-sORF and small peptide of S5-sORF were involved in BmCPV replication. The expression of genes related to the innate immune pathways and apoptosis in the silkworm were not significantly affected by S5-sORF overexpression. Our results suggest that a viral nucleotide sequence is utilized by the host to generate an antiviral peptide, which may be a novel strategy protecting the host from viral infection.
Collapse
Affiliation(s)
- Xiaolong Hu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, China
| | - Fei Chen
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Liyuan Zhu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Lei Yu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Min Zhu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Zi Liang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Xing Zhang
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Renyu Xue
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, China
| | - Guangli Cao
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, China.
| | - Chengliang Gong
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, China; Agricultural Biotechnology Research Institute, Agricultural Biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
13
|
Schloer S, Goretzko J, Kühnl A, Brunotte L, Ludwig S, Rescher U. The clinically licensed antifungal drug itraconazole inhibits influenza virus in vitro and in vivo. Emerg Microbes Infect 2019; 8:80-93. [PMID: 30866762 PMCID: PMC6455256 DOI: 10.1080/22221751.2018.1559709] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Influenza A virus (IAV) is a common pathogen of respiratory disease. The IAV-induced seasonal epidemics and the sporadic pandemics are associated with high morbidity and mortality. Therefore, effective protection and therapy for IAV infections is an important challenge in countering this public health threat. Because vaccinations only protect against known circulating strains, and the currently available antivirals pose the risk of resistance formation, drugs targeting host cell factors needed for viral replication offer a promising therapeutic approach. In this study, we describe the use of the antifungal therapeutics posaconazole and itraconazole in the therapy of IAV. We show that both drugs efficiently inhibit the propagation of IAV in the cell culture model without being cytotoxic. The mode of action is probably based on several targets and includes both a priming of the interferon response and the induced imbalance of cellular cholesterol. The antiviral effect of itraconazole could be confirmed in the mouse model, where the administration of itraconazole led to a drastic reduction in mortality and a significant increase in the survival rate. Thus, our data indicate a promising therapeutic potential of at least itraconazole in influenza therapy.
Collapse
Affiliation(s)
- Sebastian Schloer
- a Institute of Medical Biochemistry , Centre for Molecular Biology of Inflammation, University of Muenster , Muenster , Germany.,b Interdisciplinary Centre for Clinical Research , University of Muenster , Muenster , Germany.,c Cluster of Excellence "Cells in Motion" , University of Muenster , Muenster , Germany
| | - Jonas Goretzko
- a Institute of Medical Biochemistry , Centre for Molecular Biology of Inflammation, University of Muenster , Muenster , Germany.,b Interdisciplinary Centre for Clinical Research , University of Muenster , Muenster , Germany.,c Cluster of Excellence "Cells in Motion" , University of Muenster , Muenster , Germany
| | - Alexander Kühnl
- a Institute of Medical Biochemistry , Centre for Molecular Biology of Inflammation, University of Muenster , Muenster , Germany.,b Interdisciplinary Centre for Clinical Research , University of Muenster , Muenster , Germany.,c Cluster of Excellence "Cells in Motion" , University of Muenster , Muenster , Germany
| | - Linda Brunotte
- b Interdisciplinary Centre for Clinical Research , University of Muenster , Muenster , Germany.,c Cluster of Excellence "Cells in Motion" , University of Muenster , Muenster , Germany.,d Institute of Virology, Center for Molecular Biology of Inflammation , University of Muenster , Muenster , Germany
| | - Stephan Ludwig
- b Interdisciplinary Centre for Clinical Research , University of Muenster , Muenster , Germany.,c Cluster of Excellence "Cells in Motion" , University of Muenster , Muenster , Germany.,d Institute of Virology, Center for Molecular Biology of Inflammation , University of Muenster , Muenster , Germany
| | - Ursula Rescher
- a Institute of Medical Biochemistry , Centre for Molecular Biology of Inflammation, University of Muenster , Muenster , Germany.,b Interdisciplinary Centre for Clinical Research , University of Muenster , Muenster , Germany.,c Cluster of Excellence "Cells in Motion" , University of Muenster , Muenster , Germany
| |
Collapse
|
14
|
Zhang Y, Zhu L, Cao G, Sahib Zar M, Hu X, Wei Y, Xue R, Gong C. Cell entry of BmCPV can be promoted by tyrosine-protein kinase Src64B-like protein. Enzyme Microb Technol 2018; 121:1-7. [PMID: 30554639 DOI: 10.1016/j.enzmictec.2018.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 09/30/2018] [Accepted: 10/26/2018] [Indexed: 11/15/2022]
Abstract
Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) is a non-enveloped dsRNA virus, which specifically infect the midgut epithelium of B. mori. BmCPV enters permissive cells via clathrin-dependent endocytosis employing β1 integrin mediated internalization. Until now, the cell entry mechanism of BmCPV has not been known clearly. Here, we investigated whether tyrosine-protein kinase Src64B-like is involved in the cell entry of BmCPV. The Src64B-like gene was cloned and expressed in Escherichia coli (E. coli), and the recombinant protein Src64B-like was used to immunize mouse for preparation of anti-Src64B-like polyclonal antibody (pAb). After Src64B-like gene was silenced by RNAi, the infection of BmCPV was reduced by 59.48% ± 2.18% and 92.22% ± 1.12% in vitro and in vivo autonomously. Contrary to it, BmCPV infection could be enhanced by increasing the expression of Src64B-like. In addition, immunofluorescence assay showed that Src64B-like protein did not co-localize with BmCPV in the cultured BmN cells during viral infection. These results indicate that Src64B-like protein participates and plays an important role in the cell entry of BmCPV, but not contacting directly with BmCPV.
Collapse
Affiliation(s)
- Yiling Zhang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China; School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, China
| | - Liyuan Zhu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Guangli Cao
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Mian Sahib Zar
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China; Institute of Synthetic Biology (iSynBio), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, 1068 Xuevuan Avenue, Shenzhen University Town, Shenzhen, 518055, China
| | - Xiaolong Hu
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Yuhong Wei
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Renyu Xue
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Chengliang Gong
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China; National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, China; Agricultural Biotechnology Research Institute, Agricultural biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China.
| |
Collapse
|