1
|
Muhammad A, Sun C, Shao Y. The humoral immune response of the lepidopteran model insect, silkworm Bombyx mori L., to microbial pathogens. CURRENT RESEARCH IN INSECT SCIENCE 2024; 6:100097. [PMID: 39364346 PMCID: PMC11447326 DOI: 10.1016/j.cris.2024.100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/10/2024] [Accepted: 09/16/2024] [Indexed: 10/05/2024]
Abstract
Insects are valuable models for studying innate immunity and its role in combating infections. The silkworm Bombyx mori L., a well-studied insect model, is susceptible to a range of pathogens, including bacteria, fungi, viruses, and microsporidia. Their susceptibility makes it a suitable model for investigating host-pathogen interactions and immune responses against infections and diseases. This review focuses on the humoral immune response and the production of antimicrobial peptides (AMPs), the phenoloxidase (PO) system, and other soluble factors that constitute the primary defense of silkworms against microbial pathogens. The innate immune system of silkworms relies on pattern recognition receptors (PRRs) to recognize pathogen-associated molecular patterns (PAMPs), which then activate various immune pathways including Imd, Toll, JAK/STAT, and RNA interference (RNAi). Their activation triggers the secretion of AMPs, enzymatic defenses (lysozyme and PO), and the generation of reactive oxygen species (ROS). Collectively, these pathways work together to neutralize and eliminate pathogens, thereby contributing to the defense mechanism of silkworms. Understanding the innate immunity of silkworms can uncover conserved molecular pathways and key immune components shared between insects and vertebrates. Additionally, it can provide valuable insights for improving sericulture practices, developing strategies to control diseases affecting silk production, and providing a theoretical foundation for developing pest control measures.
Collapse
Affiliation(s)
- Abrar Muhammad
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Chao Sun
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou, China
| | - Yongqi Shao
- Max Planck Partner Group, Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, China
- Key Laboratory for Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| |
Collapse
|
2
|
Yu L, Ling C, Li Y, Guo H, Xu A, Qian H, Li G. The Bombyx mori G protein β subunit 1 (BmGNβ1) gene inhibits BmNPV infection. J Invertebr Pathol 2024; 204:108097. [PMID: 38537687 DOI: 10.1016/j.jip.2024.108097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2024] [Accepted: 03/24/2024] [Indexed: 04/01/2024]
Abstract
G protein β subunit 1 (GNβ1) has several functions, including cell growth regulation, the control of second messenger levels, and ion channel switching. Previous transcriptome analyses in our laboratory have shown that BmGNβ1 transcription is reduced following infection with Bombyx mori nucleopolyhedrovirus (BmNPV), but it is unknown what role this gene may have in the host response to BmNPV infection. In this study, the BmGNβ1 gene was cloned using the RACE method. After BmNPV infection, BmGNβ1 was downregulated in Baiyu strains in tissues such as the hemolymph and midgut. Indirect immunofluorescence showed that BmGNβ1 was localized to the cytoplasm. We further constructed a BmGNβ1-pIZ/V5-His-mCherry overexpression plasmid and designed siRNA to evaluate the role of BmGNβ1 in host response to infection. The results showed that BmGNβ1 overexpression inhibited BmNPV proliferation, while knockdown of BmGNβ1 was correlated with increased BmNPV proliferation. The siRNA-mediated reduction of BmGNβ1 was correlated with an increase in BmNPV infection of BmN cells, increased BmNPV vp39 transcription, and reduced survival time of BmNPV-infected B. mori. Overexpression of BmGNβ1 in BmN cells was also correlated with apoptosis and a modification in transcript levels of genes involved in host response to BmNPV infection (PI3K, AKT, Bmp53, BmFOXO, Caspase-1, Bmp21, BmPKN and BmCREB), suggesting that BmGNβ1 may influence the apoptotic host response of infected B. mori through the PI3K-AKT pathway. This study provides potential targets and theoretical support for breeding BmNPV-resistant silkworm varieties.
Collapse
Affiliation(s)
- Linyuan Yu
- The Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Chenyu Ling
- The Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yizhu Li
- The Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Huiduo Guo
- The Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Anying Xu
- The Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, China; The Key Laboratory of Silkworm and Mulberry Genetic Improvement, the Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang 212018, Zhenjiang, China
| | - Heying Qian
- The Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, China; The Key Laboratory of Silkworm and Mulberry Genetic Improvement, the Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang 212018, Zhenjiang, China.
| | - Gang Li
- The Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, China; The Key Laboratory of Silkworm and Mulberry Genetic Improvement, the Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang 212018, Zhenjiang, China.
| |
Collapse
|
3
|
Darby AM, Lazzaro BP. Interactions between innate immunity and insulin signaling affect resistance to infection in insects. Front Immunol 2023; 14:1276357. [PMID: 37915572 PMCID: PMC10616485 DOI: 10.3389/fimmu.2023.1276357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/03/2023] [Indexed: 11/03/2023] Open
Abstract
An active immune response is energetically demanding and requires reallocation of nutrients to support resistance to and tolerance of infection. Insulin signaling is a critical global regulator of metabolism and whole-body homeostasis in response to nutrient availability and energetic needs, including those required for mobilization of energy in support of the immune system. In this review, we share findings that demonstrate interactions between innate immune activity and insulin signaling primarily in the insect model Drosophila melanogaster as well as other insects like Bombyx mori and Anopheles mosquitos. These studies indicate that insulin signaling and innate immune activation have reciprocal effects on each other, but that those effects vary depending on the type of pathogen, route of infection, and nutritional status of the host. Future research will be required to further understand the detailed mechanisms by which innate immunity and insulin signaling activity impact each other.
Collapse
Affiliation(s)
- Andrea M. Darby
- Department of Entomology, Cornell University, Ithaca, NY, United States
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY, United States
| | - Brian P. Lazzaro
- Department of Entomology, Cornell University, Ithaca, NY, United States
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY, United States
| |
Collapse
|
4
|
Martins da Silva R, de Oliveira Daumas Filho CR, Calixto C, Nascimento da Silva J, Lopes C, da Silva Vaz I, Logullo C. PEPCK and glucose metabolism homeostasis in arthropods. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 160:103986. [PMID: 37454751 DOI: 10.1016/j.ibmb.2023.103986] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
The fat body is responsible for a variety of functions related to energy metabolism in arthropods, by controlling the processes of de novo glucose production (gluconeogenesis) and glycogen metabolism. The rate-limiting factor of gluconeogenesis is the enzyme phosphoenolpyruvate carboxykinase (PEPCK), generally considered to be the first committed step in this pathway. Although the study of PEPCK and gluconeogenesis has been for decades restricted to mammalian models, especially focusing on muscle and liver tissue, current research has demonstrated particularities about the regulation of this enzyme in arthropods, and described new functions. This review will focus on arthropod PEPCK, discuss different aspects to PEPCK regulation and function, its general role in the regulation of gluconeogenesis and other pathways. The text also presents our views on potentially important new directions for research involving this enzyme in a variety of metabolic adaptations (e.g. diapause), discussing enzyme isoforms, roles during arthropod embryogenesis, as well as involvement in vector-pathogen interactions, contributing to a better understanding of insect vectors of diseases and their control.
Collapse
Affiliation(s)
- Renato Martins da Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT, Rio de Janeiro, RJ, Brazil
| | - Carlos Renato de Oliveira Daumas Filho
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT, Rio de Janeiro, RJ, Brazil
| | - Christiano Calixto
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT, Rio de Janeiro, RJ, Brazil
| | - Jhenifer Nascimento da Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT, Rio de Janeiro, RJ, Brazil
| | - Cintia Lopes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT, Rio de Janeiro, RJ, Brazil
| | - Itabajara da Silva Vaz
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT, Rio de Janeiro, RJ, Brazil; Centro de Biotecnologia and Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Carlos Logullo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular - INCT, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
5
|
Xia Y, Jiang M, Hu X, Wang Q, Qian C, Zhu B, Wei G, Wang L. A Protein Asteroid with PIN Domain in Silkworm Bombyx mori Is Involved in Anti-BmNPV Infection. INSECTS 2023; 14:550. [PMID: 37367365 DOI: 10.3390/insects14060550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023]
Abstract
Nuclease is a type of protein that degrades nucleic acids, which plays an important role in biological processes, including RNA interference efficiency and antiviral immunity. However, no evidence of a link between nuclease and Bombyx mori nucleopolyhedrovirus (BmNPV) infection in silkworm B. mori has been found. In this study, a protein asteroid (BmAst) containing the PIN domain and XPG domain was identified in silkworm B. mori. BmAst gene was highest expressed in hemocytes and fat body of the 5th instar larvae, and high expression in the pupa stage. The transcriptional levels of the BmAst gene in 5th instar larvae were significantly induced by BmNPV or dsRNA. After knocking down BmAst gene expression by specific dsRNA, the proliferation of BmNPV in B. mori was increased significantly, whereas the survival rate of larvae was significantly lower when compared with the control. Our findings indicate that BmAst is involved in silkworm resistance to BmNPV infection.
Collapse
Affiliation(s)
- Yuchen Xia
- School of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Mouzhen Jiang
- School of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Xiaoxuan Hu
- School of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Qing Wang
- School of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Cen Qian
- School of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Baojian Zhu
- School of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Guoqing Wei
- School of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Lei Wang
- School of Life Science, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
6
|
Yin X, Qiu L, Long D, Lv Z, Liu Q, Wang S, Zhang W, Zhang K, Xie M. The ancient CgPEPCK-1, not CgPECK-2, evolved into a multifunctional molecule as an intracellular enzyme and extracellular PRR. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 145:104722. [PMID: 37116769 DOI: 10.1016/j.dci.2023.104722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/11/2023]
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK) is a well-known lyase involved in gluconeogenesis, while their evolution and function differentiation have not been fully understood. In this study, by constructing a phylogenetic tree to examine PEPCKs throughout the evolution from poriferans to vertebrates, Mollusk was highlighted as the only phylum to exhibit two distinct lineages, Mollusca_PEPCK-1 and Mollusca_PEPCK-2. Further study of two representative members from Crassostrea gigas (CgPEPCK-1 and CgPEPCK-2) showed that they both shared conserved sequences and structural characteristics of the catalytic enzyme, while CgPEPCK-2 displayed a higher expression level than CgPEPCK-1 in all tested tissues, and CgPEPCK-1 was specifically implicated in the immune defense against LPS stimulation and Vibrio splendidus infection. Functional analysis revealed that CgPEPCK-2 had stronger enzymatic activity than CgPEPCK-1, while CgPEPCK-1 exhibited stronger binding activity with various PAMPs, and only the protein of CgPEPCK-1 increased significantly in hemolymph during immune stimulation. All results supported that distinct sequence and function differentiations of the PEPCK gene family should have occurred since Mollusk. The more advanced evolutionary branch Mollusca_PEPCK-2 should preserve its essential function as a catalytic enzyme to be more specialized and efficient, while the ancient branch Mollusca_PEPCK-1 probably contained some members, such as CgPEPCK-1, that should be integrated into the immune system as an extracellular immune recognition receptor.
Collapse
Affiliation(s)
- Xiaoting Yin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Limei Qiu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China.
| | - Dandan Long
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Zhao Lv
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Qing Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory of Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China
| | - Senyu Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; School of Marine Biology and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Weiqian Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Kexin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China; School of Marine Biology and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Mengxi Xie
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, CAS Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| |
Collapse
|
7
|
Farooq T, Lin Q, She X, Chen T, Tang Y, He Z. Comparative transcriptome profiling reveals a network of differentially expressed genes in Asia II 7 and MEAM1 whitefly cryptic species in response to early infection of Cotton leaf curl Multan virus. Front Microbiol 2022; 13:1004513. [PMID: 36267190 PMCID: PMC9577181 DOI: 10.3389/fmicb.2022.1004513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Cotton leaf curl Multan virus (CLCuMuV) is a whitefly-vectored begomovirus that poses ramping threat to several economically important crops worldwide. The differential transmission of CLCuMuV by its vector Bemisia tabaci mainly relies on the type of whitefly cryptic species. However, the molecular responses among different whitefly cryptic species in response to early CLCuMuV infection remain elusive. Here, we compared early-stage transcriptomic profiles of Asia II 7 and MEAM1 cryptic species infected by CLCuMuV. Results of Illumina sequencing revealed that after 6 and 12 h of CLCuMuV acquisition, 153 and 141 genes among viruliferous (VF) Asia II 7, while 445 and 347 genes among VF MEAM 1 whiteflies were differentially expressed compared with aviruliferous (AVF) whiteflies. The most abundant groups of differentially expressed genes (DEGs) among Asia II 7 and MEAM1 were associated with HTH-1 and zf-C2H2 classes of transcription factors (TFs), respectively. Notably, in contrast to Asia II 7, MEAM1 cryptic species displayed higher transcriptional variations with elevated immune-related responses following CLCuMuV infection. Among both cryptic species, we identified several highly responsive candidate DEGs associated with antiviral innate immunity (alpha glucosidase, LSM14-like protein B and phosphoenolpyruvate carboxykinase), lysosome (GPI-anchored protein 58) and autophagy/phagosome pathways (sequestosome-1, cathepsin F-like protease), spliceosome (heat shock protein 70), detoxification (cytochrome P450 4C1), cGMP-PKG signaling pathway (myosin heavy chain), carbohydrate metabolism (alpha-glucosidase), biological transport (mitochondrial phosphate carrier) and protein absorption and digestion (cuticle protein 8). Further validation of RNA-seq results showed that 23 of 28 selected genes exhibited concordant expression both in RT-qPCR and RNA-seq. Our findings provide vital mechanistic insights into begomovirus-whitefly interactions to understand the dynamics of differential begomovirus transmission by different whitefly cryptic species and reveal novel molecular targets for sustainable management of insect-transmitted plant viruses.
Collapse
Affiliation(s)
| | | | | | | | - Yafei Tang
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zifu He
- Plant Protection Research Institute and Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
8
|
Integration of Transcriptomic and Proteomic Analyses Reveals New Insights into the Regulation of Immune Pathways in Midgut of Samia ricini upon SariNPV Infection. INSECTS 2022; 13:insects13030294. [PMID: 35323592 PMCID: PMC8949121 DOI: 10.3390/insects13030294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 02/05/2023]
Abstract
Simple Summary SariNPV is one of the main pathogens of Samia ricini and its infection of Samia ricini sericulture has caused significant economic losses to society. In this study, we aim to reveal the molecular mechanism of pathogen–host interactions in SariNPV-infected S. ricini through transcriptomic and proteomic analyses. Using RNA-sequencing and iTRAQ, we mapped the differentially expressed genes (DEGs) and proteins (DEPs) that are involved in the immune responses of S. ricini upon virus invasion. Based on our analyses, we identified specific DEGs and DEPs that are involved in various essential biological signaling pathways and immune-related pathways upon SariNPV invasion. These DEGs and DEPs play an important role in triggering host immune responses to pathogens. Our study provides molecular insights into host immune responses regarding pathogen invasion, in particular, the immune response mechanism and network of S. ricini in response to SariNPV infection. Abstract Samia ricini nucleopolyhedrovirus (SariNPV) is one of the main pathogens of S. ricini sericulture and its infection causes severe impacts on economic sericulture development. To explore and reveal the molecular mechanisms of S. ricini in response to SariNPV infection, we employed RNA sequencing (RNA-seq), adopting isobaric tags for relative and absolute quantitation (iTRAQ), and carried out combination analysis of the obtained differentially expressed genes (DEGs) and proteins (DEPs). Through transcriptome sequencing, a total of 2535 DEGs were detected, and with iTRAQ, 434 DEPs with significant expression difference were identified. Through correlation analysis, we found that the expression trends of 116 differentially expressed proteins were the same as those of differentially expressed genes (including 106 up-regulated and 10 down-regulated). Twenty-five key differentially expressed genes (proteins) involved in several signaling and immune related pathways (mainly involving Toll, Imd, Jak-STAT and Wnt signaling pathways, as well as other immune related pathways) were screened through real-time quantitative PCR. Our results, not only provide insights into the pathogenic mechanism of SariNPV infection in ricin silkworm and the immune response mechanism within the host, but also provide a significant contribution for identifying and preventing diseases caused by SariNPV.
Collapse
|
9
|
Kang X, Wang Y, Liang W, Tang X, Zhang Y, Wang L, Zhao P, Lu Z. Bombyx mori nucleopolyhedrovirus downregulates transcription factor BmFoxO to elevate virus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103904. [PMID: 33245980 DOI: 10.1016/j.dci.2020.103904] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
Forkhead-box O (FoxO) is the primary transcriptional effector of the insulin-like signaling pathway that enhances gluconeogenesis through transcriptional activation of PEPCK and G6Pase in mammals. We have previously demonstrated the involvement of phosphoenolpyruvate carboxykinase (BmPEPCK-2) in antiviral immunity against the multiplication of Bombyx mori nuclearpolyhedrosisvirus (BmNPV) in silkworm. Therefore, we speculated that BmFoxO might suppress BmNPV by regulating the expression of PEPCK in silkworm. In the present study, we found that the expression of BmFoxO decreased after BmNPV infection in Bombyx mori; this finding was consistent with BmPEPCK-2 expression. In addition, the expression of BmFoxO was altered, and it was found that reduced expression of BmFoxO (dsBmFoxO) downregulated the expression of BmPEPCK-2 and increased the viral fluorescence and content in silkworm embryonic cell line BmE cells, and vice versa. BmFoxO could upregulate the expression of BmPEPCK-2 by binding to the BmPEPCK-2 promoter. Moreover, overexpression of BmFoxO significantly increased the expression of autophagy genes ATG6/7/8 after infection with BmNPV, consistent with BmPEPCK-2. These results indicate that BmNPV downregulates transcription factor BmFoxO to elevate virus infection, and BmFoxO overexpression upregulates BmPEPCK-2 expression and enhances silkworm antiviral resistance.
Collapse
Affiliation(s)
- Xiaoli Kang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, PR China
| | - Yaping Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, PR China
| | - Wenjuan Liang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, PR China
| | - Xin Tang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, PR China
| | - Yan Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, PR China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, PR China
| | - Lingyan Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, PR China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, PR China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, PR China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, PR China
| | - Zhongyan Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, PR China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
10
|
Jiang L. Insights Into the Antiviral Pathways of the Silkworm Bombyx mori. Front Immunol 2021; 12:639092. [PMID: 33643323 PMCID: PMC7904692 DOI: 10.3389/fimmu.2021.639092] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/26/2021] [Indexed: 12/14/2022] Open
Abstract
The lepidopteran model silkworm, Bombyx mori, is an important economic insect. Viruses cause serious economic losses in sericulture; thus, the economic importance of these viruses heightens the need to understand the antiviral pathways of silkworm to develop antiviral strategies. Insect innate immunity pathways play a critical role in the outcome of infection. The RNA interference (RNAi), NF-kB-mediated, immune deficiency (Imd), and stimulator of interferon gene (STING) pathways, and Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway are the major antiviral defense mechanisms, and these have been shown to play important roles in the antiviral immunity of silkworms. In contrast, viruses can modulate the prophenol oxidase (PPO), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), and the extracellular signal-regulated kinase (ERK) signaling pathways of the host to elevate their proliferation in silkworms. In this review, we present an overview of the current understanding of the main immune pathways in response to viruses and the signaling pathways modulated by viruses in silkworms. Elucidation of these pathways involved in the antiviral mechanism of silkworms furnishes a theoretical basis for the enhancement of virus resistance in economic insects, such as upregulating antiviral immune pathways through transgenic overexpression, RNAi of virus genes, and targeting these virus-modulated pathways by gene editing or inhibitors.
Collapse
Affiliation(s)
- Liang Jiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| |
Collapse
|
11
|
Jiang L, Goldsmith MR, Xia Q. Advances in the Arms Race Between Silkworm and Baculovirus. Front Immunol 2021; 12:628151. [PMID: 33633750 PMCID: PMC7900435 DOI: 10.3389/fimmu.2021.628151] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
Insects are the largest group of animals. Nearly all organisms, including insects, have viral pathogens. An important domesticated economic insect is the silkworm moth Bombyx mori. B. mori nucleopolyhedrovirus (BmNPV) is a typical baculovirus and a primary silkworm pathogen. It causes major economic losses in sericulture. Baculoviruses are used in biological pest control and as a bioreactor. Silkworm and baculovirus comprise a well-established model of insect–virus interactions. Several recent studies have focused on this model and provided novel insights into viral infections and host defense. Here, we focus on baculovirus invasion, silkworm immune response, baculovirus evasion of host immunity, and enhancement of antiviral efficacy. We also discuss major issues remaining and future directions of research on silkworm antiviral immunity. Elucidation of the interaction between silkworm and baculovirus furnishes a theoretical basis for targeted pest control, enhanced pathogen resistance in economically important insects, and bioreactor improvement.
Collapse
Affiliation(s)
- Liang Jiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China
| | - Marian R Goldsmith
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, United States
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China.,Biological Science Research Center, Southwest University, Chongqing, China
| |
Collapse
|
12
|
Jiang L, Xie E, Guo H, Sun Q, Liuli H, Wang Y, Li Q, Xia Q. Heat shock protein 19.9 (Hsp19.9) from Bombyx mori is involved in host protection against viral infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103790. [PMID: 32784012 DOI: 10.1016/j.dci.2020.103790] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Adverse environmental conditions cause serious economic losses in sericulture; Bombyx mori nucleopolyhedrovirus (BmNPV) is the primary biotic stress and high temperature is the major abiotic stress in this industry. B. mori heat shock protein 19.9 (Bmhsp19.9) overexpression was previously demonstrated to protect transgenic silkworm H19.9 against extreme temperature. This study analyzed the role of Bmhsp19.9 in H19.9A and H19.9B silkworm lines and BmE cells infected with BmNPV at regular and high temperatures. qPCR results showed that Bmhsp19.9 expression was upregulated in BmE cells and silkworm after BmNPV challenge. Bmhsp19.9 overexpression significantly inhibited BmNPV proliferation in BmE cells. The viral DNA content was significantly decreased in transgenic H19.9 silkworm compared to the control. These results suggested that Bmhsp19.9 was involved in antiviral immunity against BmNPV. Furthermore, Bmhsp19.9 overexpression protected BmE cells against BmNPV under high temperature shock. This indicates that Bmhsp19.9 is a promising candidate for improving silkworm resistance to biotic and abiotic stresses, thereby reducing sericulture losses.
Collapse
Affiliation(s)
- Liang Jiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China.
| | - Enyu Xie
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Huizhen Guo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Qiang Sun
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Haoyu Liuli
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Yumei Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Qing Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, PR China; Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
13
|
Xie E, Guo H, Jiang L, Xia Q. Identification of the Vo domain of V-ATPase in Bombyx mori silkworm. Int J Biol Macromol 2020; 163:386-392. [DOI: 10.1016/j.ijbiomac.2020.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 12/20/2022]
|
14
|
Sun Q, Guo H, Xia Q, Jiang L, Zhao P. Transcriptome analysis of the immune response of silkworm at the early stage of Bombyx mori bidensovirus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 106:103601. [PMID: 31899306 DOI: 10.1016/j.dci.2019.103601] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/24/2019] [Accepted: 12/25/2019] [Indexed: 06/10/2023]
Abstract
Bombyx mori bidensovirus (BmBDV) infects silkworm midgut and causes chronic flacherie disease; however, the interaction between BmBDV and silkworm is unclear. Twenty-four hours after BmBDV infection, the midgut was extracted for RNA-seq to analyze the factors associated with BmBDV-invasion and the early antiviral immune response in silkworms. The total reads from each sample were more than 16100000 and the number of expressed genes exceeded 8200. There were 334 upregulated and 272 downregulated differentially expressed genes (DEGs). Gene ontology analysis of DEGs showed that structural constituents of cuticle, antioxidant, and immune system processes were upregulated. Further analysis revealed BmBDV-mediated induction of BmorCPR23 and BmorCPR44, suggesting possible involvement in viral invasion. Antioxidant genes that protect host cells from virus-induced oxidative stress, were significantly upregulated after BmBDV infection. Several genes related to peroxisomes, apoptosis, and autophagy-which may be involved in antiviral immunity-were induced by BmBDV. These results provide insights into the mechanism of BmBDV infection and host defense.
Collapse
Affiliation(s)
- Qiang Sun
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Huizhen Guo
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Liang Jiang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China.
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
15
|
Smits M, Artigaud S, Bernay B, Pichereau V, Bargelloni L, Paillard C. A proteomic study of resistance to Brown Ring disease in the Manila clam, Ruditapes philippinarum. FISH & SHELLFISH IMMUNOLOGY 2020; 99:641-653. [PMID: 32044464 DOI: 10.1016/j.fsi.2020.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/24/2020] [Accepted: 02/01/2020] [Indexed: 02/08/2023]
Abstract
Marine mollusk aquaculture has more than doubled over the past twenty years, accounting for over 15% of total aquaculture production in 2016. Infectious disease is one of the main limiting factors to the development of mollusk aquaculture, and the difficulties inherent to combating pathogens through antibiotic therapies or disinfection have led to extensive research on host defense mechanisms and host-pathogen relationships. It has become increasingly clear that characterizing the functional profiles of response to a disease is an essential step in understanding resistance mechanisms and moving towards more effective disease control. The Manila clam, Ruditapes philippinarum, is a main cultured bivalve species of economic importance which is affected by Brown Ring disease (BRD), an infection induced by the bacterium Vibrio tapetis. In this study, juvenile Manila clams were subjected to a 28-day controlled challenge with Vibrio tapetis, and visual and molecular diagnoses were carried out to distinguish two extreme phenotypes within the experimental clams: uninfected ("RES", resistant) and infected ("DIS", diseased) post-challenge. Total protein extractions were carried out for resistant and diseased clams, and proteins were identified using LC-MS/MS. Protein sequences were matched against a reference transcriptome of the Manila clam, and protein intensities based on label-free quantification were compared to reveal 49 significantly accumulated proteins in resistant and diseased clams. Proteins with known roles in pathogen recognition, lysosome trafficking, and various aspects of the energy metabolism were more abundant in diseased clams, whereas those with roles in redox homeostasis and protein recycling were more abundant in resistant clams. Overall, the comparison of the proteomic profiles of resistant and diseased clams after a month-long controlled challenge to induce the onset of Brown Ring disease suggests that redox homeostasis and maintenance of protein structure by chaperone proteins may play important and interrelated roles in resistance to infection by Vibrio tapetis in the Manila clam.
Collapse
Affiliation(s)
- M Smits
- Université de Brest, CNRS, IRD, Ifremer, UMR 6539 LEMAR, F-29280, Plouzané, France; Department of Comparative Biomedicine and Food Science, University of Padova, Agripolis Campus, Viale dell'Universita', 16, 35020, Legnaro (PD), Italy.
| | - S Artigaud
- Université de Brest, CNRS, IRD, Ifremer, UMR 6539 LEMAR, F-29280, Plouzané, France.
| | - B Bernay
- Plateforme Proteogen, SFR ICORE 4206, Université de Caen Basse-Normandie, Esplanade de la paix, 14032, Caen cedex, France.
| | - V Pichereau
- Université de Brest, CNRS, IRD, Ifremer, UMR 6539 LEMAR, F-29280, Plouzané, France.
| | - L Bargelloni
- Department of Comparative Biomedicine and Food Science, University of Padova, Agripolis Campus, Viale dell'Universita', 16, 35020, Legnaro (PD), Italy.
| | - C Paillard
- Université de Brest, CNRS, IRD, Ifremer, UMR 6539 LEMAR, F-29280, Plouzané, France.
| |
Collapse
|
16
|
Guo H, Sun Q, Wang B, Wang Y, Xie E, Xia Q, Jiang L. Spry is downregulated by multiple viruses to elevate ERK signaling and ensure viral reproduction in silkworm. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 98:1-5. [PMID: 30965060 DOI: 10.1016/j.dci.2019.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
Viral diseases of silkworm are mainly caused by Bombyx mori nucleopolyhedrovirus (BmNPV), B. mori cytoplasmic polyhedrosis virus (BmCPV) and B. mori bidensovirus (BmBDV). The virus alters host cellular pathways to facilitate its proliferation. It is still unclear whether the three silkworm viruses regulate a certain host pathway. Spry is a negative regulator upstream of ERK. In this study, we found that BmSpry was decreased and p-ERK was increased in silkworm after infection with each virus. A transgenic RNAi vector of BmSpry was constructed and used for embryo microinjection to generate the transgenic line Spry-I. The expression of BmSpry was significantly reduced in Spry-I compared to that in non-transgenic silkworm. The viral content and mortality in Spry-I were significantly higher than those in non-transgenic larvae after infection with the three viruses. p-ERK was increased in Spry-I compared to that in non-transgenic control after virus infection. These results suggest that BmSpry is downregulated by multiple different classes of viruses to elevate p-ERK and ensure viral reproduction in the silkworm.
Collapse
Affiliation(s)
- Huizhen Guo
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing, 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, 400716, China
| | - Qiang Sun
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing, 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, 400716, China
| | - Bingbing Wang
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing, 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, 400716, China
| | - Yumei Wang
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing, 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, 400716, China
| | - Enyu Xie
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing, 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, 400716, China
| | - Qingyou Xia
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing, 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, 400716, China.
| | - Liang Jiang
- Biological Science Research Center, Southwest University, Chongqing, 400716, China; Chongqing Key Laboratory of Sericultural Science, Chongqing, 400716, China; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Chongqing, 400716, China.
| |
Collapse
|
17
|
Jiang L, Liu W, Guo H, Dang Y, Cheng T, Yang W, Sun Q, Wang B, Wang Y, Xie E, Xia Q. Distinct Functions of Bombyx mori Peptidoglycan Recognition Protein 2 in Immune Responses to Bacteria and Viruses. Front Immunol 2019; 10:776. [PMID: 31031766 PMCID: PMC6473039 DOI: 10.3389/fimmu.2019.00776] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/25/2019] [Indexed: 11/13/2022] Open
Abstract
Peptidoglycan recognition protein (PGRP) is an important pattern recognition receptor in innate immunity that is vital for bacterial recognition and defense in insects. Few studies report the role of PGRP in viral infection. Here we cloned two forms of PGRP from the model lepidopteran Bombyx mori: BmPGRP2-1 is a transmembrane protein, whereas BmPGRP2-2 is an intracellular protein. BmPGRP2-1 bound to diaminopimelic acid (DAP)-type peptidoglycan (PGN) to activate the canonical immune deficiency (Imd) pathway. BmPGRP2-2 knockdown reduced B. mori nucleopolyhedrovirus (BmNPV) multiplication and mortality in cell lines and in silkworm larvae, while its overexpression increased viral replication. Transcriptome and quantitative PCR (qPCR) results confirmed that BmPGRP2 negatively regulated phosphatase and tensin homolog (PTEN). BmPGRP2-2 expression was induced by BmNPV, and the protein suppressed PTEN-phosphoinositide 3-kinase (PI3K)/Akt signaling to inhibit cell apoptosis, suggesting that BmNPV modulates BmPGRP2-2-PTEN-PI3K/Akt signaling to evade host antiviral defense. These results demonstrate that the two forms of BmPGRP2 have different functions in host responses to bacteria and viruses.
Collapse
Affiliation(s)
- Liang Jiang
- Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Weiqiang Liu
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Huizhen Guo
- Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Yinghui Dang
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Tingcai Cheng
- Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Wanying Yang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Qiang Sun
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Bingbing Wang
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Yumei Wang
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Enyu Xie
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Qingyou Xia
- Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| |
Collapse
|