1
|
Tian J, Wang D, Wang H, Huan P, Liu B. The combination of high temperature and Vibrio infection worsens summer mortality in the clam Meretrix petechialis by increasing apoptosis and oxidative stress. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109542. [PMID: 38579976 DOI: 10.1016/j.fsi.2024.109542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/07/2024]
Abstract
The interaction between environmental factors and Vibrio in bivalves is not well understood, despite the widely held belief that pathogen infection and seawater temperature significantly impact summer mortality. In the present study, we conducted simulated experiments to explore the effects of high temperature and Vibrio infection on the clam Meretrix petechialis. The survival curve analysis revealed that the combined challenge of high temperature and Vibrio infection (31°C-vibrio) led to significantly higher clam mortality compared to the groups exposed solely to Vibrio (27°C-vibrio), high temperature (31°C-control), and the control condition (27°C-control). Furthermore, PCoA analysis of 11 immune genes indicated that Vibrio infection predominated during the incubation period, with a gradual equilibrium between these factors emerging during the course of the infection. Additionally, our investigations into apoptosis and autophagy processes exhibited significant induction of mTOR and Bcl2 of the 31°C-vibrio group in the early challenge stage, followed by inhibition in the later stage. Oxidative stress analysis demonstrated a substantial additive effect on malondialdehyde (MDA) and glutathione (GSH) content in the combined challenge group compared to the control group. Comparative transcriptome analysis revealed a significant increase in differentially expressed genes related to immunity, such as complement C1q-like protein, C-type lectin, big defensin, and lysozyme, in the 31°C-vibrio group, suggesting that the synergistic effect of high temperature and Vibrio infection triggers more robust antibacterial immune responses. These findings provide critical insights for understanding the infection process and uncovering the causes of summer mortality.
Collapse
Affiliation(s)
- Jing Tian
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, China; University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Di Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, China; University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Hongxia Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, 266000, Qingdao, China
| | - Pin Huan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, 266000, Qingdao, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, 266071, Qingdao, China
| | - Baozhong Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 266071, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, 266000, Qingdao, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, 266071, Qingdao, China.
| |
Collapse
|
2
|
Tunjić-Cvitanić M, García-Souto D, Pasantes JJ, Šatović-Vukšić E. Dominance of transposable element-related satDNAs results in great complexity of "satDNA library" and invokes the extension towards "repetitive DNA library". MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:236-251. [PMID: 38827134 PMCID: PMC11136912 DOI: 10.1007/s42995-024-00218-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/26/2024] [Indexed: 06/04/2024]
Abstract
Research on bivalves is fast-growing, including genome-wide analyses and genome sequencing. Several characteristics qualify oysters as a valuable model to explore repetitive DNA sequences and their genome organization. Here we characterize the satellitomes of five species in the family Ostreidae (Crassostrea angulata, C. virginica, C. hongkongensis, C. ariakensis, Ostrea edulis), revealing a substantial number of satellite DNAs (satDNAs) per genome (ranging between 33 and 61) and peculiarities in the composition of their satellitomes. Numerous satDNAs were either associated to or derived from transposable elements, displaying a scarcity of transposable element-unrelated satDNAs in these genomes. Due to the non-conventional satellitome constitution and dominance of Helitron-associated satDNAs, comparative satellitomics demanded more in-depth analyses than standardly employed. Comparative analyses (including C. gigas, the first bivalve species with a defined satellitome) revealed that 13 satDNAs occur in all six oyster genomes, with Cg170/HindIII satDNA being the most abundant in all of them. Evaluating the "satDNA library model" highlighted the necessity to adjust this term when studying tandem repeat evolution in organisms with such satellitomes. When repetitive sequences with potential variation in the organizational form and repeat-type affiliation are examined across related species, the introduction of the terms "TE library" and "repetitive DNA library" becomes essential. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-024-00218-0.
Collapse
Affiliation(s)
| | - Daniel García-Souto
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Juan J. Pasantes
- Centro de Investigación Mariña, Dpto de Bioquímica, Xenética e Inmunoloxía, Universidade de Vigo, 36310 Vigo, Spain
| | - Eva Šatović-Vukšić
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
3
|
Balakrishnan S, Sajeevan AKM, Parvathi SC, Bright Singh IS, Puthumana J. An optimized protocol for routine development of cell culture from adult oyster, Crassostrea madrasensis. Cell Biol Int 2024. [PMID: 38533750 DOI: 10.1002/cbin.12159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/17/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
Marine molluscan cell lines, required for virus screening and cultivation, form essential tools for developing health management strategies for these animals in the blue economy. Moreover, they are also crucial to develop cultivated seafood. As there is no valid marine molluscan cell line, primary cell cultures are relied upon for all investigations. A sound protocol for generating primary cell cultures from molluscs is entailed, but existing protocols often involve heavy antibiotic usage and depuration that invariably affect gene expression and cell health. This work presents an easy-to-adopt, time-saving protocol using non-depurated mollusc Crassostrea madrasensis, which requires only initial antibiotic treatment and minimal exposure or no use of antibiotics in the cell culture medium. The important experimental considerations for arriving at this protocol have been elucidated. Accordingly, sodium hypochlorite and neomycin sulfate were chosen for disinfecting tissues. The study is the first to use shrimp cell culture medium (SCCM) as a cell culture medium for molluscan cell culture. Despite being osmoconformers, the oysters exhibited stable intracellular osmotic conditions and pH, which, when provided in vitro, promoted effective cardiomyocyte formation. The cell viability could be enhanced using 10% fetal bovine serum (FBS), but healthy cell culture could also be obtained using SCCM without FBS. The optimized culture conditions allowed for regular beating cardiomyocyte clusters that could be retained for a month. Limited cell proliferation, as shown by the BrdU assay, demands further interventions, such as possibly producing induced pluripotent stem cells. The optimized protocol and culture conditions also align with some requirements for producing cultivated meat from marine molluscs.
Collapse
Affiliation(s)
- Soumya Balakrishnan
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, India
| | | | | | - I S Bright Singh
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, India
| | - Jayesh Puthumana
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Fine Arts Avenue, Kochi, India
| |
Collapse
|
4
|
Cutarelli A, Carella F, De Falco F, Cuccaro B, Di Nocera F, Nava D, De Vico G, Roperto S. Detection and Quantification of Nocardia crassostreae, an Emerging Pathogen, in Mytilus galloprovincialis in the Mediterranean Sea Using Droplet Digital PCR. Pathogens 2023; 12:994. [PMID: 37623954 PMCID: PMC10458358 DOI: 10.3390/pathogens12080994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/30/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Nocardia crassostreae is a novel pathogen responsible for infections in oysters (Crassostrea gigas) and mussels (Mytilus galloprovincialis). N. crassostreae is also responsible for nocardiosis both in immunocompetent and immunocompromised patients. We investigated N. crassostreae DNA in mussels grown in marine sites of the Mediterranean Sea in the Campania Region. We examined 185 mussel pooled samples by droplet digital PCR (ddPCR) and real-time quantitative PCR (qPCR), each pool composed of 10 mussels and 149 individual mussels. ddPCR detected N. crassostreae DNA in 48 mussel pooled samples and in 23 individual mussel samples. qPCR detected N. crassostreae DNA in six pooled samples and six individual mussel samples. The two molecular assays for the detection of N. crassostreae DNA showed significant differences both in the pooled and in individual samples. Our study demonstrated that ddPCR outperformed real-time qPCR for N. crassostreae DNA detection, thus confirming that ddPCR technology can identify the pathogens in many infectious diseases with high sensitivity and specificity. Furthermore, in individual mussels showing histological lesions due to N. crassostreae, the lowest copy number/microliter detected by ddPCR of this pathogen was 0.3, which suggests that this dose could be enough to cause infections of N. crassostreae in mussels.
Collapse
Affiliation(s)
- Anna Cutarelli
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy
| | - Francesca Carella
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, 80126 Napoli, Italy
| | - Francesca De Falco
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Università degli Studi di Napoli Federico II, 80137 Napoli, Italy
| | - Bianca Cuccaro
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Università degli Studi di Napoli Federico II, 80137 Napoli, Italy
| | - Fabio Di Nocera
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy
| | - Donatella Nava
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy
| | - Gionata De Vico
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, 80126 Napoli, Italy
| | - Sante Roperto
- Dipartimento di Medicina Veterinaria e Produzioni Animali, Università degli Studi di Napoli Federico II, 80137 Napoli, Italy
| |
Collapse
|
5
|
Guglielmi MV, Semeraro D, Mentino D, Mastrodonato M, Mastrototaro F, Scillitani G. Season- and sex-related variation in mucin secretions of the striped Venus clam, Chamelea gallina (Linnaeus, 1758) (Bivalvia: Veneridae). THE EUROPEAN ZOOLOGICAL JOURNAL 2023. [DOI: 10.1080/24750263.2023.2190343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
|
6
|
Liu P, Zhang L, Li Y, Feng H, Zhang X, Zhang M. rGO-PDMS Flexible Sensors Enabled Survival Decision System for Live Oysters. SENSORS (BASEL, SWITZERLAND) 2023; 23:1308. [PMID: 36772351 PMCID: PMC9919715 DOI: 10.3390/s23031308] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The shell-closing strength (SCS) of oysters is the main parameter for physiological activities. The aim of this study was to evaluate the applicability of SCS as an indicator of live oyster health. This study developed a flexible pressure sensor system with polydimethylsiloxane (PDMS) as the substrate and reduced graphene oxide (rGO) as the sensitive layer to monitor SCS in live oysters (rGO-PDMS). In the experiment, oysters of superior, medium and inferior grades were selected as research objects, and the change characteristics of SCS were monitored at 4 °C and 25 °C. At the same time, the time series model was used to predict the survival rate of live oyster on the basis of changes in their SCS characteristics. The survival times of superior, medium and inferior oysters at 4 °C and 25 °C were 31/25/18 days and 12/10/7 days, respectively, and the best prediction accuracies for survival rate were 89.32%/82.17%/79.19%. The results indicate that SCS is a key physiological indicator of oyster survival. The dynamic monitoring of oyster vitality by means of flexible pressure sensors is an important means of improving oyster survival rate. Superior oysters have a higher survival rate in low-temperature environments, and our method can provide effective and reliable survival prediction and management for the oyster industry.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoshuan Zhang
- Correspondence: (X.Z.); (M.Z.); Tel.: +86-133-6639-6640 (X.Z.); +86-158-0106-2668 (M.Z.)
| | - Mengjie Zhang
- Correspondence: (X.Z.); (M.Z.); Tel.: +86-133-6639-6640 (X.Z.); +86-158-0106-2668 (M.Z.)
| |
Collapse
|
7
|
Canesi L, Auguste M, Balbi T, Prochazkova P. Soluble mediators of innate immunity in annelids and bivalve mollusks: A mini-review. Front Immunol 2022; 13:1051155. [PMID: 36532070 PMCID: PMC9756803 DOI: 10.3389/fimmu.2022.1051155] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022] Open
Abstract
Annelids and mollusks, both in the superphylum of Lophotrochozoa (Bilateria), are important ecological groups, widespread in soil, freshwater, estuarine, and marine ecosystems. Like all invertebrates, they lack adaptive immunity; however, they are endowed with an effective and complex innate immune system (humoral and cellular defenses) similar to vertebrates. The lack of acquired immunity and the capacity to form antibodies does not mean a lack of specificity: invertebrates have evolved genetic mechanisms capable of producing thousands of different proteins from a small number of genes, providing high variability and diversity of immune effector molecules just like their vertebrate counterparts. This diversity allows annelids and mollusks to recognize and eliminate a wide range of pathogens and respond to environmental stressors. Effector molecules can kill invading microbes, reduce their pathogenicity, or regulate the immune response at cellular and systemic levels. Annelids and mollusks are "typical" lophotrochozoan protostome since both groups include aquatic species with trochophore larvae, which unite both taxa in a common ancestry. Moreover, despite their extensive utilization in immunological research, no model systems are available as there are with other invertebrate groups, such as Caenorhabditis elegans or Drosophila melanogaster, and thus, their immune potential is largely unexplored. In this work, we focus on two classes of key soluble mediators of immunity, i.e., antimicrobial peptides (AMPs) and cytokines, in annelids and bivalves, which are the most studied mollusks. The mediators have been of interest from their first identification to recent advances in molecular studies that clarified their role in the immune response.
Collapse
Affiliation(s)
- Laura Canesi
- Department of Earth Environment & Life Sciences, University of Genoa, Genoa, Italy
| | - Manon Auguste
- Department of Earth Environment & Life Sciences, University of Genoa, Genoa, Italy
| | - Teresa Balbi
- Department of Earth Environment & Life Sciences, University of Genoa, Genoa, Italy
| | - Petra Prochazkova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia,*Correspondence: Petra Prochazkova,
| |
Collapse
|
8
|
Yoon J, Gu WB, Konuma M, Kobayashi M, Yokoi H, Osada M, Nagasawa K. Gene delivery available in molluscan cells by strong promoter discovered from bivalve-infectious virus. Proc Natl Acad Sci U S A 2022; 119:e2209910119. [PMID: 36322729 PMCID: PMC9661190 DOI: 10.1073/pnas.2209910119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
Understanding gene functions in marine invertebrates has been limited, largely due to the lack of suitable assay systems. Such a system requires investigative methods that are reproducible and can be quantitatively evaluated, such as a cell line, and a strong promoter that can drive high expression of a transgene. In this study, we established primary cell culture from a marine bivalve mollusc, Mizuhopecten yessoensis. Using scallop primary cells, we optimized electroporation conditions for transfection and carried out a luciferase-based promoter activity assay to identify strong promoter sequences that can drive expression of a gene of interest. We evaluated potential promoter sequences from genes of endogenous and exogenous origin and discovered a strong viral promoter derived from a bivalve-infectious virus, ostreid herpesvirus-1 (OsHV-1). This promoter, we termed OsHV-1 promoter, showed 24.7-fold and 16.1-fold higher activity than the cytomegalovirus immediate early (CMV IE) promoter and the endogenous EF1α promoter, the two most commonly used promoters in bivalves so far. Our GFP assays showed that the OsHV-1 promoter is active not only in scallop cells but also in HEK293 cells and zebrafish embryos. The OsHV-1 promoter practically enables functional analysis of marine molluscan genes, which can contribute to unveiling gene-regulatory networks underlying astonishing regeneration, adaptation, reproduction, and aging in marine invertebrates.
Collapse
Affiliation(s)
- Jeongwoong Yoon
- Laboratory of Aquaculture Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-8572, Japan
| | - Wen-Bin Gu
- Laboratory of Aquaculture Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-8572, Japan
| | - Mizuki Konuma
- Laboratory of Aquaculture Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-8572, Japan
| | - Mutsuko Kobayashi
- Laboratory of Aquaculture Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-8572, Japan
| | - Hayato Yokoi
- Laboratory of Fish Genetics, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-8572, Japan
| | - Makoto Osada
- Laboratory of Aquaculture Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-8572, Japan
| | - Kazue Nagasawa
- Laboratory of Aquaculture Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi 980-8572, Japan
- To whom correspondence may be addressed.
| |
Collapse
|
9
|
Burnett KG, Burnett LE. Immune Defense in Hypoxic Waters: Impacts of CO 2 Acidification. THE BIOLOGICAL BULLETIN 2022; 243:120-133. [PMID: 36548972 DOI: 10.1086/721322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
AbstractPeriodic episodes of low oxygen (hypoxia) and elevated CO2 (hypercapnia) accompanied by low pH occur naturally in estuarine environments. Under the influence of climate change, the geographic range and intensity of hypoxia and hypercapnic hypoxia are predicted to increase, potentially jeopardizing the survival of economically and ecologically important organisms that use estuaries as habitat and nursery grounds. In this review we synthesize data from published studies that evaluate the impact of hypoxia and hypercapnic hypoxia on the ability of crustaceans and bivalve molluscs to defend themselves against potential microbial pathogens. Available data indicate that hypoxia generally has suppressive effects on host immunity against bacterial pathogens as measured by in vitro and in vivo assays. Few studies have documented the effects of hypercapnic hypoxia on crustaceans or bivalve immune defense, with a range of outcomes suggesting that added CO2 might have additive, negative, or no interactions with the effects of hypoxia alone. This synthesis points to the need for more partial pressure of O2 × low pH factorial design experiments and recommends the development of new host∶pathogen challenge models incorporating natural transmission of a wide range of viruses, bacteria, and parasites, along with novel in vivo tracking systems that better quantify how pathogens interact with their hosts in real time under laboratory and field conditions.
Collapse
|
10
|
Ferchiou S, Caza F, de Boissel PGJ, Villemur R, St-Pierre Y. Applying the concept of liquid biopsy to monitor the microbial biodiversity of marine coastal ecosystems. ISME COMMUNICATIONS 2022; 2:61. [PMID: 37938655 PMCID: PMC9723566 DOI: 10.1038/s43705-022-00145-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/28/2022] [Accepted: 07/08/2022] [Indexed: 10/04/2023]
Abstract
Liquid biopsy (LB) is a concept that is rapidly gaining ground in the biomedical field. Its concept is largely based on the detection of circulating cell-free DNA (ccfDNA) fragments that are mostly released as small fragments following cell death in various tissues. A small percentage of these fragments are from foreign (nonself) tissues or organisms. In the present work, we applied this concept to mussels, a sentinel species known for its high filtration capacity of seawater. We exploited the capacity of mussels to be used as natural filters to capture environmental DNA fragments of different origins to provide information on the biodiversity of marine coastal ecosystems. Our results showed that hemolymph of mussels contains DNA fragments that varied considerably in size, ranging from 1 to 5 kb. Shotgun sequencing revealed that a significant amount of DNA fragments had a nonself microbial origin. Among these, we found DNA fragments derived from bacteria, archaea, and viruses, including viruses known to infect a variety of hosts that commonly populate coastal marine ecosystems. Taken together, our study shows that the concept of LB applied to mussels provides a rich and yet unexplored source of knowledge regarding the microbial biodiversity of a marine coastal ecosystem.
Collapse
Affiliation(s)
- Sophia Ferchiou
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, H7V 1B7, Canada
| | - France Caza
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, H7V 1B7, Canada
| | | | - Richard Villemur
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, H7V 1B7, Canada
| | - Yves St-Pierre
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, Québec, H7V 1B7, Canada.
| |
Collapse
|
11
|
Towards Sustainable Aquaculture: A Brief Look into Management Issues. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Aquaculture’s role has expanded over the past two decades, with the industry contributing to nearly 50% of the overall fish production. Aquaculture production in Asia and Africa contributes a significant share of total global aquaculture output growth. Aquaculture supports livelihoods and income improvement in a number of states, despite the fact that economic situations have indeed been unfavourable and environmental concerns remain undeniable. To meet the growing demand for fish, aquaculture must expand. However, this expansion will not be sustainable unless management and planning are significantly improved. Local, national, and international management are needed to address the social, economic, and environmental problems. These provide the foundation to proper aquaculture management strategies. In considering the involved ecology, water quality, and genetics, aquaculture can have a detrimental impact on the environmental sustainability. This paper highlights the review on site selection with capacity evaluation, analysis of threats and risks, as well as certification and standards, which are all important considerations in achieving a sustainable aquaculture industry.
Collapse
|
12
|
Dujon AM, Boutry J, Tissot S, Meliani J, Guimard L, Rieu O, Ujvari B, Thomas F. A review of the methods used to induce cancer in invertebrates to study its effects on the evolution of species and ecosystem functioning. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Antoine M. Dujon
- Deakin University Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology Waurn Ponds Victoria Australia
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC) Montpellier France
- CREEC, MIVEGEC UMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Justine Boutry
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC) Montpellier France
- CREEC, MIVEGEC UMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Sophie Tissot
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC) Montpellier France
- CREEC, MIVEGEC UMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Jordan Meliani
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC) Montpellier France
- CREEC, MIVEGEC UMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Lena Guimard
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC) Montpellier France
- CREEC, MIVEGEC UMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Océane Rieu
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC) Montpellier France
- CREEC, MIVEGEC UMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| | - Beata Ujvari
- Deakin University Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology Waurn Ponds Victoria Australia
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC) Montpellier France
| | - Frédéric Thomas
- CANECEV‐Centre de Recherches Ecologiques et Evolutives sur le Cancer (CREEC) Montpellier France
- CREEC, MIVEGEC UMR IRD 224‐CNRS 5290‐Université de Montpellier Montpellier France
| |
Collapse
|
13
|
Michnowska A, Hart SFM, Smolarz K, Hallmann A, Metzger MJ. Horizontal transmission of disseminated neoplasia in the widespread clam
Macoma balthica
from the Southern Baltic Sea. Mol Ecol 2022; 31:3128-3136. [DOI: 10.1111/mec.16464] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Alicja Michnowska
- Department of Marine Ecosystems Functioning Institute of Oceanography Faculty of Oceanography and Geography University of Gdańsk Piłsudskiego 46 81‐378 Gdynia
| | - Samuel F. M. Hart
- Pacific Northwest Research Institute 720 Broadway Seattle WA 98122 USA
- Molecular and Cellular Biology Program University of Washington 1959 NE Pacific Street, HSB T‐466 Seattle WA 98195 USA
| | - Katarzyna Smolarz
- Department of Marine Ecosystems Functioning Institute of Oceanography Faculty of Oceanography and Geography University of Gdańsk Piłsudskiego 46 81‐378 Gdynia
| | - Anna Hallmann
- Department of Pharmaceutical Biochemistry Medical University of Gdańsk Dębinki 1 80‐211 Gdańsk
| | - Michael J. Metzger
- Pacific Northwest Research Institute 720 Broadway Seattle WA 98122 USA
- Molecular and Cellular Biology Program University of Washington 1959 NE Pacific Street, HSB T‐466 Seattle WA 98195 USA
| |
Collapse
|
14
|
Rastgar S, Alijani Ardeshir R, Segner H, Tyler CR, J G M Peijnenburg W, Wang Y, Salati AP, Movahedinia A. Immunotoxic effects of metal-based nanoparticles in fish and bivalves. Nanotoxicology 2022; 16:88-113. [PMID: 35201945 DOI: 10.1080/17435390.2022.2041756] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is a global research interest in metal nanoparticles (MNPs) due to their diverse applications, rapidly increasing use, and increased presence in the aquatic environment. Currently, most MNPs in the environment are at levels unlikely to cause overt toxicity. Sub-lethal effects that MNPs may induce, notable immunotoxicity, could however have significant health implications. Thus, deciphering the immunological interactions of MNPs with aquatic organisms constitutes a much-needed area of research. In this article, we critically assess the evidence for immunotoxic effects of MNPs in bivalves and fish, as key wildlife sentinels with widely differing ecological niches that are used as models in ecotoxicology. The first part of this review details the properties, fate, and fundamental physicochemical behavior of MNPs in the aquatic ecosystem. We then consider the toxicokinetics of MNP uptake, accumulation, and deposition in fish and bivalves. The main body of the review then focuses on immune reactions in response to MNPs exposure in bivalves and fish illustrating their immunotoxic potential. Finally, we identify major knowledge gaps in our current understanding of the implications of MNPs exposure for immunological functions and the associated health consequences for bivalves and fish, as well as the general lessons learned on the immunotoxic properties of the emerging class of nanoparticulate contaminants in fish and bivalves.
Collapse
Affiliation(s)
- Sara Rastgar
- Department of Marine Biology, Faculty of Marine Sciences, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | | | - Helmut Segner
- Centre for Fish and Wildlife Health, Department of Pathobiology and Infectious Diseases, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK.,Centre for Sustainable Aquaculture Futures, University of Exeter, Exeter, UK
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences (CML), Leiden University, Leiden, the Netherlands.,Centre for Safety of Substances and Products, National Institute of Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Youji Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, PR China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, PR China
| | - Amir Parviz Salati
- Department of Fisheries, Faculty of Marine Natural resources, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | - Abdolali Movahedinia
- Department of Marine Biology, Faculty of Marine Sciences, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
15
|
Watson A, Agius J, Ackerly D, Beddoe T, Helbig K. The Role of Anti-Viral Effector Molecules in Mollusc Hemolymph. Biomolecules 2022; 12:345. [PMID: 35327536 PMCID: PMC8945852 DOI: 10.3390/biom12030345] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/06/2022] [Accepted: 02/21/2022] [Indexed: 02/04/2023] Open
Abstract
Molluscs are major contributors to the international and Australian aquaculture industries, however, their immune systems remain poorly understood due to limited access to draft genomes and evidence of divergences from model organisms. As invertebrates, molluscs lack adaptive immune systems or 'memory', and rely solely on innate immunity for antimicrobial defence. Hemolymph, the circulatory fluid of invertebrates, contains hemocytes which secrete effector molecules with immune regulatory functions. Interactions between mollusc effector molecules and bacterial and fungal pathogens have been well documented, however, there is limited knowledge of their roles against viruses, which cause high mortality and significant production losses in these species. Of the major effector molecules, only the direct acting protein dicer-2 and the antimicrobial peptides (AMPs) hemocyanin and myticin-C have shown antiviral activity. A better understanding of these effector molecules may allow for the manipulation of mollusc proteomes to enhance antiviral and overall antimicrobial defence to prevent future outbreaks and minimize economic outbreaks. Moreover, effector molecule research may yield the description and production of novel antimicrobial treatments for a broad host range of animal species.
Collapse
Affiliation(s)
- Angus Watson
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (A.W.); (J.A.)
| | - Jacinta Agius
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (A.W.); (J.A.)
| | - Danielle Ackerly
- Department of Animal, Plant and Soil Science, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Travis Beddoe
- Department of Animal, Plant and Soil Science, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Karla Helbig
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (A.W.); (J.A.)
| |
Collapse
|
16
|
Wathsala RHGR, Musella M, Valbonesi P, Candela M, Franzellitti S. Variability of metabolic, protective, antioxidant, and lysosomal gene transcriptional profiles and microbiota composition of Mytilus galloprovincialis farmed in the North Adriatic Sea (Italy). MARINE POLLUTION BULLETIN 2021; 172:112847. [PMID: 34399278 DOI: 10.1016/j.marpolbul.2021.112847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 08/02/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
This study evaluates the transcriptional profiles of genes related to physiological responses in digestive glands (DG) of Mytilus galloprovincialis under the influence of seasonal changes of environmental variables, gender bias, and gonadal development. Composition of the DG microbiome was also explored. Mussels were collected across 7 months encompassing 3 seasons from a farm in the Northwestern Adriatic Sea. All gene products showed complex transcriptional patterns across seasons. Salinity, surface oxygen and transparency significantly correlate with transcriptional profiles of males, whereas in females temperature and gonadal maturation mostly explained the observed transcriptional changes. Seasonal variations and gender-specific differences were observed in DG microbiome composition, with variations resembling metabolic accommodations likely facing season progression and reproductive cycle. Results provide baseline information to improve actual monitoring strategies of mussel farming conditions and forecast potential detrimental impacts of climatological/environmental changes in the study area.
Collapse
Affiliation(s)
| | - Margherita Musella
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy
| | - Paola Valbonesi
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Ravenna, Italy
| | - Marco Candela
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy.
| | - Silvia Franzellitti
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Ravenna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy.
| |
Collapse
|
17
|
Frizzo R, Bortoletto E, Riello T, Leanza L, Schievano E, Venier P, Mammi S. NMR Metabolite Profiles of the Bivalve Mollusc Mytilus galloprovincialis Before and After Immune Stimulation With Vibrio splendidus. Front Mol Biosci 2021; 8:686770. [PMID: 34540890 PMCID: PMC8447493 DOI: 10.3389/fmolb.2021.686770] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/15/2021] [Indexed: 01/26/2023] Open
Abstract
The hemolymph metabolome of Mytilus galloprovincialis injected with live Vibrio splendidus bacteria was analyzed by 1H-NMR spectrometry. Changes in spectral hemolymph profiles were already detected after mussel acclimation (3 days at 18 or 25 °C). A significant decrease of succinic acid was accompanied by an increase of most free amino acids, mytilitol, and, to a smaller degree, osmolytes. These metabolic changes are consistent with effective osmoregulation, and the restart of aerobic respiration after the functional anaerobiosis occurred during transport. The injection of Vibrio splendidus in mussels acclimated at 18°C caused a significant decrease of several amino acids, sugars, and unassigned chemical species, more pronounced at 24 than at 12 h postinjection. Correlation heatmaps indicated dynamic metabolic adjustments and the relevance of protein turnover in maintaining the homeostasis during the response to stressful stimuli. This study confirms NMR-based metabolomics as a feasible analytical approach complementary to other omics techniques in the investigation of the functional mussel responses to environmental challenges.
Collapse
Affiliation(s)
- Riccardo Frizzo
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | | | - Tobia Riello
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Luigi Leanza
- Department of Biology, University of Padova, Padova, Italy
| | | | - Paola Venier
- Department of Biology, University of Padova, Padova, Italy
| | - Stefano Mammi
- Department of Chemical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
18
|
Effect of Different Species of Prorocentrum Genus on the Japanese Oyster Crassostrea gigas Proteomic Profile. Toxins (Basel) 2021; 13:toxins13070504. [PMID: 34357976 PMCID: PMC8310146 DOI: 10.3390/toxins13070504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022] Open
Abstract
This paper assesses the effects of exposure to toxic concentrations (1200 to 6000 cells/mL) of the dinoflagellates Prorocentrum lima, Prorocentrum minimum, and Prorocentrum rhathymum and several concentrations of aqueous and organic extracts obtained from the same species (0 to 20 parts per thousand) on the Crassostrea gigas (5-7 mm) proteomic profile. Through comparative proteomic map analyses, several protein spots were detected with different expression levels, of which eight were selected to be identified by liquid chromatography-mass spectrometry (LC-MS/MS) analyses. The proteomic response suggests that, after 72 h of exposure to whole cells, the biological functions of C. gigas affected proteins in the immune system, stress response, contractile systems and cytoskeletal activities. The exposure to organic and aqueous extracts mainly showed effects on protein expressions in muscle contraction and cytoskeleton morphology. These results enrich the knowledge on early bivalve developmental stages. Therefore, they may be considered a solid base for new bioassays and/or generation of specific analytical tools that allow for some of the main effects of algal proliferation phenomena on bivalve mollusk development to be monitored, characterized and elucidated.
Collapse
|
19
|
Ben Younes R, Bouallegui Y, Fezai O, Mezni A, Touaylia S, Oueslati R. Silver nanoparticles' impact on the gene expression of the cytosolic adaptor MyD-88 and the interferon regulatory factor IRF in the gills and digestive gland of mytilus galloprovincialis. Drug Chem Toxicol 2021; 45:2371-2378. [PMID: 34225533 DOI: 10.1080/01480545.2021.1945128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Silver nanoparticles (AgNPs) have been reported as stressors for the bivalves' immune system at different regulatory levels, impacting the detection step and receptors, and other mediators, as well as effector molecules. However, studies on how AgNPs impact the transmission of signals from receptors and whether they have an effect on mediators and transcription factors are still scarce. This study aims to investigate the effect of 12 hours of in vivo exposure to 100 µg/L of AgNPs on the gene expression of the cytosolic adaptor Myeloid, the differentiation protein 88 (MgMyD88-b), and the interferon regulatory factor (Me4-IRF) in the gills and digestive gland of Mytilus galloprovincialis, before and after blocking two major uptake pathways of nanoparticles (clathrin- and caveolae-mediated endocytosis). The results illustrate a tissue-specific gene expression of the MgMyD88-b and the Me4-IRF in the gills and digestive gland of M. galloprovincialis. In the gills, AgNPs did not significantly impact the expression of the two genes. However, blocking the caveolae-mediated endocytosis decreased the expression of Me4-IRF. However, inhibition of clathrin-mediated endocytosis in the digestive gland recorded a significant decrease in the expression of MgMyD88-b. Overall, the inhibition of the AgNPs' uptake routes have highlighted their potential interference with the immune response through the studied mediators' genes, which need to be studied further in future investigations.
Collapse
Affiliation(s)
- Ridha Ben Younes
- Research Unit of Immuno-Microbiology, Environment and Carcinogenesis, Faculty of Sciences of Bizerte, University of Carthage, Tunisia
| | - Younes Bouallegui
- Research Unit of Immuno-Microbiology, Environment and Carcinogenesis, Faculty of Sciences of Bizerte, University of Carthage, Tunisia.,LR01ES14 Laboratory of Environmental Biomonitoring, University of Carthage, Faculty of Sciences of Bizerte, Bizerte, Tunisia
| | - Olfa Fezai
- LR01ES14 Laboratory of Environmental Biomonitoring, University of Carthage, Faculty of Sciences of Bizerte, Bizerte, Tunisia
| | - Amine Mezni
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| | - Samir Touaylia
- LR01ES14 Laboratory of Environmental Biomonitoring, University of Carthage, Faculty of Sciences of Bizerte, Bizerte, Tunisia
| | - Ridha Oueslati
- Research Unit of Immuno-Microbiology, Environment and Carcinogenesis, Faculty of Sciences of Bizerte, University of Carthage, Tunisia
| |
Collapse
|
20
|
Fujii Y. [Cell Function Research of β-Trefoil Lectins from Mytilidae]. YAKUGAKU ZASSHI 2021; 141:481-488. [PMID: 33790114 DOI: 10.1248/yakushi.20-00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two novel β-trefoil lectins, MytiLec-1 and SeviL were found from mussels in the coast of Yokohama and Nagasaki. MytiLec-1 was purified from gill and mantle of Mytilus galloprovincialis. It was consisted of 149 amino acid residues and there was no similarity with any other proteins when it was discovered. We advocate for this "Mytilectin" as a new protein family because of their novelty of its primary structure and homologues were also found in other mussels. Glycan array analysis revealed that MytiLec-1 specifically bound to the Gb3 and Gb4 glycan which contained the α-galactoside. MytiLec-1 caused the apoptosis against the Burkitt's lymphoma cells through the interaction of Gb3 express in their cell surface. On the other hand, SeviL obtained from gill and mantle of Mytilisepta virgata showed the specific binding against GM1b, asialo GM1 and SSEA-4 which are known as glycosphingolipid glycan including the β-galactoside. In addition, SeviL was identified as R type lectin by confirmation of QXW motif within its primary structure. Messenger RNA of SeviL like R type lectins was also found among the musssels including Mytilus galloprovincialis. SeviL also showed the apoptosis against asialo GM1 expressing cells. To apply the anticancer lectin as a novel molecular target drug, primary structure of MytiLec-1 was analyzed to enhance the stabilization of confirmation by computational design technique. It was succeeded to produce a monomeric artificial β-trefoil lectin, Mitsuba-1 without losing the Gb3 binding ability. Comparison of biological function between Mitsuba-1 and MytiLec-1 is also described in this study.
Collapse
Affiliation(s)
- Yuki Fujii
- Laboratory of Functional Morphology, Graduate School of Pharmaceutical Sciences, Nagasaki International University
| |
Collapse
|
21
|
Reunov A, Alexandrova Y, Komkova A, Reunova Y, Pimenova E, Vekhova E, Milani L. VASA-induced cytoplasmic localization of CYTB-positive mitochondrial substance occurs by destructive and nondestructive mitochondrial effusion, respectively, in early and late spermatogenic cells of the Manila clam. PROTOPLASMA 2021; 258:817-825. [PMID: 33580838 DOI: 10.1007/s00709-020-01601-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
To analyze the release of mitochondrial material, a process that is believed to be (i) induced by the VASA protein derived from germplasm granules, and (ii) which appears to play an important role during meiotic differentiation, the localization of the CYTB protein was studied in the process of spermatogenesis of the bivalve mollusk Ruditapes philippinarum (Manila clam). It was found that in early spermatogenic cells, such as spermatogonia and spermatocytes, the CYTB protein shows dispersion in the cytoplasm following the total disaggregation of VASA-invaded mitochondria, what is called here as "destructive mitochondrial effusion (DME)." It was found that the mitochondria of the maturing sperm cells also uptake VASA. It is accompanied by extramitochondrial transmembrane localization of CYTB assuming mitochondrial content release without mitochondrion demolishing. This phenomenon is called here as "nondestructive mitochondrial effusion (NDME)." Thus, in the spermatogenesis of the Manila clam, two patterns of mitochondrial release, DME and NDME, were found, which function, respectively, in early spermatogenic cells and in maturing spermatozoa. Despite the morphological difference, it is assumed that both DME and NDME have a similar functional nature. In both cases, the intramitochondrial localization of VASA coincides with the extramitochondrial localization of the mitochondrial matrix.
Collapse
Affiliation(s)
- Arkadiy Reunov
- Department of Biology, St. Francis Xavier University, Antigonish, NS, B2G 2W5, Canada.
- Far Eastern Branch of Russian Academy of Sciences, National Scientific Centre of Marine Biology, Vladivostok, 690041, Russia.
| | - Yana Alexandrova
- Far Eastern Branch of Russian Academy of Sciences, National Scientific Centre of Marine Biology, Vladivostok, 690041, Russia
| | - Alina Komkova
- Far Eastern Branch of Russian Academy of Sciences, National Scientific Centre of Marine Biology, Vladivostok, 690041, Russia
| | - Yulia Reunova
- Far Eastern Branch of Russian Academy of Sciences, National Scientific Centre of Marine Biology, Vladivostok, 690041, Russia
| | - Evgenia Pimenova
- Far Eastern Branch of Russian Academy of Sciences, National Scientific Centre of Marine Biology, Vladivostok, 690041, Russia
| | - Evgenia Vekhova
- Far Eastern Branch of Russian Academy of Sciences, National Scientific Centre of Marine Biology, Vladivostok, 690041, Russia
| | - Liliana Milani
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi, 3, 40126, Bologna, Italy
| |
Collapse
|
22
|
Tunjić-Cvitanić M, Pasantes JJ, García-Souto D, Cvitanić T, Plohl M, Šatović-Vukšić E. Satellitome Analysis of the Pacific Oyster Crassostrea gigas Reveals New Pattern of Satellite DNA Organization, Highly Scattered across the Genome. Int J Mol Sci 2021; 22:ijms22136798. [PMID: 34202698 PMCID: PMC8268682 DOI: 10.3390/ijms22136798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/22/2022] Open
Abstract
Several features already qualified the invasive bivalve species Crassostrea gigas as a valuable non-standard model organism in genome research. C. gigas is characterized by the low contribution of satellite DNAs (satDNAs) vs. mobile elements and has an extremely low amount of heterochromatin, predominantly built of DNA transposons. In this work, we have identified 52 satDNAs composing the satellitome of C. gigas and constituting about 6.33% of the genome. Satellitome analysis reveals unusual, highly scattered organization of relatively short satDNA arrays across the whole genome. However, peculiar chromosomal distribution and densities are specific for each satDNA. The inspection of the organizational forms of the 11 most abundant satDNAs shows association with constitutive parts of Helitron mobile elements. Nine of the inspected satDNAs are dominantly found in mobile element-associated form, two mostly appear standalone, and only one is present exclusively as Helitron-associated sequence. The Helitron-related satDNAs appear in more chromosomes than other satDNAs, indicating that these mobile elements could be leading satDNA propagation in C. gigas. No significant accumulation of satDNAs on certain chromosomal positions was detected in C. gigas, thus establishing a novel pattern of satDNA organization on the genome level.
Collapse
Affiliation(s)
- Monika Tunjić-Cvitanić
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (M.T.-C.); (M.P.)
| | - Juan J. Pasantes
- Centro de Investigación Mariña, Universidade de Vigo, Dpto de Bioquímica, Xenética e Inmunoloxía, 36310 Vigo, Spain;
| | - Daniel García-Souto
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain
| | - Tonči Cvitanić
- Rimac Automobili d.o.o., Ljubljanska ulica 7, 10431 Sveta Nedelja, Croatia;
| | - Miroslav Plohl
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (M.T.-C.); (M.P.)
| | - Eva Šatović-Vukšić
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (M.T.-C.); (M.P.)
- Correspondence:
| |
Collapse
|
23
|
Swartzwelter BJ, Mayall C, Alijagic A, Barbero F, Ferrari E, Hernadi S, Michelini S, Navarro Pacheco NI, Prinelli A, Swart E, Auguste M. Cross-Species Comparisons of Nanoparticle Interactions with Innate Immune Systems: A Methodological Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1528. [PMID: 34207693 PMCID: PMC8230276 DOI: 10.3390/nano11061528] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/18/2022]
Abstract
Many components of the innate immune system are evolutionarily conserved and shared across many living organisms, from plants and invertebrates to humans. Therefore, these shared features can allow the comparative study of potentially dangerous substances, such as engineered nanoparticles (NPs). However, differences of methodology and procedure between diverse species and models make comparison of innate immune responses to NPs between organisms difficult in many cases. To this aim, this review provides an overview of suitable methods and assays that can be used to measure NP immune interactions across species in a multidisciplinary approach. The first part of this review describes the main innate immune defense characteristics of the selected models that can be associated to NPs exposure. In the second part, the different modes of exposure to NPs across models (considering isolated cells or whole organisms) and the main endpoints measured are discussed. In this synergistic perspective, we provide an overview of the current state of important cross-disciplinary immunological models to study NP-immune interactions and identify future research needs. As such, this paper could be used as a methodological reference point for future nano-immunosafety studies.
Collapse
Affiliation(s)
| | - Craig Mayall
- Department of Biology, Biotechnical Faculty, University of Liubljana, 1000 Ljubljana, Slovenia;
| | - Andi Alijagic
- Institute for Biomedical Research and Innovation, National Research Council, 90146 Palermo, Italy;
| | - Francesco Barbero
- Institut Català de Nanosciència i Nanotecnologia (ICN2), Bellaterra, 08193 Barcelona, Spain;
| | - Eleonora Ferrari
- Center for Plant Molecular Biology–ZMBP Eberhard-Karls University Tübingen, 72076 Tübingen, Germany;
| | - Szabolcs Hernadi
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK;
| | - Sara Michelini
- Department of Biosciences, Paris-Lodron University Salzburg, 5020 Salzburg, Austria;
| | | | | | - Elmer Swart
- UK Centre for Ecology and Hydrology, Wallingford OX10 8BB, UK;
| | - Manon Auguste
- Department of Earth Environment and Life Sciences, University of Genova, 16126 Genova, Italy
| |
Collapse
|
24
|
Rosani U, Bortoletto E, Bai CM, Novoa B, Figueras A, Venier P, Fromm B. Digging into bivalve miRNAomes: between conservation and innovation. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200165. [PMID: 33813895 PMCID: PMC8059956 DOI: 10.1098/rstb.2020.0165] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2021] [Indexed: 12/17/2022] Open
Abstract
Bivalves are a diverse mollusc group of economic and ecological importance. An evident resilience to pollution, parasites and extreme environments makes some bivalve species important models for studying adaptation and immunity. Despite substantial progress in sequencing projects of bivalves, information on non-coding genes and gene-regulatory aspects is still lacking. Here, we review the current repertoire of bivalve microRNAs (miRNAs), important regulators of gene expression in Metazoa. We exploited available short non-coding RNA (sncRNA) data for Pinctada martensii, Crassostrea gigas, Corbicula fluminea, Tegillarca granosa and Ruditapes philippinarum, and we produced new sncRNA data for two additional bivalves, the Mediterranean mussel Mytilus galloprovincialis and the blood clam Scapharca broughtonii. We found substantial heterogeneity and incorrect annotations of miRNAs; hence, we reannotated conserved miRNA families using recently established criteria for bona fide microRNA annotation. We found 106 miRNA families missing in the previously published bivalve datasets and 89 and 87 miRNA complements were identified in the two additional species. The overall results provide a homogeneous and evolutionarily consistent picture of miRNAs in bivalves and enable future comparative studies. The identification of two bivalve-specific miRNA families sheds further light on the complexity of transcription and its regulation in bivalve molluscs. This article is part of the Theo Murphy meeting issue 'Molluscan genomics: broad insights and future directions for a neglected phylum'.
Collapse
Affiliation(s)
- Umberto Rosani
- Department of Biology, University of Padova, 35121 Padova, Italy
| | | | - Chang-Ming Bai
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture; Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266237, People's Republic of China
| | - Beatriz Novoa
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), Eduardo Cabello, 6, 36208 Vigo, Spain
| | - Antonio Figueras
- Institute of Marine Research (IIM), Spanish National Research Council (CSIC), Eduardo Cabello, 6, 36208 Vigo, Spain
| | - Paola Venier
- Department of Biology, University of Padova, 35121 Padova, Italy
| | - Bastian Fromm
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden
| |
Collapse
|
25
|
Davison A, Neiman M. Mobilizing molluscan models and genomes in biology. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200163. [PMID: 33813892 PMCID: PMC8059959 DOI: 10.1098/rstb.2020.0163] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Molluscs are among the most ancient, diverse, and important of all animal taxa. Even so, no individual mollusc species has emerged as a broadly applied model system in biology. We here make the case that both perceptual and methodological barriers have played a role in the relative neglect of molluscs as research organisms. We then summarize the current application and potential of molluscs and their genomes to address important questions in animal biology, and the state of the field when it comes to the availability of resources such as genome assemblies, cell lines, and other key elements necessary to mobilising the development of molluscan model systems. We conclude by contending that a cohesive research community that works together to elevate multiple molluscan systems to 'model' status will create new opportunities in addressing basic and applied biological problems, including general features of animal evolution. This article is part of the Theo Murphy meeting issue 'Molluscan genomics: broad insights and future directions for a neglected phylum'.
Collapse
Affiliation(s)
- Angus Davison
- School of Life Sciences, University Park, University of Nottingham, Nottingham NG7 2RD, UK
| | - Maurine Neiman
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
- Department of Gender, Women's, and Sexuality Studies, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
26
|
Microbiome Analysis Reveals Diversity and Function of Mollicutes Associated with the Eastern Oyster, Crassostrea virginica. mSphere 2021; 6:6/3/e00227-21. [PMID: 33980678 PMCID: PMC8125052 DOI: 10.1128/msphere.00227-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Despite their biological and ecological significance, a mechanistic characterization of microbiome function is frequently missing from many nonmodel marine invertebrates. As an initial step toward filling this gap for the eastern oyster, Crassostrea virginica, this study provides an integrated taxonomic and functional analysis of the oyster microbiome using samples from a coastal salt pond in August 2017. Marine invertebrate microbiomes play important roles in diverse host and ecological processes. However, a mechanistic understanding of host-microbe interactions is currently available for a small number of model organisms. Here, an integrated taxonomic and functional analysis of the microbiome of the eastern oyster, Crassostrea virginica, was performed using 16S rRNA gene-based amplicon profiling, shotgun metagenomics, and genome-scale metabolic reconstruction. Relatively high variability of the microbiome was observed across individual oysters and among different tissue types. Specifically, a significantly higher alpha diversity was observed in the inner shell than in the gut, gill, mantle, and pallial fluid samples, and a distinct microbiome composition was revealed in the gut compared to other tissues examined in this study. Targeted metagenomic sequencing of the gut microbiota led to further characterization of a dominant bacterial taxon, the class Mollicutes, which was captured by the reconstruction of a metagenome-assembled genome (MAG). Genome-scale metabolic reconstruction of the oyster Mollicutes MAG revealed a reduced set of metabolic functions and a high reliance on the uptake of host-derived nutrients. A chitin degradation and an arginine deiminase pathway were unique to the MAG compared to closely related genomes of Mollicutes isolates, indicating distinct mechanisms of carbon and energy acquisition by the oyster-associated Mollicutes. A systematic reanalysis of public eastern oyster-derived microbiome data revealed a high prevalence of the Mollicutes among adult oyster guts and a significantly lower relative abundance of the Mollicutes in oyster larvae and adult oyster biodeposits. IMPORTANCE Despite their biological and ecological significance, a mechanistic characterization of microbiome function is frequently missing from many nonmodel marine invertebrates. As an initial step toward filling this gap for the eastern oyster, Crassostrea virginica, this study provides an integrated taxonomic and functional analysis of the oyster microbiome using samples from a coastal salt pond in August 2017. The study identified high variability of the microbiome across tissue types and among individual oysters, with some dominant taxa showing higher relative abundance in specific tissues. A high prevalence of Mollicutes in the adult oyster gut was revealed by comparative analysis of the gut, biodeposit, and larva microbiomes. Phylogenomic analysis and metabolic reconstruction suggested the oyster-associated Mollicutes is closely related but functionally distinct from Mollicutes isolated from other marine invertebrates. To the best of our knowledge, this study represents the first metagenomics-derived functional inference of Mollicutes in the eastern oyster microbiome.
Collapse
|
27
|
Kattner P, Zeiler K, Herbener VJ, Ferla-Brühl KL, Kassubek R, Grunert M, Burster T, Brühl O, Weber AS, Strobel H, Karpel-Massler G, Ott S, Hagedorn A, Tews D, Schulz A, Prasad V, Siegelin MD, Nonnenmacher L, Fischer-Posovszky P, Halatsch ME, Debatin KM, Westhoff MA. What Animal Cancers teach us about Human Biology. Theranostics 2021; 11:6682-6702. [PMID: 34093847 PMCID: PMC8171098 DOI: 10.7150/thno.56623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/09/2021] [Indexed: 12/30/2022] Open
Abstract
Cancers in animals present a large, underutilized reservoir of biomedical information with critical implication for human oncology and medicine in general. Discussing two distinct areas of tumour biology in non-human hosts, we highlight the importance of these findings for our current understanding of cancer, before proposing a coordinated strategy to harvest biomedical information from non-human resources and translate it into a clinical setting. First, infectious cancers that can be transmitted as allografts between individual hosts, have been identified in four distinct, unrelated groups, dogs, Tasmanian devils, Syrian hamsters and, surprisingly, marine bivalves. These malignancies might hold the key to improving our understanding of the interaction between tumour cell and immune system and, thus, allow us to devise novel treatment strategies that enhance anti-cancer immunosurveillance, as well as suggesting more effective organ and stem cell transplantation strategies. The existence of these malignancies also highlights the need for increased scrutiny when considering the existence of infectious cancers in humans. Second, it has long been understood that no linear relationship exists between the number of cells within an organism and the cancer incidence rate. To resolve what is known as Peto's Paradox, additional anticancer strategies within different species have to be postulated. These naturally occurring idiosyncrasies to avoid carcinogenesis represent novel potential therapeutic strategies.
Collapse
Affiliation(s)
- Patricia Kattner
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Katharina Zeiler
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
- Department of Neurosurgery, University Medical Center Ulm, Ulm, Germany
| | - Verena J. Herbener
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | | | | | - Michael Grunert
- Department of Nuclear Medicine, German Armed Forces Hospital of Ulm, Ulm, Germany
- Department of Nuclear Medicine, University Medical Center Ulm, Ulm, Germany
| | - Timo Burster
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan Republic
| | - Oliver Brühl
- Laboratorio Analisi Sicilia Catania, Lentini; SR, Italy
| | - Anna Sarah Weber
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Hannah Strobel
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Georg Karpel-Massler
- Department of Neurosurgery, University Medical Center Ulm, Ulm, Germany
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Sibylle Ott
- Animal Research Center, University of Ulm, Ulm, Germany
| | | | - Daniel Tews
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center, Ulm, Germany
| | - Ansgar Schulz
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Vikas Prasad
- Department of Nuclear Medicine, University Medical Center Ulm, Ulm, Germany
| | - Markus D. Siegelin
- Department of Pathology & Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Lisa Nonnenmacher
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Pamela Fischer-Posovszky
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University Medical Center, Ulm, Germany
| | | | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| |
Collapse
|
28
|
Stevick RJ, Post AF, Gómez-Chiarri M. Functional plasticity in oyster gut microbiomes along a eutrophication gradient in an urbanized estuary. Anim Microbiome 2021; 3:5. [PMID: 33499983 PMCID: PMC7934548 DOI: 10.1186/s42523-020-00066-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 11/29/2020] [Indexed: 01/04/2023] Open
Abstract
Background Oysters in coastal environments are subject to fluctuating environmental conditions that may impact the ecosystem services they provide. Oyster-associated microbiomes are responsible for some of these services, particularly nutrient cycling in benthic habitats. The effects of climate change on host-associated microbiome composition are well-known, but functional changes and how they may impact host physiology and ecosystem functioning are poorly characterized. We investigated how environmental parameters affect oyster-associated microbial community structure and function along a trophic gradient in Narragansett Bay, Rhode Island, USA. Adult eastern oyster, Crassostrea virginica, gut and seawater samples were collected at 5 sites along this estuarine nutrient gradient in August 2017. Samples were analyzed by 16S rRNA gene sequencing to characterize bacterial community structures and metatranscriptomes were sequenced to determine oyster gut microbiome responses to local environments. Results There were significant differences in bacterial community structure between the eastern oyster gut and water samples, suggesting selection of certain taxa by the oyster host. Increasing salinity, pH, and dissolved oxygen, and decreasing nitrate, nitrite and phosphate concentrations were observed along the North to South gradient. Transcriptionally active bacterial taxa were similar for the different sites, but expression of oyster-associated microbial genes involved in nutrient (nitrogen and phosphorus) cycling varied throughout the Bay, reflecting the local nutrient regimes and prevailing environmental conditions. Conclusions The observed shifts in microbial community composition and function inform how estuarine conditions affect host-associated microbiomes and their ecosystem services. As the effects of estuarine acidification are expected to increase due to the combined effects of eutrophication, coastal pollution, and climate change, it is important to determine relationships between host health, microbial community structure, and environmental conditions in benthic communities. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-020-00066-0.
Collapse
Affiliation(s)
- Rebecca J Stevick
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| | - Anton F Post
- Division of Research, Florida Atlantic University, Boca Raton, FL, USA
| | - Marta Gómez-Chiarri
- Department of Fisheries, Animal and Veterinary Sciences, University of Rhode Island, Kingston, RI, USA.
| |
Collapse
|
29
|
Protein Signatures to Trace Seafood Contamination and Processing. Foods 2020; 9:foods9121751. [PMID: 33256117 PMCID: PMC7761302 DOI: 10.3390/foods9121751] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
This review presents some applications of proteomics and selected spectroscopic methods to validate certain aspects of seafood traceability. After a general introduction to traceability and the initial applications of proteomics to authenticate traceability information, it addresses the application of proteomics to trace seafood exposure to some increasingly abundant emergent health hazards with the potential to indicate the geographic/environmental origin, such as microplastics, triclosan and human medicinal and recreational drugs. Thereafter, it shows the application of vibrational spectroscopy (Fourier-Transform Infrared Spectroscopy (FTIR) and Fourier-Transform Raman Spectroscopy (FT Raman)) and Low Field Nuclear Magnetic Resonance (LF-NMR) relaxometry to discriminate frozen fish from thawed fish and to estimate the time and temperature history of frozen fillets by monitoring protein modifications induced by processing and storage. The review concludes indicating near future trends in the application of these techniques to ensure seafood safety and traceability.
Collapse
|
30
|
Plachetzki DC, Pankey MS, MacManes MD, Lesser MP, Walker CW. The Genome of the Softshell Clam Mya arenaria and the Evolution of Apoptosis. Genome Biol Evol 2020; 12:1681-1693. [PMID: 32653903 PMCID: PMC7531772 DOI: 10.1093/gbe/evaa143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2020] [Indexed: 02/07/2023] Open
Abstract
Apoptosis is a fundamental feature of multicellular animals and is best understood in mammals, flies, and nematodes, with the invertebrate models being thought to represent a condition of ancestral simplicity. However, the existence of a leukemia-like cancer in the softshell clam Mya arenaria provides an opportunity to re-evaluate the evolution of the genetic machinery of apoptosis. Here, we report the whole-genome sequence for M. arenaria which we leverage with existing data to test evolutionary hypotheses on the origins of apoptosis in animals. We show that the ancestral bilaterian p53 locus, a master regulator of apoptosis, possessed a complex domain structure, in contrast to that of extant ecdysozoan p53s. Further, ecdysozoan taxa, but not chordates or lophotrochozoans like M. arenaria, show a widespread reduction in apoptosis gene copy number. Finally, phylogenetic exploration of apoptosis gene copy number reveals a striking linkage with p53 domain complexity across species. Our results challenge the current understanding of the evolution of apoptosis and highlight the ancestral complexity of the bilaterian apoptotic tool kit and its subsequent dismantlement during the ecdysozoan radiation.
Collapse
Affiliation(s)
- David C Plachetzki
- Molecular, Cellular and Biomedical Sciences, University of New Hampshire
| | - M Sabrina Pankey
- Molecular, Cellular and Biomedical Sciences, University of New Hampshire
| | - Matthew D MacManes
- Molecular, Cellular and Biomedical Sciences, University of New Hampshire
| | - Michael P Lesser
- Molecular, Cellular and Biomedical Sciences, University of New Hampshire
- School of Marine Science and Ocean Engineering, University of New Hampshire
| | - Charles W Walker
- Molecular, Cellular and Biomedical Sciences, University of New Hampshire
| |
Collapse
|
31
|
Vojvoda Zeljko T, Pavlek M, Meštrović N, Plohl M. Satellite DNA-like repeats are dispersed throughout the genome of the Pacific oyster Crassostrea gigas carried by Helentron non-autonomous mobile elements. Sci Rep 2020; 10:15107. [PMID: 32934255 PMCID: PMC7492417 DOI: 10.1038/s41598-020-71886-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/11/2020] [Indexed: 01/31/2023] Open
Abstract
Satellite DNAs (satDNAs) are long arrays of tandem repeats typically located in heterochromatin and span the centromeres of eukaryotic chromosomes. Despite the wealth of knowledge about satDNAs, little is known about a fraction of short, satDNA-like arrays dispersed throughout the genome. Our survey of the Pacific oyster Crassostrea gigas sequenced genome revealed genome assembly replete with satDNA-like tandem repeats. We focused on the most abundant arrays, grouped according to sequence similarity into 13 clusters, and explored their flanking sequences. Structural analysis showed that arrays of all 13 clusters represent central repeats of 11 non-autonomous elements named Cg_HINE, which are classified into the Helentron superfamily of DNA transposons. Each of the described elements is formed by a unique combination of flanking sequences and satDNA-like central repeats, coming from one, exceptionally two clusters in a consecutive order. While some of the detected Cg_HINE elements are related according to sequence similarities in flanking and repetitive modules, others evidently arose in independent events. In addition, some of the Cg_HINE's central repeats are related to the classical C. gigas satDNA, interconnecting mobile elements and satDNAs. Genome-wide distribution of Cg_HINE implies non-autonomous Helentrons as a dynamic system prone to efficiently propagate tandem repeats in the C. gigas genome.
Collapse
Affiliation(s)
- Tanja Vojvoda Zeljko
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10 000, Zagreb, Croatia
| | - Martina Pavlek
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10 000, Zagreb, Croatia
| | - Nevenka Meštrović
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10 000, Zagreb, Croatia
| | - Miroslav Plohl
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10 000, Zagreb, Croatia.
| |
Collapse
|
32
|
Cerullo AR, Lai TY, Allam B, Baer A, Barnes WJP, Barrientos Z, Deheyn DD, Fudge DS, Gould J, Harrington MJ, Holford M, Hung CS, Jain G, Mayer G, Medina M, Monge-Nájera J, Napolitano T, Espinosa EP, Schmidt S, Thompson EM, Braunschweig AB. Comparative Animal Mucomics: Inspiration for Functional Materials from Ubiquitous and Understudied Biopolymers. ACS Biomater Sci Eng 2020; 6:5377-5398. [DOI: 10.1021/acsbiomaterials.0c00713] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Antonio R. Cerullo
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
| | - Tsoi Ying Lai
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
| | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794-5000, United States
| | - Alexander Baer
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - W. Jon P. Barnes
- Centre for Cell Engineering, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K
| | - Zaidett Barrientos
- Laboratorio de Ecología Urbana, Universidad Estatal a Distancia, Mercedes de Montes de Oca, San José 474-2050, Costa Rica
| | - Dimitri D. Deheyn
- Marine Biology Research Division-0202, Scripps Institute of Oceanography, UCSD, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Douglas S. Fudge
- Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, California 92866, United States
| | - John Gould
- School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, New South Wales 2308, Australia
| | - Matthew J. Harrington
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Mandë Holford
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
- Department of Invertebrate Zoology, The American Museum of Natural History, New York, New York 10024, United States
- The PhD Program in Chemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- The PhD Program in Biology, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Chia-Suei Hung
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Gaurav Jain
- Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, California 92866, United States
| | - Georg Mayer
- Department of Zoology, Institute of Biology, University of Kassel, Heinrich-Plett-Strasse 40, 34132 Kassel, Germany
| | - Mónica Medina
- Department of Biology, Pennsylvania State University, 208 Mueller Lab, University Park, Pennsylvania 16802, United States
| | - Julian Monge-Nájera
- Laboratorio de Ecología Urbana, Universidad Estatal a Distancia, Mercedes de Montes de Oca, San José 474-2050, Costa Rica
| | - Tanya Napolitano
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
| | - Emmanuelle Pales Espinosa
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York 11794-5000, United States
| | - Stephan Schmidt
- Institute of Organic and Macromolecular Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Eric M. Thompson
- Sars Centre for Marine Molecular Biology, Thormøhlensgt. 55, 5020 Bergen, Norway
- Department of Biological Sciences, University of Bergen, N-5006 Bergen, Norway
| | - Adam B. Braunschweig
- The PhD Program in Biochemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- The Advanced Science Research Center, Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, New York 10031, United States
- Department of Chemistry and Biochemistry, Hunter College, 695 Park Avenue, New York, New York 10065, United States
- The PhD Program in Chemistry, Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| |
Collapse
|
33
|
Khan B, Ho KT, Burgess RM. Application of Biomarker Tools Using Bivalve Models Toward the Development of Adverse Outcome Pathways for Contaminants of Emerging Concern. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:1472-1484. [PMID: 32452040 PMCID: PMC7657996 DOI: 10.1002/etc.4757] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/10/2020] [Accepted: 05/18/2020] [Indexed: 05/24/2023]
Abstract
As contaminant exposures in aquatic ecosystems continue to increase, the need for streamlining research efforts in environmental toxicology using predictive frameworks also grows. One such framework is the adverse outcome pathway (AOP). An AOP framework organizes and utilizes toxicological information to connect measurable molecular endpoints to an adverse outcome of regulatory relevance via a series of events at different levels of biological organization. Molecular endpoints or biomarkers are essential to develop AOPs and are valuable early warning signs of the toxicity of pollutants, including contaminants of emerging concern. Ecological risk-assessment approaches using tools such as biomarkers and AOPs benefit from identification of molecular targets conserved across species. Bivalve models are useful in such approaches and integral to our understanding of ecological and human health risks associated with contaminant exposures. We discuss the value of using biomarker approaches in bivalve models to meet the demands of twenty-first-century toxicology. Environ Toxicol Chem 2020;39:1472-1484. © 2020 SETAC.
Collapse
Affiliation(s)
- Bushra Khan
- ORISE Research Participant at the US Environmental
Protection Agency, ORD-CEMM, Atlantic Coastal Environmental Sciences Division, 27
Tarzwell Drive, Narragansett, RI 02882, USA
| | - Kay T. Ho
- US Environmental Protection Agency, ORD-CEMM, Atlantic
Coastal Environmental Sciences Division, 27 Tarzwell Drive, Narragansett, RI 02882,
USA
| | - Robert M. Burgess
- US Environmental Protection Agency, ORD-CEMM, Atlantic
Coastal Environmental Sciences Division, 27 Tarzwell Drive, Narragansett, RI 02882,
USA
| |
Collapse
|
34
|
Rosani U, Shapiro M, Venier P, Allam B. A Needle in A Haystack: Tracing Bivalve-Associated Viruses in High-Throughput Transcriptomic Data. Viruses 2019; 11:v11030205. [PMID: 30832203 PMCID: PMC6466128 DOI: 10.3390/v11030205] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 02/08/2023] Open
Abstract
Bivalve mollusks thrive in environments rich in microorganisms, such as estuarine and coastal waters, and they tend to accumulate various particles, including viruses. However, the current knowledge on mollusk viruses is mainly centered on few pathogenic viruses, whereas a general view of bivalve-associated viromes is lacking. This study was designed to explore the viral abundance and diversity in bivalve mollusks using transcriptomic datasets. From analyzing RNA-seq data of 58 bivalve species, we have reconstructed 26 nearly complete and over 413 partial RNA virus genomes. Although 96.4% of the predicted viral proteins refer to new viruses, some sequences belong to viruses associated with bivalve species or other marine invertebrates. We considered short non-coding RNAs (sncRNA) and post-transcriptional modifications occurring specifically on viral RNAs as tools for virus host-assignment. We could not identify virus-derived small RNAs in sncRNA reads obtained from the oyster sample richest in viral reads. Single Nucleotide Polymorphism (SNP) analysis revealed 938 A-to-G substitutions occurring on the 26 identified RNA viruses, preferentially impacting the AA di-nucleotide motif. Under-representation analysis revealed that the AA motif is under-represented in these bivalve-associated viruses. These findings improve our understanding of bivalve viromes, and set the stage for targeted investigations on the specificity and dynamics of identified viruses.
Collapse
Affiliation(s)
- Umberto Rosani
- Department of Biology, University of Padua, 35121 Padua, Italy.
| | - Maxwell Shapiro
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794-5000, USA.
| | - Paola Venier
- Department of Biology, University of Padua, 35121 Padua, Italy.
| | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, USA.
| |
Collapse
|