1
|
Xu X, Liang X, Wei W, Ding X, Peng C, Wang X, Chen X, Yang L, Xu J. Effects of non-lethal Cry1F toxin exposure on the growth, immune response, and intestinal microbiota of silkworm (Bombyx mori). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115648. [PMID: 37922779 DOI: 10.1016/j.ecoenv.2023.115648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
Bt (Bacillus thuringiensis) maize is expected to be commercial cultivated widely in China. When Bt maize is planted near mulberry trees, it renders silkworms (Bombyx mori) vulnerable, as they belong to the same class as the Lepidoptera insects targeted by Bt maize. Cry1F has been found to be highly toxic to silkworms, particularly in their early larval stages. In this study, we aimed to assess the effects of non-lethal Cry1F exposure on the growth, immune response, and intestinal microbiota in silkworms. The results showed that feeding silkworms with mulberry leaves soaked in 100 μg/mL Cry1F for 96 h had an impact on larval body weight acquisition, leading to a decrease in cocoon and pupae weight. Cry1F exposure disrupted the intestinal integrity of silkworms by affecting the columnar cells of the midgut. The activity of detoxification enzymes (CarE, AChE, and GST) as well as antioxidant enzymes (SOD, CAT, and POD) were also affected by Cry1F. After 96 h Cry1F exposure, the evenness of the bacterial community was disrupted, resulting in alterations in the structure of the intestinal microbiota. Additionally, Cry1F exposure affected the relative expression levels of the peritrophic membrane (PM) protein and the corresponding immune pathways genes of silkworms. Most of the immune-related gene expressions were inhibited after exposure to Cry1F toxin but increased with prolonged treatment. This study demonstrates that non-lethal Cry1F exposure can affect the growth, immune response, and intestinal microbiota of silkworm.
Collapse
Affiliation(s)
- Xiaoli Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaowei Liang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Biological and Food Engineering School, Fuyang Normal University, Fuyang 236037, China
| | - Wei Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaohao Ding
- Biological and Food Engineering School, Fuyang Normal University, Fuyang 236037, China
| | - Cheng Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaofu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaoyun Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lei Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Junfeng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
2
|
Zeng T, Jaffar S, Xu Y, Qi Y. The Intestinal Immune Defense System in Insects. Int J Mol Sci 2022; 23:ijms232315132. [PMID: 36499457 PMCID: PMC9740067 DOI: 10.3390/ijms232315132] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Over a long period of evolution, insects have developed unique intestinal defenses against invasion by foreign microorganisms, including physical defenses and immune responses. The physical defenses of the insect gut consist mainly of the peritrophic matrix (PM) and mucus layer, which are the first barriers to pathogens. Gut microbes also prevent the colonization of pathogens. Importantly, the immune-deficiency (Imd) pathways produce antimicrobial peptides to eliminate pathogens; mechanisms related to reactive oxygen species are another important pathway for insect intestinal immunity. The janus kinase/STAT signaling pathway is involved in intestinal immunity by producing bactericidal substances and regulating tissue repair. Melanization can produce many bactericidal active substances into the intestine; meanwhile, there are multiple responses in the intestine to fight against viral and parasitic infections. Furthermore, intestinal stem cells (ISCs) are also indispensable in intestinal immunity. Only the coordinated combination of the intestinal immune defense system and intestinal tissue renewal can effectively defend against pathogenic microorganisms.
Collapse
|
3
|
Wang Q, Sun Z, Ma S, Liu X, Xia H, Chen K. Molecular mechanism and potential application of bacterial infection in the silkworm, Bombyx mori. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 131:104381. [PMID: 35245606 DOI: 10.1016/j.dci.2022.104381] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/14/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
As a representative species of Lepidoptera, Bombyx mori has been widely studied and applied. However, bacterial infection has always been an important pathogen threatening the growth of silkworms. Bombyx mori can resist various pathogenic bacteria through their own physical barrier and innate immune system. However, compared with other insects, such as Drosophila melanogaster, research on the antibacterial mechanism of silkworms is still in its infancy. This review systematically summarized the routes of bacterial infection in silkworms, the antibacterial mechanism of silkworms after ingestion or wounding infection, and the intestinal bacteria and infection of silkworms. Finally, we will discuss silkworms as a model animal for studying bacterial infectious diseases and screening antibacterial drugs.
Collapse
Affiliation(s)
- Qiang Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Zhonghe Sun
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Shangshang Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Xiaoyong Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Hengchuan Xia
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China.
| |
Collapse
|