1
|
Zuloaga R, Ahumada-Langer L, Aedo JE, Molina A, Valdés JA. Early metabolic and transcriptomic regulation in rainbow trout (Oncorhynchus mykiss) liver by 11-deoxycorticosterone through two corticosteroid receptors pathways. Comp Biochem Physiol A Mol Integr Physiol 2024; 298:111746. [PMID: 39304115 DOI: 10.1016/j.cbpa.2024.111746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/27/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Cortisol hormone is considered the main corticosteroid in fish stress, acting through glucocorticoid (GR) or mineralocorticoid (MR) receptor. The 11-deoxycorticosterone (DOC) corticosteroid is also secreted during stress and could complement the cortisol effects, but this still not fully understood. Hence, we evaluated the early transcriptomic response of rainbow trout (Oncorhynchus mykiss) liver by DOC through GR or MR. Thirty juvenile trout were pretreated with an inhibitor of endogenous cortisol synthesis (metyrapone) by intraperitoneal injection in presence or absence of GR (mifepristone) and MR (eplerenone) pharmacological antagonists for one hour. Then, fish were treated with a physiological DOC dose or vehicle (DMSO-PBS1X as control) for three hours (n = 5 per group). We measured several metabolic parameters in plasma, together with the liver glycogen content. Additionally, we constructed cDNA libraries from liver of each group, sequenced by HiseqX Illumina technology and then analyzed by RNA-seq. Plasma pyruvate and cholesterol levels decreased in DOC-administered fish and only reversed by eplerenone. Meanwhile, DOC increased liver glycogen contents depending on both corticosteroid receptor pathways. RNA-seq analysis revealed differential expressed transcripts induced by DOC through GR (448) and MR (1901). The enriched biological processes to both were mainly related to stress response, protein metabolism, innate immune response and carbohydrates metabolism. Finally, we selected sixteen genes from enriched biological process for qPCR validation, presenting a high Pearson correlation (0.8734 average). These results describe novel physiological effects of DOC related to early metabolic and transcriptomic responses in fish liver and differentially modulated by MR and GR.
Collapse
Affiliation(s)
- Rodrigo Zuloaga
- Programa de Doctorado en Biotecnología, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; Universidad Andres Bello, Facultad de Ciencias de la Vida, Departamento de Ciencias Biológicas, 8370146 Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), 4030000 Concepción, Chile
| | - Luciano Ahumada-Langer
- Universidad Andres Bello, Facultad de Ciencias de la Vida, Departamento de Ciencias Biológicas, 8370146 Santiago, Chile
| | - Jorge Eduardo Aedo
- Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca 3466706, Chile
| | - Alfredo Molina
- Universidad Andres Bello, Facultad de Ciencias de la Vida, Departamento de Ciencias Biológicas, 8370146 Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), 4030000 Concepción, Chile
| | - Juan Antonio Valdés
- Universidad Andres Bello, Facultad de Ciencias de la Vida, Departamento de Ciencias Biológicas, 8370146 Santiago, Chile; Interdisciplinary Center for Aquaculture Research (INCAR), 4030000 Concepción, Chile.
| |
Collapse
|
2
|
Wang S, Cai M, Wang Y, Zhong L, Hu Y, Fu G. Dietary Clostridium butyricum metabolites mitigated the disturbances in growth, immune response and gut health status of Ctenopharyngodon idella subjected to high cottonseed and rapeseed meal diet. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109934. [PMID: 39357627 DOI: 10.1016/j.fsi.2024.109934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/20/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
Cottonseed meal and rapeseed meal exhibit a potential for fishmeal substitute in grass carp feed, while their excessive use contribute to growth decline and weakening immunity of aquatic animals. Clostridium butyricum metabolites (CBM) was recognized as a functional additive due to its antioxidant properties and maintenance of intestinal microbiota balance. CBM was added to a high of cottonseed and rapeseed meal diet to determine its effects on growth, immunity, and intestinal microbiota alterations of grass carp (Ctenopharyngodon idella) over 56 days. Eight hundred grass carp (mean weight, around 50 g) were randomized to five treatments and fed with the basic diet (CON), CBM0 diet (28 % cottonseed and 27 % rapeseed meal), and CBM diets (CBM0.5, CBM1, and CBM2, namely CBM0 diet supplemented with 500, 1000, and 2000 mg kg-1 CBM). The results indicated that compared to CBM0, The ingestion of 1000 mg kg-1 CBM diet by grass carp significantly promoted growth as measured by intestinal lipase activity, villus height, and muscle thickness. Moreover, accompanied by a decrease in intestine MDA content, and enhance antioxidant capacity by activating Keap1/Nrf2 signaling pathway to increase enzyme activities (SOD, CAT and T-AOC) and corresponding gene expression (mnsod, cat, gsto and gpx1) in the intestine of grass crap fed CBM1 diet. The dietary CBM1 diet increased serum levels of C3 and IgM, increased ACP activity and expression of the corresponding anti-inflammatory factors (tgf-β1 and il-15), and suppressed the expression of pro-inflammatory factors (tnf-α and il-12β), resulting in enhanced immunity. The dietary CBM1 diet up-regulates gene expression of tight junction proteins (zo-1, occludin, occludin7a and occludin-c), coupled with the decreases in DAO and D-lactate contents, implying that the decreased mucosal permeability could be observed in the gut. The dietary CBM1 diet largely altered the intestinal microbial community, especially reducing the relative abundance of intestinal pathogenic bacteria (Streptococcus and Actinomyces). And it significantly increased the content of short-chain fatty acids (acetic acid, butyric acid, isobutyric acid, propionic acid and isovaleric acid). Taken above, dietary CBM supplementation improved growth in grass carp and attenuated the intestinal oxidative stress, inflammation and microflora dysbacteriosis caused by high proportions of cottonseed and rapeseed meal diets.
Collapse
Affiliation(s)
- Shao Wang
- Fisheries College, Hunan Agricultural University, Changsha, Hunan, 410128, China; Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Minglang Cai
- Fisheries College, Hunan Agricultural University, Changsha, Hunan, 410128, China; Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Yan Wang
- Fisheries College, Hunan Agricultural University, Changsha, Hunan, 410128, China; Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Lei Zhong
- Fisheries College, Hunan Agricultural University, Changsha, Hunan, 410128, China; Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Yi Hu
- Fisheries College, Hunan Agricultural University, Changsha, Hunan, 410128, China; Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| | - Guihong Fu
- Fisheries College, Hunan Agricultural University, Changsha, Hunan, 410128, China; Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, Hunan, 410128, China.
| |
Collapse
|
3
|
Zhao SC, Wen B, Gao JZ, Chen ZZ. Proteomic analysis revealed gender-related differences in the skin mucus proteome of discus fish (Symphysodon haraldi) during the parental and non-parental care periods. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101314. [PMID: 39208613 DOI: 10.1016/j.cbd.2024.101314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/17/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
The discus fish, Symphysodon spp., a South American cichlid, has a unique parental care behavior where fry bite on parental skin mucus after hatching. In this study, we used LC-MS/MS technique to compare the skin mucus proteome composition of male or female discus fish during parental and non-parental care periods. By multivariate statistical analysis, we found clear separations between different periods and between different sexes of mucus proteome. Compared with non-parental female fish, parental female fish had 283 up-regulated and 235 down-regulated expressed proteins. Compared with non-parental male fish, parental male fish had 169 up-regulated and 120 down-regulated expressed proteins. The differentially expressed proteins for male fish were enriched in sulfur relay system, mucin type O-glycan biosynthesis and antigen processing and presentation pathways, while those for female fish were enriched in sulfur relay system, steroid biosynthesis and complement and coagulation cascades pathways. During the parental care, both male and female discus showed an enhanced lipid metabolism, producing more phospholipids and cholesterol. The difference is that male discus had increased tricarboxylic acid cycle producing more energy during the parental care, while females produced more nucleotides especially guanylic acid. Our study could provide new insights into the understanding of the unique mucus supply behavior of discus fish based on proteomic change.
Collapse
Affiliation(s)
- Shi-Chen Zhao
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Bin Wen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
| | - Jian-Zhong Gao
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Zai-Zhong Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
4
|
Qian P, Liu Y, Zhang H, Zhang P, Xie Y, Wu C. Effects of Five Dietary Carbohydrate Sources on Growth, Glucose Metabolism, Antioxidant Capacity and Immunity of Largemouth Bass ( Micropterus salmoides). Animals (Basel) 2024; 14:1492. [PMID: 38791708 PMCID: PMC11117276 DOI: 10.3390/ani14101492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
This study investigated the effects of glucose (GLU), tapioca starch (TS), gelatinized tapioca starch (GTS), potato starch (PS) and gelatinized potato starch (GPS) on growth and physiological responses in juvenile largemouth bass Micropterus salmoides. After 8 weeks, fish fed with starch diets had better weight gain and growth rates. Counts of red blood cells and monocytes were increased in the PS and GPS groups, compared to GLU group. Contents of serum triglyceride and total cholesterol were markedly elevated in the TS, PS and GPS groups. There were lower levels of serum glucose, insulin and cholecystokinin, and higher agouti-related peptide contents in the PS group compared to GLU group. PS and GPS could enhance glycolysis and TCA cycle by increasing their enzyme activities and transcriptional levels. Additionally, starch sources markedly heightened mRNA levels of key genes involved in the respiratory electron transport chain. Additionally, elevated mRNA levels of key antioxidant genes were shown in the TS and GTS groups. Moreover, TS and PS could promote immunity by upregulating transcriptional levels of the complement system, lysozyme and hepcidin. Taken together, starch exhibited better growth via increasing glycolysis and TCA cycle compared with GLU, and PS could improve antioxidant and immune capacities in largemouth bass.
Collapse
Affiliation(s)
| | - Yan Liu
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Huzhou University, 759 East 2nd Road, Huzhou 313000, China; (P.Q.); (H.Z.); (P.Z.); (Y.X.)
| | | | | | | | - Chenglong Wu
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Huzhou University, 759 East 2nd Road, Huzhou 313000, China; (P.Q.); (H.Z.); (P.Z.); (Y.X.)
| |
Collapse
|
5
|
Sukkarun P, Kitiyodom S, Kamble MT, Bunnoy A, Boonanuntanasarn S, Yata T, Boonrungsiman S, Thompson KD, Rodkhum C, Pirarat N. Systemic and mucosal immune responses in red tilapia (Oreochromis sp.) following immersion vaccination with a chitosan polymer-based nanovaccine against Aeromonas veronii. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109383. [PMID: 38246266 DOI: 10.1016/j.fsi.2024.109383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
A mucoadhesive chitosan polymer-based nanoplatform has been increasingly recognized as an effective mucosal vaccine delivery system for fish. The present study aimed to investigate the effectiveness of immersion vaccination with a chitosan polymer-based nanovaccine to elicit an immune response in serum and mucus of red tilapia and evaluate its protective efficacy after immersion challenge with a heterogenous strain of Aeromonas veronii UDRT09. Six hundred red tilapia (22 ± 1.8 g) were randomly allocated into four experimental groups: control, empty-polymeric nanoparticle (PC), formalin-killed vaccine (FKV), and chitosan polymer-based nanovaccine (CS-NV) in triplicate. The specific IgM antibody levels and their bactericidal activity were assessed in serum and mucus for 28 days after immersion vaccination and followed by immersion challenge with A. veronii. The immersion vaccine was found to be safe for red tilapia, with no mortalities occurring during the vaccination procedure. The specific IgM antibody levels and bactericidal activity against A. veronii in both serum and mucus were significantly higher in red tilapia vaccinated with CS-NV compared to the FKV and control groups at all time points. Furthermore, the serum lysozyme activity, ACH50, and total Ig levels demonstrated a significant elevation in the groups vaccinated with CS-NV compared to the FKV and control groups. Importantly, the Relative Percentage Survival (RPS) value of the CS-NV group (71 %) was significantly higher than that of the FKV (15.12 %) and PC (2.33 %) groups, respectively. This indicates that the chitosan polymer-based nanovaccine platform is an effective delivery system for the immersion vaccination of tilapia.
Collapse
Affiliation(s)
- Pimwarang Sukkarun
- Center of Excellence in Wildlife, Exotic and Aquatic Animal Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand; Faculty of Veterinary Science, Rajamangala University of Technology Srivijaya, Nakhonsithammarat, 80240, Thailand
| | - Sirikorn Kitiyodom
- Center of Excellence in Wildlife, Exotic and Aquatic Animal Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Manoj Tukaram Kamble
- Center of Excellence in Wildlife, Exotic and Aquatic Animal Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Anurak Bunnoy
- Center of Excellence in Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand
| | - Surintorn Boonanuntanasarn
- School of Animal Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Teerapong Yata
- Biochemistry Unit, Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Suwimon Boonrungsiman
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Kim D Thompson
- Moredun Research Institute, Pentlands Science Park, Penicuik, EH26 0PZ, UK
| | - Channarong Rodkhum
- Center of Excellence in Fish Infectious Diseases (CE FID), Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Nopadon Pirarat
- Center of Excellence in Wildlife, Exotic and Aquatic Animal Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
6
|
Esteban MÁ. A review of soluble factors and receptors involved in fish skin immunity: The tip of the iceberg. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109311. [PMID: 38128682 DOI: 10.1016/j.fsi.2023.109311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
The immune system of fish possesses soluble factors, receptors, pathways and cells very similar to those of the other vertebrates' immune system. Throughout evolutionary history, the exocrine secretions of organisms have accumulated a large reservoir of soluble factors that serve to protect organisms from microbial pathogens that could disrupt mucosal barrier homeostasis. In parallel, a diverse set of recognition molecules have been discovered that alert the organism to the presence of pathogens. The known functions of both the soluble factors and receptors mentioned above encompass critical aspects of host defense, such as pathogen binding and neutralization, opsonization, or modulation of inflammation if present. The molecules and receptors cooperate and are able to initiate the most appropriate immune response in an attempt to eliminate pathogens before host infection can begin. Furthermore, these recognition molecules, working in coordination with soluble defence factors, collaboratively erect a robust and perfectly coordinated defence system with complementary specificity, activity and tissue distribution. This intricate network constitutes an immensely effective defence mechanism for fish. In this context, the present review focuses on some of the main soluble factors and recognition molecules studied in the last decade in the skin mucosa of teleost fish. However, knowledge of these molecules is still very limited in all teleosts. Therefore, further studies are suggested throughout the review that would help to better understand the functions in which the proteins studied are involved.
Collapse
Affiliation(s)
- María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
7
|
Chen J, Yang W, Liu H, Niu J, Liu Y, Cheng Q. Protective effect of Macleaya cordata isoquinoline alkaloids on lipopolysaccharide-induced liver injury in broilers. Anim Biosci 2024; 37:131-141. [PMID: 37946426 PMCID: PMC10766460 DOI: 10.5713/ab.23.0267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/29/2023] [Accepted: 09/18/2023] [Indexed: 11/12/2023] Open
Abstract
OBJECTIVE This experiment aimed to explore the protective action of dietary supplementation with isoquinoline alkaloids (IA) from Macleaya cordata on lipopolysaccharide (LPS)-induced liver injury in broilers. METHODS Total 216 healthy broilers were selected in a 21-d trial and assigned randomly to the following 3 treatments: control (CON) group, LPS group, and LPS+IA group. The CON and LPS groups were provided with a basal diet, whereas the LPS+IA group received the basal diet supplemented with 0.6 mg/kg Macleaya cordata IA. Broilers in LPS and LPS+IA groups were intraperitoneally injected with LPS (1 mg/kg body weight) at 17, 19, and 21 days of age, while those in CON group were injected with equivalent amount of saline solution. RESULTS Results showed LPS injection caused systemic and liver inflammation in broilers, inhibited immune function, and ultimately lead to liver injury. By contrast, supplementation of IA ameliorated LPS-induced adverse change in serum parameters, boosted immunity in LPS+IA group. Furthermore, IA suppressed the elevation of hepatic inflammatory cytokines and caspases levels induced by LPS, as well as the expressions of genes related to the tolllike receptor 4 (TLR4)/myeloid differentiation primary response 88 (MyD88)/nuclear factorkappa B (NF-κB) pathway. CONCLUSION Dietary inclusion of 0.6 mg/kg Macleaya cordata IA could enhance immune function of body and inhibit liver damage via inactivating TLR4/MyD88/NF-κB signaling pathway in broilers.
Collapse
Affiliation(s)
- Jiaxin Chen
- Department of Animal Science, Qingdao Agricultural University, Qingdao 266109,
China
| | - Weiren Yang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018,
China
| | - Hua Liu
- College of Animal Science and Technology, Hunan Agriculture University, Changsha 410128,
China
| | - Jiaxing Niu
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018,
China
| | - Yang Liu
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Department of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271018,
China
| | - Qun Cheng
- Department of Animal Science, Qingdao Agricultural University, Qingdao 266109,
China
| |
Collapse
|
8
|
Hissen KL, He W, Wu G, Criscitiello MF. Immunonutrition: facilitating mucosal immune response in teleost intestine with amino acids through oxidant-antioxidant balance. Front Immunol 2023; 14:1241615. [PMID: 37841275 PMCID: PMC10570457 DOI: 10.3389/fimmu.2023.1241615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/24/2023] [Indexed: 10/17/2023] Open
Abstract
Comparative animal models generate fundamental scientific knowledge of immune responses. However, these studies typically are conducted in mammals because of their biochemical and physiological similarity to humans. Presently, there has been an interest in using teleost fish models to study intestinal immunology, particularly intestinal mucosa immune response. Instead of targeting the pathogen itself, a preferred approach for managing fish health is through nutrient supplementation, as it is noninvasive and less labor intensive than vaccine administrations while still modulating immune properties. Amino acids (AAs) regulate metabolic processes, oxidant-antioxidant balance, and physiological requirements to improve immune response. Thus, nutritionists can develop sustainable aquafeeds through AA supplementation to promote specific immune responses, including the intestinal mucosa immune system. We propose the use of dietary supplementation with functional AAs to improve immune response by discussing teleost fish immunology within the intestine and explore how oxidative burst is used as an immune defense mechanism. We evaluate immune components and immune responses in the intestine that use oxidant-antioxidant balance through potential selection of AAs and their metabolites to improve mucosal immune capacity and gut integrity. AAs are effective modulators of teleost gut immunity through oxidant-antioxidant balance. To incorporate nutrition as an immunoregulatory means in teleost, we must obtain more tools including genomic, proteomic, nutrition, immunology, and macrobiotic and metabonomic analyses, so that future studies can provide a more holistic understanding of the mucosal immune system in fish.
Collapse
Affiliation(s)
- Karina L. Hissen
- Comparative Immunogenetics Laboratory Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
| | - Wenliang He
- Amino Acid Laboratory, Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - Guoyao Wu
- Amino Acid Laboratory, Department of Animal Science, Texas A&M University, College Station, TX, United States
| | - Michael F. Criscitiello
- Comparative Immunogenetics Laboratory Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, United States
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, Bryan, TX, United States
| |
Collapse
|
9
|
Fitzpatrick LLJ, Ligabue-Braun R, Nekaris KAI. Slowly Making Sense: A Review of the Two-Step Venom System within Slow ( Nycticebus spp.) and Pygmy Lorises ( Xanthonycticebus spp.). Toxins (Basel) 2023; 15:514. [PMID: 37755940 PMCID: PMC10536643 DOI: 10.3390/toxins15090514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/28/2023] Open
Abstract
Since the early 2000s, studies of the evolution of venom within animals have rapidly expanded, offering new revelations on the origins and development of venom within various species. The venomous mammals represent excellent opportunities to study venom evolution due to the varying functional usages, the unusual distribution of venom across unrelated mammals and the diverse variety of delivery systems. A group of mammals that excellently represents a combination of these traits are the slow (Nycticebus spp.) and pygmy lorises (Xanthonycticebus spp.) of south-east Asia, which possess the only confirmed two-step venom system. These taxa also present one of the most intriguing mixes of toxic symptoms (cytotoxicity and immunotoxicity) and functional usages (intraspecific competition and ectoparasitic defence) seen in extant animals. We still lack many pieces of the puzzle in understanding how this venom system works, why it evolved what is involved in the venom system and what triggers the toxic components to work. Here, we review available data building upon a decade of research on this topic, focusing especially on why and how this venom system may have evolved. We discuss that research now suggests that venom in slow lorises has a sophisticated set of multiple uses in both intraspecific competition and the potential to disrupt the immune system of targets; we suggest that an exudate diet reveals several toxic plants consumed by slow and pygmy lorises that could be sequestered into their venom and which may help heal venomous bite wounds; we provide the most up-to-date visual model of the brachial gland exudate secretion protein (BGEsp); and we discuss research on a complement component 1r (C1R) protein in saliva that may solve the mystery of what activates the toxicity of slow and pygmy loris venom. We conclude that the slow and pygmy lorises possess amongst the most complex venom system in extant animals, and while we have still a lot more to understand about their venom system, we are close to a breakthrough, particularly with current technological advances.
Collapse
Affiliation(s)
- Leah Lucy Joscelyne Fitzpatrick
- Nocturnal Primate Research Group, Department of Social Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
- Centre for Functional Genomics, Department of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Rodrigo Ligabue-Braun
- Department of Pharmacosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Avenida Sarmento Leite 245, Porto Alegre 90050-170, Brazil
| | - K Anne-Isola Nekaris
- Nocturnal Primate Research Group, Department of Social Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
- Centre for Functional Genomics, Department of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| |
Collapse
|