1
|
Zhang Y, Ning D, Nie J, Hou X, Li W, Gan Z, Lu Y. Evaluation of protective immune response of live-attenuated candidate vaccines ΔcpxA and ΔcpxR against Vibrio alginolyticus in pearl gentian grouper. FISH & SHELLFISH IMMUNOLOGY 2025; 159:110183. [PMID: 39929285 DOI: 10.1016/j.fsi.2025.110183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/07/2025] [Accepted: 02/07/2025] [Indexed: 02/21/2025]
Abstract
The grouper farming industry was severely influenced by vibriosis. In this study, we developed two live-attenuated vaccine (LAV) candidates against Vibrio alginolyticus infection in pearl gentian groupers using cpxA or cpxR mutant strains of V. alginolyticus (ΔcpxA and ΔcpxR). Groupers were administrated with ΔcpxA and ΔcpxR at the dose of 1.0 × 104 CFU/fish (safety dose) to evaluate the immune protect effect of LAV. The increasing median lethal dose (LD50) of ΔcpxA and ΔcpxR indicated the decreased virulence of bacteria to groupers. Our results suggested that two LAVs achieved over 70 % relative percent survival (RPS) after groupers were challenged by V. alginolyticus on 14 days post-immunization. The immune protection was mainly attributed to the up-regulation of immune-related gene expression (IL-6, IL-12, TNF-α, TLR2, TLR5S, CD4, MHC-Iα, IFN-γ2 and NF-κB), the higher activities of catalase (CAT), lysozyme (LZM), superoxide dismutase (SOD), and the increasing production of total protein (TP) in serum. The research indicated that the vaccination of fish with ΔcpxA and ΔcpxR can induce the innate and acquired immunity and survival rate of groupers after bacterial infection, so they can be considered as the promising candidates of vaccine for grouper industry.
Collapse
Affiliation(s)
- Yilin Zhang
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Deyu Ning
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Jiachun Nie
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xiaoyong Hou
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Wenze Li
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhen Gan
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Yishan Lu
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China.
| |
Collapse
|
2
|
Cao JF, Yang GJ, Zhang YA, Chen J. Contribution of interleukins in the regulation of teleost fish immunity: A review from the perspective of regulating macrophages. FISH & SHELLFISH IMMUNOLOGY 2025; 158:110173. [PMID: 39909123 DOI: 10.1016/j.fsi.2025.110173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/20/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
Interleukins (ILs) are potent secreted regulators of a wide range of cell types and cellular activities, particularly in the immune system. They are able to participate in intercellular communication in homeostasis and disease, thereby exerting immune functions. Macrophages serve as the innate immune cells of vertebrates and play a pivotal role in defending against and eliminating external pathogens. In mammals, the immune response mounted by macrophages is intricately linked to ILs. Given the fact that teleost fish have evolved an innate immune system that closely resembles those of mammals, particularly in terms of the functionality of macrophages, raises the intriguing possibility that the regulatory function of ILs in macrophage-mediated immunity might be evolutionarily conserved across both mammal and teleost fish lineages. Consequently, from the perspective of interleukin regulation of macrophages, this review outlines the relationship between ILs and macrophages in teleost fish, and elucidates the regulatory role of ILs of immune cell function in teleost fish, thereby contributing to our understanding of the key role of these cytokines in the prevention and control of aquaculture diseases.
Collapse
Affiliation(s)
- Jia-Feng Cao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315832, China; Key Laboratory of Aquacultural Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Guan-Jun Yang
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315832, China; Key Laboratory of Aquacultural Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315832, China
| | - Yong-An Zhang
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jiong Chen
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315832, China; Key Laboratory of Aquacultural Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315832, China.
| |
Collapse
|
3
|
Wu X, Xing J, Tang X, Sheng X, Chi H, Zhan W. Interaction between interleukin-12 (IL-12) and its receptor (IL-12Rβ2) mediates CD4 + T cell subsets activation in flounder (Paralichthys olivaceus). Int J Biol Macromol 2025; 293:139302. [PMID: 39743087 DOI: 10.1016/j.ijbiomac.2024.139302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025]
Abstract
Interleukin-12 (IL-12) regulates the differentiation of CD4+ T lymphocytes into Th1 cells by binding to its receptor, thereby promoting cellular immunity. This study characterized IL-12 and its receptor β2 (IL-12Rβ2) in flounder (Paralichthys olivaceus) and investigated their interaction, effects on T cell proliferation and differentiation, and the adjuvant effects of IL-12. The recombinant IL-12 was successfully expressed, and the IL-12Rβ2 antibody was confirmed to specifically recognize IL-12Rβ2. IL-12 bound to IL-12Rβ2 at the cellular level. IL-12 stimulation increased leukocyte proliferation and the proportion of CD4+/IL-12Rβ2+ cells. Moreover, blocking IL-12Rβ2 with antibody reduced Th1 markers (STAT4, T-bet, IFN-γ) and increased Th2 markers (JAK3, STAT6, GATA3). Immunization with rOmpV+IL-12 significantly upregulated CD4+/IFN-γ+ cells on day seven, peaked the sIgM+ B lymphocyte response in the fourth week, and enhanced survival after Edwardsiella tarda challenge. In conclusion, IL-12 signaling effectively facilitates the differentiation of Th1 cells and negatively impacts the function of Th2 cells in flounder. This study provides new insights into the immune regulation of CD4+ T cells in teleosts and lays the foundation for understanding the cellular immune mechanisms of vaccines in aquaculture.
Collapse
Affiliation(s)
- Xiaoyan Wu
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China.
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China
| |
Collapse
|
4
|
Ene CD, Nicolae I, Căpușă C. Abnormalities of IL-12 Family Cytokine Pathways in Autosomal Dominant Polycystic Kidney Disease Progression. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1971. [PMID: 39768851 PMCID: PMC11677652 DOI: 10.3390/medicina60121971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
Background and Objectives: Autosomal Dominant Polycystic Kidney Disease (ADPKD) is the most frequent genetic renal disease with a complex physiopathology. More and more studies sustain that inflammation plays a crucial role in ADPKD pathogenesis and progression. We evaluated IL-12 involvement in ADPKD pathophysiology by assessing the serum levels of its monomers and heterodimers. Materials and Methods: A prospective case-control study was developed and included 66 ADPKD subjects and a control group of 40 healthy subjects. The diagnosis of ADPKD was based on familial history clinical and imagistic exams. The study included subjects with eGFR > 60 mL/min/1.73 mp, with no history of hematuria or other renal disorders, with stable blood pressure in the last 6 months. We tested serum levels of monomers IL-12 p40 and IL-12 p35 and heterodimers IL-12 p70, IL-23, IL 35, assessed by ELISA method. Results: IL-12 family programming was abnormal in ADPKD patients. IL-12p70, IL-12p40, and IL-23 secretion increased, while IL-12p35 and IL-35 secretion decreased compared to control. IL-12p70, IL-12p40, and IL-23 had a progressive increase correlated with immune response amplification, a decrease of eGFR, an increase in TKV, and in albuminuria. On the other hand, IL-35 and IL-12p35 were correlated negatively with CRP and albuminuria and positively with eGFR in advanced ADPKD. Conclusions: The present study investigated IL-12 cytokine family members' involvement in ADPKD pathogenesis, enriching our understanding of inflammation in the most common renal genetic disorder.
Collapse
Affiliation(s)
- Corina-Daniela Ene
- Department of Internal Medicine and Nephrology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Nephrology Department, Dr Carol Davila Clinical Hospital of Nephrology, 010731 Bucharest, Romania
| | - Ilinca Nicolae
- Research Department, Victor Babes Clinical Hospital of Infectious Diseases, 030303 Bucharest, Romania;
| | - Cristina Căpușă
- Department of Internal Medicine and Nephrology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Nephrology Department, Dr Carol Davila Clinical Hospital of Nephrology, 010731 Bucharest, Romania
| |
Collapse
|
5
|
Fu X, Li W, Liu C, Luo X, Lin Q, Niu Y, Liang H, Ma B, Li N. A naturaly attenuated largemouth bass ranavirus strain provided protection for Micropterus salmoides by immersion immunization. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109871. [PMID: 39218417 DOI: 10.1016/j.fsi.2024.109871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Largemouth bass ranavirus (LMBV) causes disease outbreaks and high mortality at all stages of largemouth bass farming. Therefore, live vaccine development is critical for largemouth bass prevention against LMBV by immersion immunization. Herein, an attenuated LMBV strain with good immunogenicity, designated as LMBV-2007136, was screened from the natural LMBV strains bank through challenge assay and immersion immunization experiment. After determing the safe concentration range of LMBV-2007136, the minimum immunizing dose of immersion immunization was verified. When largemouth bass were vaccinated by immersion at the lowest concentration of 102.0 TCID50/mL, all of fish were survival post virulent LMBV challenge, and the relative percent survival (RPS) was 100 %. And the immune gene expression levels of IL-10, IL-12, IFN-γ, and IgM in the spleen and kidney post-vaccination were significantly up-regulated compared to the control group, but TNF-α expression showed no significant changes. The safety and efficacy of LMBV-2007136 at passages P8, P13, and P18 were futher assessed, and no death of largemouth bass was observed within 21 days post-immunization and RPS of three vaccination groups was 100 %, suggesting that the safety and efficacy of the attenuated strain at different passages was stable. Furthermore, in the virulence reversion test, the attenuated strain was propagated through 5 times in largemouth bass by intraperitoneal injection and no abnormality and mortality were observed, further proving the attenuated vaccine candidate LMBV-2007136 was safe. These results proved that LMBV-2007136 could be a promising candidate for a live vaccine to protect largemouth bass from LMBV disease.
Collapse
Affiliation(s)
- Xiaozhe Fu
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune and Sustainable Aquaculture, Guangzhou, 510380, China
| | - Wenxian Li
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune and Sustainable Aquaculture, Guangzhou, 510380, China
| | - Cong Liu
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune and Sustainable Aquaculture, Guangzhou, 510380, China
| | - Xia Luo
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune and Sustainable Aquaculture, Guangzhou, 510380, China
| | - Qiang Lin
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune and Sustainable Aquaculture, Guangzhou, 510380, China
| | - Yinjie Niu
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune and Sustainable Aquaculture, Guangzhou, 510380, China
| | - Hongru Liang
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune and Sustainable Aquaculture, Guangzhou, 510380, China
| | - Baofu Ma
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune and Sustainable Aquaculture, Guangzhou, 510380, China
| | - Ningqiu Li
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Aquatic Animal Immune and Sustainable Aquaculture, Guangzhou, 510380, China.
| |
Collapse
|
6
|
Jackson JA, Stewart A, Cable J. Lunar-linked biological rhythms in the immune system of freshwater three-spined stickleback. DISCOVERY IMMUNOLOGY 2024; 3:kyae007. [PMID: 38863794 PMCID: PMC11165434 DOI: 10.1093/discim/kyae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/07/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
Immune responses are widely accepted to be under circadian regulation via a molecular clock, with many practical consequences, but much less is known of how other biological rhythms could affect the immune system. In this study, we search for lunar rhythms (circalunar, circasemilunar, and circatidal cycles) in the immune expression of the recently marine-derived freshwater fish, the low-plate morph of the three-spined stickleback. We employed time series of immune expression (mRNA) measurements for 14 immune-associated genes, representing a variety of immunological pathways. Times series measurements were taken on fish populations in the wild, in seminatural outdoor mesocosms, and in the laboratory, according to sampling regimens originally designed to study circannual variation but with the additional potential to provide information about lunar variation. Our evidence best supported the existence of a very small endogenous tidal rhythm. This is consistent with previous suggestions of the existence of a primordial tidal endogenous clock, some elements of which may be conserved in animals evolving outside the marine environment.
Collapse
Affiliation(s)
- Joseph A Jackson
- School of Science, Engineering and Environment, University of Salford, Salford, UK
| | - Alexander Stewart
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Joanne Cable
- School of Biosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
7
|
Lu CL, Wangkahart E, Huang JW, Huang YX, Huang Y, Cai J, Jian JC, Wang B. Immune response and protective efficacy of Streptococcus agalactiae vaccine coated with chitosan oligosaccharide for different immunization strategy in nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2024; 145:109353. [PMID: 38184180 DOI: 10.1016/j.fsi.2023.109353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/24/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
In the past decade, the outbreak of Streptococcus agalactiae has caused significant economic losses in tilapia farming. Vaccine immunization methods and strategies have gradually evolved from single-mode to multi-mode overall prevention and control strategies. In this study, an inactivated vaccine of S. agalactiae with a chitosan oligosaccharide (COS) adjuvant was constructed using different administration methods: intraperitoneal injection (Ip), immersion combined with intraperitoneal injection (Im + Ip), immersion combined with oral administration (Im + Or), and oral administration (Or). Safety analysis revealed no adverse effects on tilapia, and the vaccine significantly promoted fish growth and development when administered through Im + Or or Or immunization. Following vaccination, innate immunity parameters including SOD, ACP and CAT activities were all significantly enhanced. Additionally, specific serum IgM antibodies reached their highest level at the 6th week post vaccination. Skin and intestinal mucus IgT antibodies reached peaked at the 6th and 7th week post vaccination, respectively. The relative peak expression values for IL-8, IL-12, MHC-I, MHC-II, IgM, IgT, CD4, CD8, TNFα, IFNγ from Im + Ip group were significantly higher than those in Ip group, Im + Or group and Or group in most cases (p < 0.05). Importantly, the relative protection survival of Im + Ip group was the highest (78.6%), followed by the Ip group (71.4%), the Or group (64.3%) and the Im + Or group (57.1%). In summary, this study encourages further research on multi-channel immunization strategies of other kinds of vaccines in other aquatic economic animals to improve their disease resistance.
Collapse
Affiliation(s)
- Chun-Lan Lu
- Guangdong Ocean University, College of Fishery, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, PR China
| | - Eakapol Wangkahart
- Laboratory of Fish Immunology and Nutrigenomics, Applied Animal and Aquatic Sciences Research Unit, Division of Fisheries, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Mahasarakham, 44150, Thailand
| | - Jun-Wei Huang
- Guangdong Ocean University, College of Fishery, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, PR China
| | - Yong-Xiong Huang
- Guangdong Ocean University, College of Fishery, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, PR China
| | - Yu Huang
- Guangdong Ocean University, College of Fishery, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, PR China
| | - Jia Cai
- Guangdong Ocean University, College of Fishery, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, PR China
| | - Ji-Chang Jian
- Guangdong Ocean University, College of Fishery, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, PR China
| | - Bei Wang
- Guangdong Ocean University, College of Fishery, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Zhanjiang, PR China.
| |
Collapse
|
8
|
Khaled AA, Shabaan AM, Hammad SM, Hafez EE, Saleh AA. Exploring the impact of nano-Se and nano-clay feed supplements on interleukin genes, immunity and growth rate in European Sea Bass (Dicentrarchus labrax). Sci Rep 2024; 14:2631. [PMID: 38302608 PMCID: PMC10834503 DOI: 10.1038/s41598-024-53274-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/30/2024] [Indexed: 02/03/2024] Open
Abstract
This study aimed to investigate the effects of adding Nano-Selenium (NSe) and Nano-clay (NC) as feed supplements on European Sea Bass (Dicentrarchus labrax). Two separate experiments were conducted, one with NC and the other with NSe. Each experiment consisted of four sub-groups with varying concentrations of NC or NSe. The expression levels of five immune-related genes (TNF-α, TNF-β, IL-2, IL-6 and IL-12) were measured using Real-time Quantitative PCR (Rt-PCR) Assay. The results showed an increase in the expression of interleukins (IL-2, IL-6 and IL-12) and pro-inflammatory cytokines (TNF-α and TNF-β) after exposure to NC and NSe. TNF-α gene expression was significantly higher with both 1 mg and 10 mg concentrations of NC and NSe. TNF-β gene expression was highest with the 5 mg concentration of NC. The concentrations of 1 mg and 10 mg for NC, and 1 mg, 5 mg, and 10 mg for NSe, led to the highest (p < 0.05) levels of IL-2 expression compared to the control. Similar trends were observed for IL-6 and IL-12 gene expression. Understanding the impact of these concentrations on gene expression, growth rate, biochemical indices, and antioxidant status can provide valuable insights into the potential applications of NC and NSe supplements on European Sea Bass.
Collapse
Affiliation(s)
- Asmaa A Khaled
- Animal and Fish Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria City, 21531, Egypt
| | - Amany M Shabaan
- Chemistry Department, Biochemistry Division, Faculty of Science, El-Fayoum University, El-Fayoum, Egypt
| | - Saad M Hammad
- Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El Arab, Alexandria, 21934, Egypt
| | - Elsayed E Hafez
- Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El Arab, Alexandria, 21934, Egypt
| | - Ahmed A Saleh
- Animal and Fish Production Department, Faculty of Agriculture (Alshatby), Alexandria University, Alexandria City, 11865, Egypt.
| |
Collapse
|
9
|
Aebisher D, Woźnicki P, Dynarowicz K, Kawczyk-Krupka A, Cieślar G, Bartusik-Aebisher D. Photodynamic Therapy and Immunological View in Gastrointestinal Tumors. Cancers (Basel) 2023; 16:66. [PMID: 38201494 PMCID: PMC10777986 DOI: 10.3390/cancers16010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Gastrointestinal cancers are a specific group of oncological diseases in which the location and nature of growth are of key importance for clinical symptoms and prognosis. At the same time, as research shows, they pose a serious threat to a patient's life, especially at an advanced stage of development. The type of therapy used depends on the anatomical location of the cancer, its type, and the degree of progression. One of the modern forms of therapy used to treat gastrointestinal cancers is PDT, which has been approved for the treatment of esophageal cancer in the United States. Despite the increasingly rapid clinical use of this treatment method, the exact immunological mechanisms it induces in cancer cells has not yet been fully elucidated. This article presents a review of the current understanding of the mode of action of photodynamic therapy on cells of various gastrointestinal cancers with an emphasis on colorectal cancer. The types of cell death induced by PDT include apoptosis, necrosis, and pyroptosis. Anticancer effects are also a result of the destruction of tumor vasculature and activation of the immune system. Many reports exist that concern the mechanism of apoptosis induction, of which the mitochondrial pathway is most often emphasized. Photodynamic therapy may also have a beneficial effect on such aspects of cancer as the ability to develop metastases or contribute to reducing resistance to known pharmacological agents.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland
| | - Paweł Woźnicki
- Students English Division Science Club, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the University of Rzeszów, 35-310 Rzeszów, Poland;
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Batorego 15 Street, 41-902 Bytom, Poland; (A.K.-K.); (G.C.)
| | - Grzegorz Cieślar
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia, Batorego 15 Street, 41-902 Bytom, Poland; (A.K.-K.); (G.C.)
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the University of Rzeszów, 35-959 Rzeszów, Poland;
| |
Collapse
|
10
|
Fu X, Luo M, Lin Q, Liang H, Niu Y, Luo X, Ma B, Li N. An Avirulent Largemouth Bass Birnavirus Vaccine Candidate Protects Largemouth Bass against Birnavirus Infection. Vaccines (Basel) 2023; 11:1740. [PMID: 38140144 PMCID: PMC10747726 DOI: 10.3390/vaccines11121740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/26/2023] [Accepted: 11/19/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Largemouth bass birnavirus (LBBV) disease outbreaks in largemouth bass fingerlings lead to high mortality in China. Therefore, the development of immersion immunization strategies is paramount. METHODS An avirulent LBBV strain was screened using a fish challenge assay. The proliferation dynamics of the avirulent strain were determined in vitro and in vivo. The efficacy of the avirulent vaccine was evaluated using immune gene expression, viral load, and a virus challenge, and the safety was also assessed using a reversion to virulence test. RESULTS An avirulent virus strain, designated as largemouth bass birnavirus Guangdong Sanshui (LBBV-GDSS-20180701), was selected from five fish birnavirus isolates. The proliferation peak titer was 109.01 TCID50/mL at 24 hpi in CPB cells and the peak viral load was 2.5 × 104 copies/mg at 4 dpi in the head kidneys and spleens of largemouth bass. The largemouth bass that were immersed within an avirulent vaccine or injected with an inactivated vaccine were protected from the virulent LBBV challenge with a relative percent survival (RPS) of 75% or 42.9%, respectively. The expression levels of IL-12, MHCI, MHCII, CD8, CD4, and IgM in the avirulent group were significantly upregulated at a partial time point compared to the inactivated vaccine group. Moreover, the viral load in the avirulent vaccine group was significantly lower than those in the inactivated vaccine group and control group using real-time PCR. CONCLUSIONS LBBV-GDSS-20180701 is a potential live vaccine candidate against LBBV disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ningqiu Li
- Pearl River Fishery Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immune Technology and Green Breeding, Guangzhou 510380, China; (X.F.); (M.L.); (Q.L.); (H.L.); (Y.N.); (X.L.); (B.M.)
| |
Collapse
|
11
|
Yoon T, Ha JW, Ko E, Song JJ, Park YB, Ahn SS, Lee SW. Vasculitis Activity-Predicting Ability of IL-12 Family Cytokines in Patients with Microscopic Polyangiitis and Granulomatosis with Polyangiitis. Yonsei Med J 2023; 64:604-611. [PMID: 37727919 PMCID: PMC10522880 DOI: 10.3349/ymj.2023.0226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 09/21/2023] Open
Abstract
PURPOSE The present study investigated and compared the antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) activity-predicting ability of the serum concentrations of the four interleukin (IL)-12 family cytokines including IL-23, IL-27, IL-35, and IL-39 in patients with microscopic polyangiitis (MPA) and granulomatosis with polyangiitis (GPA). MATERIALS AND METHODS The present study included 70 patients with MPA and GPA. Clinical and laboratory data, particularly Birmingham Vasculitis Activity Score (BVAS), at the time of blood collection were obtained. The serum concentrations of IL-23, IL-27, IL-35, and IL-37 were measured using sera stored at -80℃. Patients were divided into two groups: the upper half of BVAS (BVAS ≥12) and the lower half of BVAS (BVAS <12). RESULTS The serum concentrations of IL-23 and IL-27 reflected AAV activity. Patients with the upper half of BVAS exhibited significantly higher serum concentrations of IL-23 and IL-27 than those without. Patients with the serum concentrations of IL-23 ≥132.1 pg/mL or IL-27 ≥684.7 pg/mL exhibited higher frequency and risk for the upper half of BVAS than those without [relative risks (RR) 5.143 and RR 4.091, respectively]. The serum concentrations of IL-27 were associated with age ≥65 years and proteinase 3-ANCA (or C-ANCA) negativity, whereas, those of IL-23 were associated with MPA. However, the serum concentrations of IL-35 and IL-39 were not useful in predicting AAV activity in this study. CONCLUSION The present study is the first to demonstrate that among the various members of IL-12 family cytokines, the serum concentrations of IL-23 and IL-27 possess AAV activity-predicting ability.
Collapse
Affiliation(s)
- Taejun Yoon
- Department of Medical Science, BK2 Plus Project, Yonsei University College of Medicine, Seoul, Korea
| | - Jang Woo Ha
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Eunhee Ko
- Department of Medical Science, BK2 Plus Project, Yonsei University College of Medicine, Seoul, Korea
| | - Jason Jungsik Song
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea
| | - Yong-Beom Park
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea
| | - Sung Soo Ahn
- Division of Rheumatology, Department of Internal Medicine, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, Korea.
| | - Sang-Won Lee
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
12
|
Gao H, Li K, Ai K, Geng M, Cao Y, Wang D, Yang J, Wei X. Interleukin-12 induces IFN-γ secretion and STAT signaling implying its potential regulation of Th1 cell response in Nile tilapia. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108974. [PMID: 37482205 DOI: 10.1016/j.fsi.2023.108974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
As a pleiotropic cytokine consisting of IL-12p35 and IL-12p40, Interleukin-12 (IL-12) features in inflammation regulation and anti-bacterial immunity. While IL-12 homologs have been identified in non-mammalian species, the precise mechanisms by which IL-12 contributes to early adaptive immune responses in vertebrates remain incompletely understood. Herein, an evolutionary conserved Oreochromis niloticus IL-12 (defined as OnIL-12) was identified by synteny characterization, structural comparisons and phylogenetic pattern of IL-12p35b and IL-12p40a. IL-12p35b and IL-12p40a exhibited widespread expression in lymphoid-related tissues of tilapia, while their mRNA expression in head-kidney demonstrated a significant increase after Edwardsiella piscicida infection. Compared with other lymphocytes, recombinant OnIL-12 (rOnIL-12) displayed stronger affinity binding to T cells. Although stimulation of lymphocytes with the p35b or p40a subunit resulted in a significant induction of IFN-γ expression, rOnIL-12 showed stronger potential to promote IFN-γ expression than these subunits. rOnIL-12 not only elevated the mRNA expression level Th1 cell-associated transcription factor T-bet in lymphocytes, but also increased the proportion of CD4-1+IFN-γ+ lymphocytes. Moreover, the mRNA and phosphorylation levels of STAT1, STAT3, STAT4 and STAT5 were enhanced by rOnIL-12. These findings will offer previous evidence for further exploration into the regulatory mechanisms of Th1 cellular immunity in early vertebrates.
Collapse
Affiliation(s)
- Haiyou Gao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Kang Li
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Kete Ai
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ming Geng
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yi Cao
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ding Wang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|