1
|
Tang S, Zhang M, Cai J, Wen Q, Mo J, Long M, Lu Y, Gan Z. Identification and functional characterization of a long-type peptidoglycan recognition protein, PGRP-L in amphibian Xenopus laevis. Gene 2024; 928:148770. [PMID: 39032703 DOI: 10.1016/j.gene.2024.148770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Peptidoglycan recognition proteins (PGRPs) are a family of multifunctional proteins playing vital roles in PGN metabolism and antibacterial defense, and their functions have been well-characterized in mammals, bony fishes, and insects. However, the information about the functions of amphibian long-type PGRP is rather limited. Here, we identified and cloned a long-type PGRP gene (named Xl-PGRP-L) from African clawed frog, Xenopus laevis. Xl-PGRP-L gene was detected in all orangs/tissues examined, and was rapidly induced in intestine, liver, and lung following the stimulation of PGN. Sequence analysis showed that Xl-PGRP-L possesses four Zn2+-binding residues (His358, Tyr395, His470, and Cys478) required for amidase activity of catalytic PGRPs, and assays for amidase activity revealed that recombinant Xl-PGRP-L cloud degrade PGN in a Zn2+-dependent manner, indicating that Xl-PGRP-L is belonging to catalytic PGRPs. In addition, Xl-PGRP-L have antibacterial activity against Gram-negative bacteria Edwardsiella tarda and Gram-positive bacteria Streptococcus agalactiae. The present investigation represents the first characterization regarding the biological activities of amphibian long-type PGRPs, thus contributes to a better understanding of the functions of tetrapod PGRPs and the molecular mechanisms of amphibian antibacterial defense.
Collapse
Affiliation(s)
- Shaoshuai Tang
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
| | - Meiling Zhang
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
| | - Jiaqiao Cai
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China
| | - Qingqing Wen
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
| | - Jingyi Mo
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
| | - Meng Long
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
| | - Yishan Lu
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China.
| | - Zhen Gan
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China.
| |
Collapse
|
2
|
Córdoba L, López D, Mejía M, Guzmán F, Beltrán D, Carbonell B, Medina L. Antibacterial Activity of AXOTL-13, a Novel Peptide Identified from the Transcriptome of the Salamander Ambystoma mexicanum. Pharmaceutics 2024; 16:1445. [PMID: 39598568 PMCID: PMC11597150 DOI: 10.3390/pharmaceutics16111445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Antimicrobial peptides are essential molecules in the innate immunity of various organisms and possess a broad spectrum of antimicrobial, antitumor, and immunomodulatory activities. Due to their multifunctionality, they are seen as an alternative for controlling bacterial infections. Although conventional antibiotics have improved health worldwide, their indiscriminate use has led to the emergence of resistant microorganisms. To discover new molecules with antimicrobial activity that could overcome the limitations of traditional antibiotics, this study aimed to identify antimicrobial peptides in Ambystoma mexicanum. Methods: In this study, hypothetical proteins encoded in the Ambystoma mexicanum transcriptome were predicted. These proteins were aligned with peptides reported in the Antimicrobial Peptide Database (APD3) using the Fasta36 program. After identifying peptide sequences with potential antibacterial activity, their expression was confirmed through conventional polymerase chain reaction (PCR) and then chemically synthesized. The antibacterial activity of the synthesized peptides was evaluated against Staphylococcus aureus ATCC 25923 and Escherichia coli ATCC 25922. Results: A new antimicrobial peptide named AXOTL-13 was identified. AXOTL-13 is an amphipathic cationic alpha-helical peptide with the ability to inhibit the growth of Escherichia coli without causing hemolysis in red blood cells, with its action likely directed at the membrane, as suggested by morphological changes observed through scanning electron microscopy. Conclusions: This research is pioneering in evaluating the activity of antimicrobial peptides present in Ambystoma mexicanum and in specifically identifying one of these peptides. The findings will serve as a reference for future research in this field.
Collapse
Affiliation(s)
- Laura Córdoba
- Grupo Genética, Regeneración y Cáncer, Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín 050010, Colombia (D.L.); (B.C.)
| | - Daniela López
- Grupo Genética, Regeneración y Cáncer, Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín 050010, Colombia (D.L.); (B.C.)
| | - Mariana Mejía
- Grupo Genética, Regeneración y Cáncer, Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín 050010, Colombia (D.L.); (B.C.)
| | - Fanny Guzmán
- Núcleo de Biotecnología Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile; (F.G.); (D.B.)
| | - Dina Beltrán
- Núcleo de Biotecnología Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile; (F.G.); (D.B.)
| | - Belfran Carbonell
- Grupo Genética, Regeneración y Cáncer, Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín 050010, Colombia (D.L.); (B.C.)
- Departamento de Estudios Básicos Integrados, Facultad de Odontología, Universidad de Antioquia, Medellín 050010, Colombia
| | - Laura Medina
- Grupo Genética, Regeneración y Cáncer, Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín 050010, Colombia (D.L.); (B.C.)
| |
Collapse
|
3
|
Vinutha AS, Rajasekaran R. Unlocking the Potential of Antimicrobial Maximin Peptides From Bombina maxima Against Staphylococcus aureus: Deciphering Their Mode of Action Through a Mimetic Bacterial Membrane Environment. Pept Sci (Hoboken) 2024. [DOI: 10.1002/pep2.24384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/24/2024] [Indexed: 01/03/2025]
Abstract
ABSTRACTAntimicrobial peptides (AMPs) offer a promising strategy to address bacterial resistance by targeting bacterial membranes, bypassing the limitations of receptor site‐based approaches. This study focuses on combating the notorious multidrug resistance of Staphylococcus aureus using AMPs, particularly maximin peptides derived from Bombina maxima. Previous research suggested that maximin peptides could disrupt bacterial membranes among anuran AMPs. This prompted us to screen these maximin peptides to identify those with strong membrane‐targeting abilities against S. aureus. Initially, stability and activity assessments on all 89 peptides involved analyzing hydrogen bond dilution, peptide permeation, and hemolytic activity predictions, leading to the rationalization of four promising candidates: Max_5, Max_13, Max_21, and Max_45. When subjected to membrane simulations, the monomeric state of these peptides displayed partial helix‐coil transitions with significant structural interactions that disrupted the membrane, particularly for Max_5 and Max_13. Additionally, the multimeric states of these two peptides were examined through membrane simulations to elucidate their mechanisms of action. Analyses focusing on membrane thickness, lipid distortions, and curvature revealed that both Max_5 and Max_13 exerted strong membrane‐rupturing effects. These peptides seemed to operate by forming pores, facilitating lipid diffusion, creating cavities, and affecting membrane thickness, which allowed water penetration due to increased membrane fluidity, indicating the barrel‐stave pore model. Despite structural differences between Max_5 and Max_13, both peptides demonstrated similar outcomes, emphasizing their potential for future therapeutic applications. This study highlights the efficacy of computational methods in accelerating the identification of potent antimicrobial peptides, providing a pathway for developing novel antimicrobial therapies.
Collapse
Affiliation(s)
- A. S. Vinutha
- Quantitative Biology Lab, Department of Integrative Biology, School of Bio Sciences and Technology Vellore Institute of Technology (VIT, Deemed to be University) Vellore Tamil Nadu India
| | - R. Rajasekaran
- Quantitative Biology Lab, Department of Integrative Biology, School of Bio Sciences and Technology Vellore Institute of Technology (VIT, Deemed to be University) Vellore Tamil Nadu India
| |
Collapse
|
4
|
Canè C, Tammaro L, Duilio A, Di Somma A. Investigation of the Mechanism of Action of AMPs from Amphibians to Identify Bacterial Protein Targets for Therapeutic Applications. Antibiotics (Basel) 2024; 13:1076. [PMID: 39596769 PMCID: PMC11591259 DOI: 10.3390/antibiotics13111076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Antimicrobial peptides (AMPs) from amphibians represent a promising source of novel antibacterial agents due to their potent and broad-spectrum antimicrobial activity, which positions them as valid alternatives to conventional antibiotics. This review provides a comprehensive analysis of the mechanisms through which amphibian-derived AMPs exert their effects against bacterial pathogens. We focus on the identification of bacterial protein targets implicated in the action of these peptides and on biological processes altered by the effect of AMPs. By examining recent advances in countering multidrug-resistant bacteria through multi-omics approaches, we elucidate how AMPs interact with bacterial membranes, enter bacterial cells, and target a specific protein. We discuss the implications of these interactions in developing targeted therapies and overcoming antibiotic resistance (ABR). This review aims to integrate the current knowledge on AMPs' mechanisms, identify gaps in our understanding, and propose future directions for research to harness amphibian AMPs in clinical applications.
Collapse
Affiliation(s)
- Carolina Canè
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy; (C.C.); (L.T.)
| | - Lidia Tammaro
- CEINGE Biotecnologie Avanzate Franco Salvatore, 80145 Naples, Italy; (C.C.); (L.T.)
| | - Angela Duilio
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cinthia 4, 80126 Napoli, Italy;
- National Institute of Biostructures and Biosystems (INBB), Via dei Carpegna 19, 00165 Roma, Italy
| | - Angela Di Somma
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cinthia 4, 80126 Napoli, Italy;
| |
Collapse
|
5
|
Rollins-Smith LA. The future of amphibian immunology: Opportunities and challenges. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 160:105237. [PMID: 39103004 DOI: 10.1016/j.dci.2024.105237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/19/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Historically, amphibians have been essential to our understanding of vertebrate biology and animal development. Because development from egg to tadpole to adult frog can be directly observed, amphibians contributed greatly to our understanding of not only vertebrate animal development but also the development of the immune system. The South African clawed frog (Xenopus laevis) has been key to many of these findings. For example, using Xenopus as a model, the comparative immunology community learned about the contribution of hematopoietic stem cells to development of the immune system and about the diversity of antibodies, B cells, T cells and antigen presenting cells. Amphibians offer many advantages as unique potential model systems to address questions about immune skin interactions, host responses to mycobacteria, the diverse functions of interferons, and immune and mucosal interactions. However, there are also many challenges to advance the research including the lack of specific reagents and well annotated genomes of diverse species. While much is known, many important questions remain. The aim of this short commentary is to look to the future of comparative immunology of amphibians as a group. By identifying some important questions or "information-deficit" areas of research, I hope to pique the interest of younger developing scientists and persuade funding agencies to continue to support comparative immunology studies including those of amphibians.
Collapse
Affiliation(s)
- Louise A Rollins-Smith
- Departments of Pathology, Microbiology and Immunology and of Pediatrics, Vanderbilt University School of Medicine and Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
6
|
Le Sage EH, Reinert LK, Ohmer MEB, LaBumbard BC, Altman KA, Brannelly LA, Latella I, McDonnell NB, Saenz V, Walsman JC, Wilber MQ, Woodhams DC, Voyles J, Richards-Zawacki CL, Rollins-Smith LA. Diverse Relationships between Batrachochytrium Infections and Antimicrobial Peptide Defenses Across Leopard Frog Populations. Integr Comp Biol 2024; 64:921-931. [PMID: 39090981 DOI: 10.1093/icb/icae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/23/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024] Open
Abstract
Antimicrobial peptides (AMPs) play a fundamental role in the innate defense against microbial pathogens, as well as other immune and non-immune functions. Their role in amphibian skin defense against the pathogenic fungus Batrachochytrium dendrobatidis (Bd) is exemplified by experiments in which depletion of host's stored AMPs increases mortality from infection. Yet, the question remains whether there are generalizable patterns of negative or positive correlations between stored AMP defenses and the probability of infection or infection intensity across populations and species. This study aims to expand on prior field studies of AMP quantities and compositions by correlating stored defenses with an estimated risk of Bd exposure (prevalence and mean infection intensity in each survey) in five locations across the United States and a total of three species. In all locations, known AMPs correlated with the ability of recovered secretions to inhibit Bd in vitro. We found that stored AMP defenses were generally unrelated to Bd infection except in one location where the relative intensity of known AMPs was lower in secretions from infected frogs. In all other locations, known AMP relative intensities were higher in infected frogs. Stored peptide quantity was either positively or negatively correlated with Bd exposure risk. Thus, future experiments coupled with organismal modeling can elucidate whether Bd infection affects secretion/synthesis and will provide insight into how to interpret amphibian ecoimmunology studies of AMPs. We also demonstrate that future AMP isolating and sequencing studies can focus efforts by correlating mass spectrometry peaks to inhibitory capacity using linear decomposition modeling.
Collapse
Affiliation(s)
- Emily H Le Sage
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Laura K Reinert
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Michel E B Ohmer
- Department of Biology, University of Mississippi, Oxford, MS 38677, USA
| | | | - Karie A Altman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Laura A Brannelly
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Faculty of Science, Melbourne Veterinary School, The University of Melbourne, Werribee, Victoria 3030, Australia
| | - Ian Latella
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | - Nina B McDonnell
- Department of Biology, University of Massachusetts, Boston, MA 02125, USA
| | - Veronica Saenz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Jason C Walsman
- Earth Research Institute, University of California, Santa Barbara, CA 93106, USA
| | - Mark Q Wilber
- School of Natural Resources, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA
| | - Douglas C Woodhams
- Department of Biology, University of Massachusetts, Boston, MA 02125, USA
| | - Jamie Voyles
- Department of Biology, University of Nevada, Reno, NV 89557, USA
| | | | - Louise A Rollins-Smith
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
7
|
Samgina TY, Mazur DM, Lebedev AT. Assessing the Efficacy of Protease Inactivation for the Preservation of Bioactive Amphibian Skin Peptides. Int J Mol Sci 2024; 25:8759. [PMID: 39201446 PMCID: PMC11354720 DOI: 10.3390/ijms25168759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/03/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
The skin of amphibians is a rich source of peptides with a wide range of biological activities. They are stored in secretory granules in an inactive form. Upon stimulation, they are secreted together with proteases into the skin. Once activated, they rapidly exert their biological effects, including fighting microorganisms and predators, while their excess is immediately destroyed by the released proteases. To keep bioactive peptides in their initial form, it is necessary to inhibit these enzymes. Several inhibitors for this purpose have previously been mentioned; however, there has not been any reliable comparison of their efficiency so far. Here, we studied the efficiency of methanol and hydrochloric and formic acids, as well as phenylmethylsulfonyl fluoride, in the inhibition of nine frog peptides with the known sequence, belonging to five families in the secretion of Pelophylax esculentus. The results demonstrated that methanol had the highest inhibitory efficiency, while phenylmethylsulfonyl fluoride was the least efficient, probably due to its instability in aqueous media. Possible cleavages between certain amino acid residues in the sequence were established for each of the inhibitors. These results may be helpful for future studies on the nature of proteases and on prediction of the possible cleavage sites in novel peptides.
Collapse
Affiliation(s)
- Tatiana Yu. Samgina
- Department of Materials Science, MSU-BIT University, Shenzhen 517182, China; (T.Y.S.); (D.M.M.)
- Department of Organic Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Dmitrii M. Mazur
- Department of Materials Science, MSU-BIT University, Shenzhen 517182, China; (T.Y.S.); (D.M.M.)
- Department of Organic Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Albert T. Lebedev
- Department of Materials Science, MSU-BIT University, Shenzhen 517182, China; (T.Y.S.); (D.M.M.)
- Department of Organic Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
8
|
Hauser KA, Garvey CN, Crow RS, Hossainey MRH, Howard DT, Ranganathan N, Gentry LK, Yaparla A, Kalia N, Zelle M, Jones EJ, Duttargi AN, Rollins-Smith LA, Muletz-Wolz CR, Grayfer L. Amphibian mast cells serve as barriers to chytrid fungus infections. eLife 2024; 12:RP92168. [PMID: 39082933 PMCID: PMC11290838 DOI: 10.7554/elife.92168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024] Open
Abstract
Global amphibian declines are compounded by deadly disease outbreaks caused by the chytrid fungus, Batrachochytrium dendrobatidis (Bd). Much has been learned about the roles of amphibian skin-produced antimicrobial components and microbiomes in controlling Bd, yet almost nothing is known about the roles of skin-resident immune cells in anti-Bd defenses. Mammalian mast cells reside within and serve as key immune sentinels in barrier tissues like skin. Accordingly, we investigated the roles of Xenopus laevis frog mast cells during Bd infections. Our findings indicate that enrichment of X. laevis skin mast cells confers anti-Bd protection and ameliorates the inflammation-associated skin damage caused by Bd infection. This includes a significant reduction in infiltration of Bd-infected skin by neutrophils, promoting mucin content within cutaneous mucus glands, and preventing Bd-mediated changes to skin microbiomes. Mammalian mast cells are known for their production of the pleiotropic interleukin-4 (IL4) cytokine and our findings suggest that the X. laevis IL4 plays a key role in manifesting the effects seen following cutaneous mast cell enrichment. Together, this work underscores the importance of amphibian skin-resident immune cells in anti-Bd defenses and illuminates a novel avenue for investigating amphibian host-chytrid pathogen interactions.
Collapse
Affiliation(s)
- Kelsey A Hauser
- Department of Biological Sciences, The George Washington UniversityWashingtonUnited States
| | - Christina N Garvey
- Department of Biological Sciences, The George Washington UniversityWashingtonUnited States
| | - Ryley S Crow
- Department of Biological Sciences, The George Washington UniversityWashingtonUnited States
| | - Muhammad RH Hossainey
- Department of Biological Sciences, The George Washington UniversityWashingtonUnited States
| | - Dustin T Howard
- Department of Biological Sciences, The George Washington UniversityWashingtonUnited States
| | - Netra Ranganathan
- Department of Biological Sciences, The George Washington UniversityWashingtonUnited States
| | - Lindsey K Gentry
- Center for Conservation Genomics, Smithsonian National Zoo & Conservation Biology InstituteWashingtonUnited States
| | - Amulya Yaparla
- Department of Biological Sciences, The George Washington UniversityWashingtonUnited States
| | - Namarta Kalia
- Department of Biological Sciences, The George Washington UniversityWashingtonUnited States
| | - Mira Zelle
- Department of Biological Sciences, The George Washington UniversityWashingtonUnited States
| | - Elizabeth J Jones
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown UniversityWashingtonUnited States
| | - Anju N Duttargi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown UniversityWashingtonUnited States
| | - Louise A Rollins-Smith
- Departments of Pathology, Microbiology and Immunology, and of Pediatrics, Vanderbilt University School of MedicineNashvilleUnited States
- Department of Biological Sciences, Vanderbilt UniversityNashvilleUnited States
| | - Carly R Muletz-Wolz
- Center for Conservation Genomics, Smithsonian National Zoo & Conservation Biology InstituteWashingtonUnited States
| | - Leon Grayfer
- Department of Biological Sciences, The George Washington UniversityWashingtonUnited States
| |
Collapse
|
9
|
Cancelarich NL, Arrulo M, Gugliotti ST, Barbosa EA, Moreira DC, Basso NG, Pérez LO, Teixeira C, Gomes P, de la Torre BG, Albericio F, Eaton P, Leite JRSA, Marani MM. First Bioprospecting Study of Skin Host-Defense Peptides in Odontophrynus americanus. JOURNAL OF NATURAL PRODUCTS 2024; 87:1714-1724. [PMID: 38900961 DOI: 10.1021/acs.jnatprod.4c00184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The adaptation of amphibians to diverse environments is closely related to the characteristics of their skin. The complex glandular system of frog skin plays a pivotal role in enabling these animals to thrive in both aquatic and terrestrial habitats and consists of crucial functions such as respiration and water balance as well as serving as a defensive barrier due to the secretion of bioactive compounds. We herein report the first investigation on the skin secretion of Odontophrynus americanus, as a potential source of bioactive peptides and also as an indicator of its evolutionary adaptations to changing environments. Americanin-1 was isolated and identified as a neutral peptide exhibiting moderate antibacterial activity against E. coli. Its amphipathic sequence including 19 amino acids and showing a propensity for α-helix structure is discussed. Comparisons of the histomorphology of the skin of O. americanus with other previously documented species within the same genus revealed distinctive features in the Patagonian specimen, differing from conspecifics from other Argentine provinces. The presence of the Eberth-Katschenko layer, a prevalence of iridophores, and the existence of glycoconjugates in its serous glands suggest that the integument is adapted to retain skin moisture. This adaptation is consistent with the prevailing aridity of its native habitat.
Collapse
Affiliation(s)
- Natalia L Cancelarich
- Instituto Patagónico para el Estudio de Ecosistemas Continentales (IPEEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bvd. Brown 2915, Puerto Madryn, Argentina U9120ACD
| | - Miriam Arrulo
- School of Medicine and Population Health, The University of Sheffield, Beech Hill Road, Sheffield S10 2RX, United Kingdom
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | | | - Eder A Barbosa
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Faculdade de Medicina, Universidade de Brasília, UnB, Brasília, 70910-900, Brazil
- Laboratorio de Síntese e Análise de Biomoléculas, LSAB, Instituto de Química-UnB, Brasília 70910-900, Brazil
| | - Daniel C Moreira
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Faculdade de Medicina, Universidade de Brasília, UnB, Brasília, 70910-900, Brazil
| | - Néstor G Basso
- Instituto de Diversidad y Evolución Austral (IDEAus), CONICET, Bvd. Brown 2915, Puerto Madryn, Argentina U9120ACD
| | - Luis Orlando Pérez
- Instituto Patagónico de Ciencias Sociales y Humanas (IPCSH), CONICET, Bvd. Brown 2915, Puerto Madryn, Argentina U9120ACD
| | - Cátia Teixeira
- Laboratório Associado para a Química Verde-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
- Gyros Protein Technologies, Inc., Tucson, Arizona 85714, United States
| | - Paula Gomes
- Laboratório Associado para a Química Verde-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Beatriz G de la Torre
- Kwazulu-Natal Research Innovation and Sequencing Platform (KRISP), College of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Fernando Albericio
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4001, South Africa
- Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Department of Organic Chemistry, University of Barcelona, 08028 Barcelona, Spain
| | - Peter Eaton
- Bridge, School of Chemistry, University of Lincoln, Lincoln LN6 7EL, United Kingdom
| | - José R S A Leite
- Núcleo de Pesquisa em Morfologia e Imunologia Aplicada, NuPMIA, Faculdade de Medicina, Universidade de Brasília, UnB, Brasília, 70910-900, Brazil
| | - Mariela M Marani
- Instituto Patagónico para el Estudio de Ecosistemas Continentales (IPEEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bvd. Brown 2915, Puerto Madryn, Argentina U9120ACD
| |
Collapse
|
10
|
Lombardo GP, Miller A, Aragona M, Messina E, Fumia A, Kuciel M, Alesci A, Pergolizzi S, Lauriano ER. Immunohistochemical Characterization of Langerhans Cells in the Skin of Three Amphibian Species. BIOLOGY 2024; 13:210. [PMID: 38666822 PMCID: PMC11048468 DOI: 10.3390/biology13040210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024]
Abstract
The amphibian taxon includes three orders that present different morphological characteristics: Anura, Caudata, and Apoda. Their skin has a crucial role: it acts as an immune organ constituting a physical, chemical, immunological, and microbiological barrier to pathogen insult and conducts essential physiological processes. Amphibians have developed specialized features to protect the vulnerable skin barrier, including a glandular network beneath the skin surface that can produce antimicrobial and toxic substances, thus contributing to the defense against pathogens and predators. This study aims to characterize Langerhans cells in the skin of Lithobates catesbeianus (order: Anura; Shaw, 1802), Amphiuma means (order: Caudata; Garden, 1821), and Typhlonectes natans (order: Apoda; Fischer, 1880) with the following antibodies: Langerin/CD207 (c-type lectin), Major Histocompatibility Complex (MHC)II, and Toll-like receptor (TLR)2 (expressed by different types of DCs). Our results showed Langerhans cells positive for Langerin CD/207 in the epidermis of the three species; moreover, some antigen-presenting cells (APCs) in the connective tissue expressed TLR2 and MHCII. The distribution of the Langerhans cells is very similar in the three amphibians examined, despite their different habitats. A greater knowledge of the amphibian immune system could be useful to better understand the phylogeny of vertebrates and to safeguard amphibians from population declines. Furthermore, the similarities between amphibians' and human skin concerning immunological features may be useful in both biology and translational medicine.
Collapse
Affiliation(s)
- Giorgia Pia Lombardo
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.P.L.); (E.M.); (A.A.); (E.R.L.)
| | - Anthea Miller
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell’Annunziata, 98168 Messina, Italy;
| | - Marialuisa Aragona
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell’Annunziata, 98168 Messina, Italy;
| | - Emmanuele Messina
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.P.L.); (E.M.); (A.A.); (E.R.L.)
| | - Angelo Fumia
- Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy;
| | - Michał Kuciel
- Poison Information Centre, Department of Toxicology and Environmental Disease, Faculty of Medicine, Jagellonian University, Kopernika 15, 30-501 Krakòw, Poland;
| | - Alessio Alesci
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.P.L.); (E.M.); (A.A.); (E.R.L.)
| | - Simona Pergolizzi
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.P.L.); (E.M.); (A.A.); (E.R.L.)
| | - Eugenia Rita Lauriano
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.P.L.); (E.M.); (A.A.); (E.R.L.)
| |
Collapse
|
11
|
Antony A, Purayil AK, Olakkaran S, Dhannura S, Shekh S, Gowd KH, Gurushankara HP. Antimicrobial and antitumor properties of anuran peptide temporin-SHf induce apoptosis in A549 lung cancer cells. Amino Acids 2024; 56:12. [PMID: 38319435 PMCID: PMC10847208 DOI: 10.1007/s00726-023-03373-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/20/2023] [Indexed: 02/07/2024]
Abstract
Temporin-SHf is a linear, ultra-short, hydrophobic, α-helix, and phe-rich cationic antimicrobial peptide. The antitumor activities and mechanism of temporin-SHf-induced cancer cell death are unknown. The temporin-SHf was synthesized by solid-phase Fmoc chemistry and antimicrobial and antitumor activities were investigated. Temporin-SHf was microbiocidal, non-hemolytic, and cytotoxic to human cancer cells but not to non-tumorigenic cells. It affected the cancer cells' lysosomal integrity and caused cell membrane damage. The temporin-SHf inhibited A549 cancer cell proliferation and migration. It is anti-angiogenic and causes cancer cell death through apoptosis. The molecular mechanism of action of temporin-SHf confirmed that it kills cancer cells by triggering caspase-dependent apoptosis through an intrinsic mitochondrial pathway. Owing to its short length and broad spectrum of antitumor activity, temporin-SHf is a promising candidate for developing a new class of anticancer drugs.
Collapse
Affiliation(s)
- Anet Antony
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod, 671 320, India
- Department of Zoology, University of Calicut, Malappuram, Kerala, 673 635, India
| | - Anupama Kizhakke Purayil
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod, 671 320, India
- Department of Molecular Biology, Kannur University, Dr. Janakiammal Campus, Thalasserry, Palayad, Kerala, 670 661, India
| | - Shilpa Olakkaran
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya, Kasaragod, 671 320, India
- Department of Zoology, University of Calicut, Malappuram, Kerala, 673 635, India
| | - Shweta Dhannura
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, Karnataka, 585 367, India
| | - Shamasoddin Shekh
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, Karnataka, 585 367, India
| | - Konkallu Hanumae Gowd
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi, Karnataka, 585 367, India
| | | |
Collapse
|
12
|
Osborne OG, Jiménez RR, Byrne AQ, Gratwicke B, Ellison A, Muletz-Wolz CR. Phylosymbiosis shapes skin bacterial communities and pathogen-protective function in Appalachian salamanders. THE ISME JOURNAL 2024; 18:wrae104. [PMID: 38861457 PMCID: PMC11195472 DOI: 10.1093/ismejo/wrae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/09/2024] [Accepted: 06/10/2024] [Indexed: 06/13/2024]
Abstract
Phylosymbiosis is an association between host-associated microbiome composition and host phylogeny. This pattern can arise via the evolution of host traits, habitat preferences, diets, and the co-diversification of hosts and microbes. Understanding the drivers of phylosymbiosis is vital for modelling disease-microbiome interactions and manipulating microbiomes in multi-host systems. This study quantifies phylosymbiosis in Appalachian salamander skin in the context of infection by the fungal pathogen Batrachochytrium dendrobatidis (Bd), while accounting for environmental microbiome exposure. We sampled ten salamander species representing >150M years of divergence, assessed their Bd infection status, and analysed their skin and environmental microbiomes. Our results reveal a significant signal of phylosymbiosis, whereas the local environmental pool of microbes, climate, geography, and Bd infection load had a smaller impact. Host-microbe co-speciation was not evident, indicating that the effect stems from the evolution of host traits influencing microbiome assembly. Bd infection is correlated with host phylogeny and the abundance of Bd-inhibitory bacterial strains, suggesting that the long-term evolutionary dynamics between salamander hosts and their skin microbiomes affect the present-day distribution of the pathogen, along with habitat-linked exposure risk. Five Bd-inhibitory bacterial strains showed unusual generalism: occurring in most host species and habitats. These generalist strains may enhance the likelihood of probiotic manipulations colonising and persisting on hosts. Our results underscore the substantial influence of host-microbiome eco-evolutionary dynamics on environmental health and disease outcomes.
Collapse
Affiliation(s)
- Owen G Osborne
- School of Environmental and Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd LL57 2DG, United Kingdom
| | - Randall R Jiménez
- Center for Conservation Genomics, Smithsonian’s National Zoological Park and Conservation Biology Institute, Washington, DC 20008, United States
- International Union for Conservation of Nature, C. 39, Los Yoses, San Jose, 146-2150, Costa Rica
| | - Allison Q Byrne
- Center for Conservation Genomics, Smithsonian’s National Zoological Park and Conservation Biology Institute, Washington, DC 20008, United States
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720-3114, United States
| | - Brian Gratwicke
- Center for Species Survival, Smithsonian’s National Zoological Park and Conservation Biology Institute, Front Royal, VA 22630, United States
| | - Amy Ellison
- School of Environmental and Natural Sciences, Bangor University, Deiniol Road, Bangor, Gwynedd LL57 2DG, United Kingdom
| | - Carly R Muletz-Wolz
- Center for Conservation Genomics, Smithsonian’s National Zoological Park and Conservation Biology Institute, Washington, DC 20008, United States
| |
Collapse
|
13
|
Loffredo MR, Nencioni L, Mangoni ML, Casciaro B. Antimicrobial peptides for novel antiviral strategies in the current post-COVID-19 pandemic. J Pept Sci 2024; 30:e3534. [PMID: 37501572 DOI: 10.1002/psc.3534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023]
Abstract
The recent pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted how urgent and necessary the discovery of new antiviral compounds is for novel therapeutic approaches. Among the various classes of molecules with antiviral activity, antimicrobial peptides (AMPs) of innate immunity are among the most promising ones, mainly due to their different mechanisms of action against viruses and additional biological properties. In this review, the main physicochemical characteristics of AMPs are described, with particular interest toward peptides derived from amphibian skin. Living in aquatic and terrestrial environments, amphibians are one of the richest sources of AMPs with different primary and secondary structures. Besides describing the various antiviral activities of these peptides and the underlying mechanism, this review aims at emphasizing the high potential of these small molecules for the development of new antiviral agents that likely reduce the selection of resistant strains.
Collapse
Affiliation(s)
- Maria Rosa Loffredo
- Department of Biochemical Sciences "A. Rossi Fanelli", Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Lucia Nencioni
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Maria Luisa Mangoni
- Department of Biochemical Sciences "A. Rossi Fanelli", Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Bruno Casciaro
- Department of Biochemical Sciences "A. Rossi Fanelli", Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
14
|
Neely WJ, Martins RA, Mendonça da Silva CM, Ferreira da Silva T, Fleck LE, Whetstone RD, Woodhams DC, Cook WH, Prist PR, Valiati VH, Greenspan SE, Tozetti AM, Earley RL, Becker CG. Linking microbiome and stress hormone responses in wild tropical treefrogs across continuous and fragmented forests. Commun Biol 2023; 6:1261. [PMID: 38087051 PMCID: PMC10716138 DOI: 10.1038/s42003-023-05600-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
The amphibian skin microbiome is an important component of anti-pathogen defense, but the impact of environmental change on the link between microbiome composition and host stress remains unclear. In this study, we used radiotelemetry and host translocation to track microbiome composition and function, pathogen infection, and host stress over time across natural movement paths for the forest-associated treefrog, Boana faber. We found a negative correlation between cortisol levels and putative microbiome function for frogs translocated to forest fragments, indicating strong integration of host stress response and anti-pathogen potential of the microbiome. Additionally, we observed a capacity for resilience (resistance to structural change and functional loss) in the amphibian skin microbiome, with maintenance of putative pathogen-inhibitory function despite major temporal shifts in microbiome composition. Although microbiome community composition did not return to baseline during the study period, the rate of microbiome change indicated that forest fragmentation had more pronounced effects on microbiome composition than translocation alone. Our findings reveal associations between stress hormones and host microbiome defenses, with implications for resilience of amphibians and their associated microbes facing accelerated tropical deforestation.
Collapse
Affiliation(s)
- Wesley J Neely
- Department of Biology, The University of Alabama, Tuscaloosa, AL, 35487, USA.
- Department of Biology, Texas State University, San Marcos, TX, 78666, USA.
| | - Renato A Martins
- Department of Biology, and Center for Infectious Disease Dynamics, One Health Microbiome Center, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Camila M Mendonça da Silva
- Programa de Pos‑Graduacão em Biologia, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS, 93022‑750, Brazil
| | - Tainá Ferreira da Silva
- Programa de Pos‑Graduacão em Biologia, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS, 93022‑750, Brazil
| | - Lucas E Fleck
- Programa de Pos‑Graduacão em Biologia, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS, 93022‑750, Brazil
| | - Ross D Whetstone
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - Douglas C Woodhams
- Department of Biology, University of Massachusetts Boston, Boston, MA, 02125, USA
| | - W Harrison Cook
- Department of Biology, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Paula R Prist
- EcoHealth Alliance, 520 Eight Avenue, Suite 1200, New York, NY, 10018, USA
| | - Victor H Valiati
- Programa de Pos‑Graduacão em Biologia, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS, 93022‑750, Brazil
| | - Sasha E Greenspan
- Department of Biology, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Alexandro M Tozetti
- Programa de Pos‑Graduacão em Biologia, Universidade do Vale do Rio dos Sinos, São Leopoldo, RS, 93022‑750, Brazil
| | - Ryan L Earley
- Department of Biology, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - C Guilherme Becker
- Department of Biology, and Center for Infectious Disease Dynamics, One Health Microbiome Center, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
15
|
Douglas AJ, Katzenback BA. The wood frog (Rana sylvatica): An emerging comparative model for anuran immunity and host-ranavirus interactions. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 147:104733. [PMID: 37550009 DOI: 10.1016/j.dci.2023.104733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 08/09/2023]
Abstract
The wood frog (Rana sylvatica) is widely distributed across North America and is the only amphibian found north of the Arctic Circle due to its remarkable ability to tolerate whole-body freezing. Recent mass mortalities attributable to Ranavirus spp. (family Iridoviridae) in wild juvenile wood frogs, coupled with the apparent high susceptibility of wood frogs to experimental infection with frog virus 3 (FV3), the type species of the Ranavirus genus, or FV3-like isolates underscore the serious threat ranaviruses poses to wood frog populations. Despite the ecological relevance and unique life history of wood frogs, our understanding of the wood frog immune system and antiviral response to ranaviral infections is in its infancy. Here we aim to (1) synthesize the limited knowledge of wood frog immune defences, (2) review recent progress in establishing the wood frog as a study system for ranavirus infection, and (3) highlight the future use of wood frogs as a model anuran to provide insight into the evolution of anuran immune systems and antiviral responses.
Collapse
Affiliation(s)
- Alexander J Douglas
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Barbara A Katzenback
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada.
| |
Collapse
|
16
|
Fernández-De La Cruz E, Wessely-Szponder J, Viñas M, Vinuesa T, Merlos A, Jorba M, Espinal P, Fusté E. Native Pig Neutrophil Products: Insights into Their Antimicrobial Activity. Microorganisms 2023; 11:2119. [PMID: 37630679 PMCID: PMC10459379 DOI: 10.3390/microorganisms11082119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Cationic antimicrobial peptides are molecules with potential applications for treating infections due to their antimicrobial and immunomodulatory properties. The aim of this work was to explore the antimicrobial activity and mechanisms of action of a porcine neutrophil cathelicidin mixture (MPPN). Gram-positive and Gram-negative bacteria were used to determine the minimum inhibitory concentration (MIC) and experiments of both time-kill kinetics and effects on growth curves were performed. Planar black lipid bilayer conductance was measured to analyze the interaction of MPPN with lipid bilayers. Visualization of bacterial surfaces and membrane alterations was achieved using atomic force microscopy and transmission electron microscopy. The effects on the activity of efflux pumps (EPs) were studied with an intracellular accumulation of acridine orange (AO) assay. In E. coli, MPPN behaves as a bactericide at high concentrations and as a bacteriostatic at lower concentrations. The bacteriostatic effect was also observed for slightly shorter periods in S. enterica. The mixture was not active on S. aureus. The increase in AO accumulation in the presence of MPPN indicates that, at least in E. coli, the mixture causes inhibition of the EP function. Observed and detected variable conductance events demonstrate a strong MPPN effect on lipid bilayers. Damage to the structure of treated E. coli indicates that MPPN induces alterations in the bacterial surface. The use of AMPs capable of inhibiting EP can be seen as a good tool to combat antimicrobial resistance since they could be used alone or in combination with other conventional antibiotics to which bacteria have become resistant.
Collapse
Affiliation(s)
- Eric Fernández-De La Cruz
- Laboratory of Molecular Microbiology & Antimicrobials, Department of Pathology & Experimental Therapeutics, Faculty of Medicine & Health Sciences, IDIBELL-University of Barcelona, Campus Bellvitge, 08907 L’Hospitalet de Llobregat, Spain; (E.F.-D.L.C.); (M.V.); (T.V.); (A.M.); (M.J.)
| | - Joanna Wessely-Szponder
- Sub-Department of Pathophysiology, Department of Preclinical Veterinary Sciences, Faculty of Veterinary Medicine, University of Life Sciences, 20-950 Lublin, Poland;
| | - Miguel Viñas
- Laboratory of Molecular Microbiology & Antimicrobials, Department of Pathology & Experimental Therapeutics, Faculty of Medicine & Health Sciences, IDIBELL-University of Barcelona, Campus Bellvitge, 08907 L’Hospitalet de Llobregat, Spain; (E.F.-D.L.C.); (M.V.); (T.V.); (A.M.); (M.J.)
| | - Teresa Vinuesa
- Laboratory of Molecular Microbiology & Antimicrobials, Department of Pathology & Experimental Therapeutics, Faculty of Medicine & Health Sciences, IDIBELL-University of Barcelona, Campus Bellvitge, 08907 L’Hospitalet de Llobregat, Spain; (E.F.-D.L.C.); (M.V.); (T.V.); (A.M.); (M.J.)
| | - Alexandra Merlos
- Laboratory of Molecular Microbiology & Antimicrobials, Department of Pathology & Experimental Therapeutics, Faculty of Medicine & Health Sciences, IDIBELL-University of Barcelona, Campus Bellvitge, 08907 L’Hospitalet de Llobregat, Spain; (E.F.-D.L.C.); (M.V.); (T.V.); (A.M.); (M.J.)
| | - Marta Jorba
- Laboratory of Molecular Microbiology & Antimicrobials, Department of Pathology & Experimental Therapeutics, Faculty of Medicine & Health Sciences, IDIBELL-University of Barcelona, Campus Bellvitge, 08907 L’Hospitalet de Llobregat, Spain; (E.F.-D.L.C.); (M.V.); (T.V.); (A.M.); (M.J.)
| | - Paula Espinal
- Laboratory of Molecular Microbiology & Antimicrobials, Department of Pathology & Experimental Therapeutics, Faculty of Medicine & Health Sciences, IDIBELL-University of Barcelona, Campus Bellvitge, 08907 L’Hospitalet de Llobregat, Spain; (E.F.-D.L.C.); (M.V.); (T.V.); (A.M.); (M.J.)
| | - Ester Fusté
- Laboratory of Molecular Microbiology & Antimicrobials, Department of Pathology & Experimental Therapeutics, Faculty of Medicine & Health Sciences, IDIBELL-University of Barcelona, Campus Bellvitge, 08907 L’Hospitalet de Llobregat, Spain; (E.F.-D.L.C.); (M.V.); (T.V.); (A.M.); (M.J.)
- Department of Public Health, Mental Health and Maternal and Child Nursing, University of Barcelona, Campus Bellvitge, 08907 L’Hospitalet de Llobregat, Spain
| |
Collapse
|