1
|
Januário GC, Bertachini ALL, Escarce AG, de Resende LM, de Miranda DM. Functional near-infrared spectroscopy and language development: An integrative review. Int J Dev Neurosci 2024; 84:613-637. [PMID: 39135460 DOI: 10.1002/jdn.10366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 11/09/2024] Open
Abstract
Functional near-infrared spectroscopy (fNIRS) stands poised to revolutionize our understanding of auditory detection, speech perception, and language development in infants. In this study, we conducted a meticulous integrative review across Medline, Scopus, and LILACS databases, targeting investigations utilizing fNIRS to explore language-related features and cortical activation during auditory stimuli in typical infants. We included studies that used the NIRS technique to study language and cortical activation in response to auditory stimuli in typical infants between 0 and 3 years old. We used the ROBINS-I tool to assess the quality and the risk of bias in the studies. Our analysis, encompassing 66 manuscripts, is presented in standardized tables for streamlined data extraction. We meticulously correlated findings with children's developmental stages, delineating crucial insights into brain development and its intricate interplay with language outcomes. Although most studies have a high risk for overall bias, especially due to the high loss of data in NIRS studies, the low risk in the other domains is predominant and homogeneous among the studies. Highlighted are the unique advantages of fNIRS for pediatric studies, underscored by its innate suitability for use in children. This review accentuates fNIRS' capacity to elucidate the neural correlates of language processing and the sequential steps of language acquisition. From birth, infants exhibit abilities that lay the foundation for language development. The progression from diffuse to specific neural activation patterns is extremely influenced by exposure to languages, social interaction, and prosodic features and, reflects the maturation of brain networks involved in language processing. In conclusion, fNIRS emerges as an indispensable functional imaging modality, providing insights into the temporal dynamics of language acquisition and associated developmental milestones. This synthesis presents the pivotal role of fNIRS in advancing our comprehension of early language development and paves the way for future research endeavors in this domain.
Collapse
Affiliation(s)
- Gabriela Cintra Januário
- Department of Pediatrics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- NUPAD - Center for Newborn Screening and Genetic Diagnostics, UFMG - Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana Lívia Libardi Bertachini
- Department of Pediatrics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- NUPAD - Center for Newborn Screening and Genetic Diagnostics, UFMG - Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Andrezza Gonzalez Escarce
- Department of Pediatrics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Department of Speech Language Pathology and Audiology, Universidade Federal de Minas Gerais, Brazil
| | | | | |
Collapse
|
2
|
Forss S, Ciria A, Clark F, Galusca CL, Harrison D, Lee S. A transdisciplinary view on curiosity beyond linguistic humans: animals, infants, and artificial intelligence. Biol Rev Camb Philos Soc 2024; 99:979-998. [PMID: 38287201 DOI: 10.1111/brv.13054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/31/2024]
Abstract
Curiosity is a core driver for life-long learning, problem-solving and decision-making. In a broad sense, curiosity is defined as the intrinsically motivated acquisition of novel information. Despite a decades-long history of curiosity research and the earliest human theories arising from studies of laboratory rodents, curiosity has mainly been considered in two camps: 'linguistic human' and 'other'. This is despite psychology being heritable, and there are many continuities in cognitive capacities across the animal kingdom. Boundary-pushing cross-disciplinary debates on curiosity are lacking, and the relative exclusion of pre-linguistic infants and non-human animals has led to a scientific impasse which more broadly impedes the development of artificially intelligent systems modelled on curiosity in natural agents. In this review, we synthesize literature across multiple disciplines that have studied curiosity in non-verbal systems. By highlighting how similar findings have been produced across the separate disciplines of animal behaviour, developmental psychology, neuroscience, and computational cognition, we discuss how this can be used to advance our understanding of curiosity. We propose, for the first time, how features of curiosity could be quantified and therefore studied more operationally across systems: across different species, developmental stages, and natural or artificial agents.
Collapse
Affiliation(s)
- Sofia Forss
- Collegium Helveticum, Institute for Advanced Studies, University of Zurich, ETH Zurich and Zurich University of the Arts, Zurich, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Alejandra Ciria
- School of Psychology, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Fay Clark
- School of Psychological Science, University of Bristol, Bristol, UK
| | - Cristina-Loana Galusca
- Laboratoire de Psychologie et NeuroCognition, CNRS Université Grenoble Alpes, Grenoble, France
| | - David Harrison
- Department of History and Philosophy of Science, University of Cambridge, Cambridge, UK
| | - Saein Lee
- Interdisciplinary Program of EcoCreative, Ewha Womans University, Seoul, Republic of Korea
- Department of Psychology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Acuña K, Sapahia R, Jiménez IN, Antonietti M, Anzola I, Cruz M, García MT, Krishnan V, Leveille LA, Resch MD, Galor A, Habash R, DeBuc DC. Functional Near-Infrared Spectrometry as a Useful Diagnostic Tool for Understanding the Visual System: A Review. J Clin Med 2024; 13:282. [PMID: 38202288 PMCID: PMC10779649 DOI: 10.3390/jcm13010282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
This comprehensive review explores the role of Functional Near-Infrared Spectroscopy (fNIRS) in advancing our understanding of the visual system. Beginning with an introduction to fNIRS, we delve into its historical development, highlighting how this technology has evolved over time. The core of the review critically examines the advantages and disadvantages of fNIRS, offering a balanced view of its capabilities and limitations in research and clinical settings. We extend our discussion to the diverse applications of fNIRS beyond its traditional use, emphasizing its versatility across various fields. In the context of the visual system, this review provides an in-depth analysis of how fNIRS contributes to our understanding of eye function, including eye diseases. We discuss the intricacies of the visual cortex, how it responds to visual stimuli and the implications of these findings in both health and disease. A unique aspect of this review is the exploration of the intersection between fNIRS, virtual reality (VR), augmented reality (AR) and artificial intelligence (AI). We discuss how these cutting-edge technologies are synergizing with fNIRS to open new frontiers in visual system research. The review concludes with a forward-looking perspective, envisioning the future of fNIRS in a rapidly evolving technological landscape and its potential to revolutionize our approach to studying and understanding the visual system.
Collapse
Affiliation(s)
- Kelly Acuña
- School of Medicine, Georgetown University, Washington, DC 20007, USA;
| | - Rishav Sapahia
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miami, FL 33136, USA; (R.S.); (M.A.); (M.T.G.); (V.K.); (L.A.L.); (A.G.)
| | - Irene Newman Jiménez
- Department of Cognitive Science, Faculty of Arts & Science, McGill University, Montreal, QC H4A 3J1, Canada;
| | - Michael Antonietti
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miami, FL 33136, USA; (R.S.); (M.A.); (M.T.G.); (V.K.); (L.A.L.); (A.G.)
| | - Ignacio Anzola
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miami, FL 33136, USA; (R.S.); (M.A.); (M.T.G.); (V.K.); (L.A.L.); (A.G.)
| | - Marvin Cruz
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miami, FL 33136, USA; (R.S.); (M.A.); (M.T.G.); (V.K.); (L.A.L.); (A.G.)
| | - Michael T. García
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miami, FL 33136, USA; (R.S.); (M.A.); (M.T.G.); (V.K.); (L.A.L.); (A.G.)
| | - Varun Krishnan
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miami, FL 33136, USA; (R.S.); (M.A.); (M.T.G.); (V.K.); (L.A.L.); (A.G.)
| | - Lynn A. Leveille
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miami, FL 33136, USA; (R.S.); (M.A.); (M.T.G.); (V.K.); (L.A.L.); (A.G.)
| | - Miklós D. Resch
- Department of Ophthalmology, Semmelweis University, 1085 Budapest, Hungary;
| | - Anat Galor
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miami, FL 33136, USA; (R.S.); (M.A.); (M.T.G.); (V.K.); (L.A.L.); (A.G.)
| | - Ranya Habash
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miami, FL 33136, USA; (R.S.); (M.A.); (M.T.G.); (V.K.); (L.A.L.); (A.G.)
| | - Delia Cabrera DeBuc
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miami, FL 33136, USA; (R.S.); (M.A.); (M.T.G.); (V.K.); (L.A.L.); (A.G.)
| |
Collapse
|
4
|
Zhou X, Wang L, Hong X, Wong PCM. Infant-directed speech facilitates word learning through attentional mechanisms: An fNIRS study of toddlers. Dev Sci 2024; 27:e13424. [PMID: 37322865 DOI: 10.1111/desc.13424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023]
Abstract
The speech register that adults especially caregivers use when interacting with infants and toddlers, that is, infant-directed speech (IDS) or baby talk, has been reported to facilitate language development throughout the early years. However, the neural mechanisms as well as why IDS results in such a developmental faciliatory effect remain to be investigated. The current study uses functional near-infrared spectroscopy (fNIRS) to evaluate two alternative hypotheses of such a facilitative effect, that IDS serves to enhance linguistic contrastiveness or to attract the child's attention. Behavioral and fNIRS data were acquired from twenty-seven Cantonese-learning toddlers 15-20 months of age when their parents spoke to them in either an IDS or adult-directed speech (ADS) register in a naturalistic task in which the child learned four disyllabic pseudowords. fNIRS results showed significantly greater neural responses to IDS than ADS register in the left dorsolateral prefrontal cortex (L-dlPFC), but opposite response patterns in the bilateral inferior frontal gyrus (IFG). The differences in fNIRS responses to IDS and to ADS in the L-dlPFC and the left parietal cortex (L-PC) showed significantly positive correlations with the differences in the behavioral word-learning performance of toddlers. The same fNIRS measures in the L-dlPFC and right PC (R-PC) of toddlers were significantly correlated with pitch range differences of parents between the two speech conditions. Together, our results suggest that the dynamic prosody in IDS increased toddlers' attention through greater involvement of the left frontoparietal network that facilitated word learning, compared to ADS. RESEARCH HIGHLIGHTS: This study for the first time examined the neural mechanisms of how infant-directed speech (IDS) facilitates word learning in toddlers. Using fNIRS, we identified the cortical regions that were directly involved in IDS processing. Our results suggest that IDS facilitates word learning by engaging a right-lateralized prosody processing and top-down attentional mechanisms in the left frontoparietal networks. The language network including the inferior frontal gyrus and temporal cortex was not directly involved in IDS processing to support word learning.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Hong Kong SAR, China
- Brain and Mind Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Luchang Wang
- Department of Applied Linguistics, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Xuancu Hong
- Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Patrick C M Wong
- Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Hong Kong SAR, China
- Brain and Mind Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
5
|
Doherty EJ, Spencer CA, Burnison J, Čeko M, Chin J, Eloy L, Haring K, Kim P, Pittman D, Powers S, Pugh SL, Roumis D, Stephens JA, Yeh T, Hirshfield L. Interdisciplinary views of fNIRS: Current advancements, equity challenges, and an agenda for future needs of a diverse fNIRS research community. Front Integr Neurosci 2023; 17:1059679. [PMID: 36922983 PMCID: PMC10010439 DOI: 10.3389/fnint.2023.1059679] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 02/08/2023] [Indexed: 03/02/2023] Open
Abstract
Functional Near-Infrared Spectroscopy (fNIRS) is an innovative and promising neuroimaging modality for studying brain activity in real-world environments. While fNIRS has seen rapid advancements in hardware, software, and research applications since its emergence nearly 30 years ago, limitations still exist regarding all three areas, where existing practices contribute to greater bias within the neuroscience research community. We spotlight fNIRS through the lens of different end-application users, including the unique perspective of a fNIRS manufacturer, and report the challenges of using this technology across several research disciplines and populations. Through the review of different research domains where fNIRS is utilized, we identify and address the presence of bias, specifically due to the restraints of current fNIRS technology, limited diversity among sample populations, and the societal prejudice that infiltrates today's research. Finally, we provide resources for minimizing bias in neuroscience research and an application agenda for the future use of fNIRS that is equitable, diverse, and inclusive.
Collapse
Affiliation(s)
- Emily J. Doherty
- Department of Computer Science, University of Colorado Boulder, Boulder, CO, United States
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, United States
| | - Cara A. Spencer
- Department of Computer Science, University of Colorado Boulder, Boulder, CO, United States
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, United States
| | | | - Marta Čeko
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, United States
| | - Jenna Chin
- College of Arts, Humanities, and Social Sciences, Psychology, University of Denver, Denver, CO, United States
| | - Lucca Eloy
- Department of Computer Science, University of Colorado Boulder, Boulder, CO, United States
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, United States
| | - Kerstin Haring
- Department of Computer Science, University of Denver, Denver, CO, United States
| | - Pilyoung Kim
- College of Arts, Humanities, and Social Sciences, Psychology, University of Denver, Denver, CO, United States
| | - Daniel Pittman
- Department of Computer Science, University of Denver, Denver, CO, United States
| | - Shannon Powers
- College of Arts, Humanities, and Social Sciences, Psychology, University of Denver, Denver, CO, United States
| | - Samuel L. Pugh
- Department of Computer Science, University of Colorado Boulder, Boulder, CO, United States
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, United States
| | | | - Jaclyn A. Stephens
- Department of Occupational Therapy, Colorado State University, Fort Collins, CO, United States
| | - Tom Yeh
- Department of Computer Science, University of Colorado Boulder, Boulder, CO, United States
| | - Leanne Hirshfield
- Department of Computer Science, University of Colorado Boulder, Boulder, CO, United States
- Institute of Cognitive Science, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
6
|
Liu Y, Sánchez Hernández F, Ting F, Hyde DC. Comparing fixed-array and functionally-defined channel of interest approaches to infant functional near-infrared spectroscopy data. Neuroimage 2022; 261:119520. [PMID: 35901918 PMCID: PMC9480621 DOI: 10.1016/j.neuroimage.2022.119520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 07/11/2022] [Accepted: 07/24/2022] [Indexed: 11/08/2022] Open
Abstract
Functional near-infrared spectroscopy (fNIRS) is increasingly used to study brain function in infants, but the development and standardization of analysis techniques for use with infant fNIRS data have not paced other technical advances. Here we quantify and compare the effects of different methods of analysis of infant fNIRS data on two independent fNIRS datasets involving 6-9-month-old infants and a third simulated infant fNIRS dataset. With each, we contrast results from a traditional, fixed-array analysis with several functional channel of interest (fCOI) analysis approaches. In addition, we tested the effects of varying the number and anatomical location of potential data channels to be included in the fCOI definition. Over three studies we find that fCOI approaches are more sensitive than fixed-array analyses, especially when channels of interests were defined within-subjects. Applying anatomical restriction and/or including multiple channels in the fCOI definition does not decrease and in some cases increases sensitivity of fCOI methods. Based on these results, we recommend that researchers consider employing fCOI approaches to the analysis of infant fNIRS data and provide some guidelines for choosing between particular fCOI approaches and settings for the study of infant brain function and development.
Collapse
Affiliation(s)
- Yiyu Liu
- University of Illinois at Urbana-Champaign, Department of Psychology, Champaign, United States
| | | | - Fransisca Ting
- Boston University, Department of Psychological and Brain Sciences, Boston, United States
| | - Daniel C Hyde
- University of Illinois at Urbana-Champaign, Department of Psychology, Champaign, United States; University of Illinois at Urbana-Champaign, Neuroscience Program, Urbana, United States.
| |
Collapse
|
7
|
López-Arango G, Deguire F, Agbogba K, Boucher MA, Knoth IS, El-Jalbout R, Côté V, Damphousse A, Kadoury S, Lippé S. Impact of brain overgrowth on sensorial learning processing during the first year of life. Front Hum Neurosci 2022; 16:928543. [PMID: 35927999 PMCID: PMC9344916 DOI: 10.3389/fnhum.2022.928543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Macrocephaly is present in about 2–5% of the general population. It can be found as an isolated benign trait or as part of a syndromic condition. Brain overgrowth has been associated with neurodevelopmental disorders such as autism during the first year of life, however, evidence remains inconclusive. Furthermore, most of the studies have involved pathological or high-risk populations, but little is known about the effects of brain overgrowth on neurodevelopment in otherwise neurotypical infants. We investigated the impact of brain overgrowth on basic perceptual learning processes (repetition effects and change detection response) during the first year of life. We recorded high density electroencephalograms (EEG) in 116 full-term healthy infants aged between 3 and 11 months, 35 macrocephalic (14 girls) and 81 normocephalic (39 girls) classified according to the WHO head circumference norms. We used an adapted oddball paradigm, time-frequency analyses, and auditory event-related brain potentials (ERPs) to investigate differences between groups. We show that brain overgrowth has a significant impact on repetition effects and change detection response in the 10–20 Hz frequency band, and in N450 latency, suggesting that these correlates of sensorial learning processes are sensitive to brain overgrowth during the first year of life.
Collapse
Affiliation(s)
- Gabriela López-Arango
- Research Center, Sainte-Justine Hospital, Montreal University, Montreal, QC, Canada
- Department of Neurosciences, Montreal University, Montreal, QC, Canada
- *Correspondence: Gabriela López-Arango,
| | - Florence Deguire
- Research Center, Sainte-Justine Hospital, Montreal University, Montreal, QC, Canada
- Department of Psychology, Montreal University, Montreal, QC, Canada
| | - Kristian Agbogba
- Research Center, Sainte-Justine Hospital, Montreal University, Montreal, QC, Canada
- Polytechnique Montreal, Montreal, QC, Canada
| | | | - Inga S. Knoth
- Research Center, Sainte-Justine Hospital, Montreal University, Montreal, QC, Canada
| | - Ramy El-Jalbout
- Research Center, Sainte-Justine Hospital, Montreal University, Montreal, QC, Canada
- Department of Medical Imaging, Sainte-Justine Hospital, Montreal University, Montreal, QC, Canada
| | - Valérie Côté
- Research Center, Sainte-Justine Hospital, Montreal University, Montreal, QC, Canada
| | - Amélie Damphousse
- Research Center, Sainte-Justine Hospital, Montreal University, Montreal, QC, Canada
- Department of Medical Imaging, Sainte-Justine Hospital, Montreal University, Montreal, QC, Canada
| | | | - Sarah Lippé
- Research Center, Sainte-Justine Hospital, Montreal University, Montreal, QC, Canada
- Department of Psychology, Montreal University, Montreal, QC, Canada
- Sarah Lippé,
| |
Collapse
|
8
|
Deguire F, López-Arango G, Knoth IS, Côté V, Agbogba K, Lippé S. Developmental course of the repetition effect and change detection responses from infancy through childhood: a longitudinal study. Cereb Cortex 2022; 32:5467-5477. [PMID: 35149872 PMCID: PMC9712715 DOI: 10.1093/cercor/bhac027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/12/2022] [Accepted: 01/23/2022] [Indexed: 12/27/2022] Open
Abstract
Neuronal repetition effect (repetition suppression and repetition enhancement) and change detection responses are fundamental brain responses that have implications in learning and cognitive development in infants and children. Studies have shown altered neuronal repetition and change detection responses in various clinical populations. However, the developmental course of these neuronal responses from infancy through childhood is still unknown. Using an electroencephalography oddball task, we investigate the developmental peculiarities of repetition effect and change detection responses in 43 children that we followed longitudinally from 3 months to 4 years of age. Analyses were conducted on theta (3-5 Hz), alpha (5-10 Hz), and beta (10-30 Hz) time-frequency windows. Results indicated that in the theta time-frequency window, in frontocentral and frontal regions of the brain, repetition and change detection responses followed a U-shaped pattern from 3 months to 4 years of age. Moreover, the change detection response was stronger in young infants compared to older children in frontocentral regions, regardless of the time-frequency window. Our findings add to the evidence of top-down modulation of perceptual systems in infants and children.
Collapse
Affiliation(s)
- Florence Deguire
- Corresponding author: Psychology Department, University of Montreal, Marie Victorin Building, 90 Vincent-D'Indy Avenue, Montreal, QC H2V 2S9, Canada.
| | - Gabriela López-Arango
- Psychology Department, University of Montreal, Marie Victorin Building, 90 Vincent-D’Indy Avenue, Montreal, QC H2V 2S9, Canada,Pôle en neuropsychologie et neuroscience cognitive et computationnelle (CerebrUM), University of Montreal, Marie Victorin Building, 90 Vincent-D’Indy Avenue, Montreal, QC H2V 2S9, Canada,Research Center of the CHU Sainte-Justine, University of Montreal, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC H3T 1C5, Canada
| | - Inga Sophia Knoth
- Research Center of the CHU Sainte-Justine, University of Montreal, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC H3T 1C5, Canada
| | - Valérie Côté
- Psychology Department, University of Montreal, Marie Victorin Building, 90 Vincent-D’Indy Avenue, Montreal, QC H2V 2S9, Canada,Research Center of the CHU Sainte-Justine, University of Montreal, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC H3T 1C5, Canada
| | - Kristian Agbogba
- Research Center of the CHU Sainte-Justine, University of Montreal, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC H3T 1C5, Canada,École de technologie supérieure, University of Quebec, 1100 Notre-Dame W, Montreal, QC H3C 1K3, Canada
| | - Sarah Lippé
- Psychology Department, University of Montreal, Marie Victorin Building, 90 Vincent-D’Indy Avenue, Montreal, QC H2V 2S9, Canada,Pôle en neuropsychologie et neuroscience cognitive et computationnelle (CerebrUM), University of Montreal, Marie Victorin Building, 90 Vincent-D’Indy Avenue, Montreal, QC H2V 2S9, Canada,Research Center of the CHU Sainte-Justine, University of Montreal, 3175 Chemin de la Côte-Sainte-Catherine, Montreal, QC H3T 1C5, Canada
| |
Collapse
|
9
|
Wang K, Ji X, Li T. Gender difference in functional activity of 4-months-old infants during sleep: A functional near-infrared spectroscopy study. Front Psychiatry 2022; 13:1046821. [PMID: 36741561 PMCID: PMC9889544 DOI: 10.3389/fpsyt.2022.1046821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/28/2022] [Indexed: 01/20/2023] Open
Abstract
Sex differences emerge early in infancy. A number of earlier studies have investigated the resting-state network of infant sleep states, and there have been many studies using functional near-infrared spectroscopy (fNIRS) to examine the effects of infant language learning on changes in oxyhemoglobin and deoxyhemoglobin levels. However, studies examining sex differences from the resting-state network of infant sleep states are scarce. This study uses an open access dataset of task-free hemodynamic activity in 4-month-old infants during sleep by fNIRS, to identify some difference between male and female infants. We used Power Spectral Density showing at which frequencies the data variation/variance is high. We have also analyzed some gender differences by analyzing the relationship between individual channels, the degree of activation, etc. The results of this study showed that female and male infants had different Power Spectral Density for oxyhemoglobin and deoxyhemoglobin at rest, showing stronger differences at frontoparietal network, somatomotor network, visual network and dorsal network. This may be due to the differences in the timing or extent of development of those networks. These differences will provide some assistance in future studies of the early education of male and female infants.
Collapse
Affiliation(s)
- Kai Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,College of Computer Science, Chongqing University, Chongqing, China
| | - Xiang Ji
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Ting Li
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
10
|
Afzal Khan MN, Hong KS. Most favorable stimulation duration in the sensorimotor cortex for fNIRS-based BCI. BIOMEDICAL OPTICS EXPRESS 2021; 12:5939-5954. [PMID: 34745714 PMCID: PMC8547991 DOI: 10.1364/boe.434936] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 05/13/2023]
Abstract
One of the primary objectives of the brain-computer interface (BCI) is to obtain a command with higher classification accuracy within the shortest possible time duration. Therefore, this study evaluates several stimulation durations to propose a duration that can yield the highest classification accuracy. Furthermore, this study aims to address the inherent delay in the hemodynamic responses (HRs) for the command generation time. To this end, HRs in the sensorimotor cortex were evaluated for the functional near-infrared spectroscopy (fNIRS)-based BCI. To evoke brain activity, right-hand-index finger poking and tapping tasks were used. In this study, six different stimulation durations (i.e., 1, 3, 5, 7, 10, and 15 s) were tested on 10 healthy male subjects. Upon stimulation, different temporal features and multiple time windows were utilized to extract temporal features. The extracted features were then classified using linear discriminant analysis. The classification results using the main HR showed that a 5 s stimulation duration could yield the highest classification accuracy, i.e., 74%, with a combination of the mean and maximum value features. However, the results were not significantly different from the classification accuracy obtained using the 15 s stimulation. To further validate the results, a classification using the initial dip was performed. The results obtained endorsed the finding with an average classification accuracy of 73.5% using the features of minimum peak and skewness in the 5 s window. The results based on classification using the initial dip for 5 s were significantly different from all other tested stimulation durations (p < 0.05) for all feature combinations. Moreover, from the visual inspection of the HRs, it is observed that the initial dip occurred as soon as the task started, but the main HR had a delay of more than 2 s. Another interesting finding is that impulsive stimulation in the sensorimotor cortex can result in the generation of a clearer initial dip phenomenon. The results reveal that the command for the fNIRS-based BCI can be generated using the 5 s stimulation duration. In conclusion, the use of the initial dip can reduce the time taken for the generation of commands and can be used to achieve a higher classification accuracy for the fNIRS-BCI within a 5 s task duration rather than relying on longer durations.
Collapse
Affiliation(s)
- M. N. Afzal Khan
- School of Mechanical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Keum-Shik Hong
- School of Mechanical Engineering, Pusan National University, Busan 46241, Republic of Korea
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
11
|
López-Arango G, Deguire F, Côté V, Barlaam F, Agbogba K, Knoth IS, Lippé S. Infant repetition effects and change detection: Are they related to adaptive skills? Eur J Neurosci 2021; 54:7193-7213. [PMID: 34585451 DOI: 10.1111/ejn.15475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 11/29/2022]
Abstract
Repetition effects and change detection response have been proposed as neuro-electrophysiological correlates of fundamental learning processes. As such, they could be a good predictor of brain maturation and cognitive development. We recorded high density EEG in 71 healthy infants (32 females) aged between 3 and 9 months, while they listened to vowel sequences (standard /a/a/a/i/ [80%] and deviant /a/a/a/a/ [20%]). Adaptive skills, a surrogate of cognitive development, were measured via the parent form of the Adaptive Behavior Assessment System Second Edition (ABAS-II). Cortical auditory-evoked potentials (CAEPs) analyses, time-frequency analyses and a statistical approach using linear mixed models (LMMs) and linear regression models were performed. Age and adaptive skills were tested as predictors. Age modulation of repetition effects and change detection response was observed in theta (3-5 Hz), alpha (5-10 Hz) and high gamma (80-90 Hz) oscillations and in all CAEPs. Moreover, adaptive skills modulation of repetition effects was evidenced in theta (3-5 Hz), high gamma oscillations (80-90 Hz), N250/P350 peak-to-peak amplitude and P350 latency. Finally, adaptive skills modulation of change detection response was observed in the N250/P350 peak-to-peak amplitude. Our results confirm that repetition effects and change detection response evolve with age. Moreover, our results suggest that repetition effects and change detection response vary according to adaptive skills displayed by infants during the first year of life, demonstrating their predictive value for neurodevelopment.
Collapse
Affiliation(s)
- Gabriela López-Arango
- Neurosciences Department, Montreal University, Montreal, Quebec, Canada.,Research Center, Sainte-Justine Hospital, Montreal University, Montreal, Quebec, Canada
| | - Florence Deguire
- Psychology Department, Montreal University, Montreal, Quebec, Canada.,Research Center, Sainte-Justine Hospital, Montreal University, Montreal, Quebec, Canada
| | - Valérie Côté
- Psychology Department, Montreal University, Montreal, Quebec, Canada.,Research Center, Sainte-Justine Hospital, Montreal University, Montreal, Quebec, Canada
| | - Fanny Barlaam
- Research Center, Sainte-Justine Hospital, Montreal University, Montreal, Quebec, Canada
| | - Kristian Agbogba
- Research Center, Sainte-Justine Hospital, Montreal University, Montreal, Quebec, Canada
| | - Inga S Knoth
- Research Center, Sainte-Justine Hospital, Montreal University, Montreal, Quebec, Canada
| | - Sarah Lippé
- Psychology Department, Montreal University, Montreal, Quebec, Canada.,Research Center, Sainte-Justine Hospital, Montreal University, Montreal, Quebec, Canada
| |
Collapse
|
12
|
Andreu-Perez J, Emberson LL, Kiani M, Filippetti ML, Hagras H, Rigato S. Explainable artificial intelligence based analysis for interpreting infant fNIRS data in developmental cognitive neuroscience. Commun Biol 2021; 4:1077. [PMID: 34526648 PMCID: PMC8443619 DOI: 10.1038/s42003-021-02534-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 07/19/2021] [Indexed: 02/08/2023] Open
Abstract
In the last decades, non-invasive and portable neuroimaging techniques, such as functional near infrared spectroscopy (fNIRS), have allowed researchers to study the mechanisms underlying the functional cognitive development of the human brain, thus furthering the potential of Developmental Cognitive Neuroscience (DCN). However, the traditional paradigms used for the analysis of infant fNIRS data are still quite limited. Here, we introduce a multivariate pattern analysis for fNIRS data, xMVPA, that is powered by eXplainable Artificial Intelligence (XAI). The proposed approach is exemplified in a study that investigates visual and auditory processing in six-month-old infants. xMVPA not only identified patterns of cortical interactions, which confirmed the existent literature; in the form of conceptual linguistic representations, it also provided evidence for brain networks engaged in the processing of visual and auditory stimuli that were previously overlooked by other methods, while demonstrating similar statistical performance.
Collapse
Affiliation(s)
- Javier Andreu-Perez
- grid.8356.80000 0001 0942 6946Centre for Computational Intelligence, University of Essex, Colchester, UK
| | - Lauren L. Emberson
- grid.16750.350000 0001 2097 5006Department of Psychology, Princeton University, Princeton, NJ USA
| | - Mehrin Kiani
- grid.8356.80000 0001 0942 6946Centre for Computational Intelligence, University of Essex, Colchester, UK
| | - Maria Laura Filippetti
- grid.8356.80000 0001 0942 6946Centre for Brain Science, Department of Psychology, University of Essex, Colchester, UK
| | - Hani Hagras
- grid.8356.80000 0001 0942 6946Centre for Computational Intelligence, University of Essex, Colchester, UK
| | - Silvia Rigato
- grid.8356.80000 0001 0942 6946Centre for Brain Science, Department of Psychology, University of Essex, Colchester, UK
| |
Collapse
|
13
|
Fu X, Richards JE. Investigating developmental changes in scalp-to-cortex correspondence using diffuse optical tomography sensitivity in infancy. NEUROPHOTONICS 2021; 8:035003. [PMID: 34322572 PMCID: PMC8305752 DOI: 10.1117/1.nph.8.3.035003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 07/09/2021] [Indexed: 05/25/2023]
Abstract
Significance: Diffuse optical tomography (DOT) uses near-infrared light spectroscopy (NIRS) to measure changes in cerebral hemoglobin concentration. Anatomical interpretations of NIRS data require accurate descriptions of the cranio-cerebral relations and DOT sensitivity to the underlying cortical structures. Such information is limited for pediatric populations because they undergo rapid head and brain development. Aim: We aim to investigate age-related differences in scalp-to-cortex distance and mapping between scalp locations and cortical regions of interest (ROIs) among infants (2 weeks to 24 months with narrow age bins), children (4 and 12 years), and adults (20 to 24 years). Approach: We used spatial scalp projection and photon propagation simulation methods with age-matched realistic head models based on MRIs. Results: There were age-group differences in the scalp-to-cortex distances in infancy. The developmental increase was magnified in children and adults. There were systematic age-related differences in the probabilistic mappings between scalp locations and cortical ROIs. Conclusions: Our findings have important implications in the design of sensor placement and making anatomical interpretations in NIRS and fNIRS research. Age-appropriate, realistic head models should be used to provide anatomical guidance for standalone DOT data in infants.
Collapse
Affiliation(s)
- Xiaoxue Fu
- University of South Carolina, Department of Psychology, Columbia, South Carolina, United States
| | - John E. Richards
- University of South Carolina, Department of Psychology, Columbia, South Carolina, United States
| |
Collapse
|
14
|
Cai L, Okada E, Minagawa Y, Kawaguchi H. Correlating functional near-infrared spectroscopy with underlying cortical regions of 0-, 1-, and 2-year-olds using theoretical light propagation analysis. NEUROPHOTONICS 2021; 8:025009. [PMID: 34079846 PMCID: PMC8166262 DOI: 10.1117/1.nph.8.2.025009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/18/2021] [Indexed: 05/03/2023]
Abstract
Significance: The establishment of a light propagation analysis-based scalp-cortex correlation (SCC) between the scalp location of the source-detector (SD) pair and brain regions is essential for measuring functional brain development in the first 2 years of life using functional near-infrared spectroscopy (fNIRS). Aim: We aimed to reveal the optics-based SCC of 0-, 1-, and 2-year-olds (yo) and the suitable SD distance for this age period. Approach: Light propagation analyses using age-appropriate head models were conducted on SD pairs at 10-10 fiducial points on the scalp to obtain optics-based SCC and its metrics: the number of corresponding brain regions ( N C B R ), selectivity and sensitivity of the most likely corresponding brain region (MLCBR), and consistency of the MLCBR across developmental ages. Moreover, we assessed the suitable SD distances for 0-, 1-, and 2-yo by simultaneously considering the selectivity and sensitivity of the MLCBR. Results: Age-related changes in the SCC metrics were observed. For instance, the N C B R of 0-yo was larger than that of 1- and 2-yo. Conversely, the selectivity of 0-yo was lower than that of 1- and 2-yo. The sensitivity of 1-yo was higher than that of 0-yo at 15- to 30-mm SD distances and higher than that of 2-yo at 10-mm SD distance. Notably, the MLCBR of the fiducial points around the longitudinal fissure was inconsistent across age groups. An SD distance between 15 and 25 mm was found to be appropriate for satisfying both sensitivity and selectivity requirements. In addition, this work provides reference tables of optics-based SCC for 0-, 1-, and 2-yo. Conclusions: Optics-based SCC will be informative in designing and explaining child developmental studies using fNIRS. The suitable SD distances were between 15 and 25 mm for the first 2 years of life.
Collapse
Affiliation(s)
- Lin Cai
- Keio University, Department of Electronics and Electrical Engineering, Yokohama, Japan
| | - Eiji Okada
- Keio University, Department of Electronics and Electrical Engineering, Yokohama, Japan
| | | | - Hiroshi Kawaguchi
- Keio University, Department of Electronics and Electrical Engineering, Yokohama, Japan
- National Institute of Advanced Industrial Science and Technology, Human Informatics and Interaction Research Institute, Tsukuba, Japan
- Address all correspondence to Hiroshi Kawaguchi,
| |
Collapse
|
15
|
Raz G, Saxe R. Learning in Infancy Is Active, Endogenously Motivated, and Depends on the Prefrontal Cortices. ACTA ACUST UNITED AC 2020. [DOI: 10.1146/annurev-devpsych-121318-084841] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A common view of learning in infancy emphasizes the role of incidental sensory experiences from which increasingly abstract statistical regularities are extracted. In this view, infant brains initially support basic sensory and motor functions, followed by maturation of higher-level association cortex. Here, we critique this view and posit that, by contrast and more like adults, infants are active, endogenously motivated learners who structure their own learning through flexible selection of attentional targets and active interventions on their environment. We further argue that the infant brain, and particularly the prefrontal cortex (PFC), is well equipped to support these learning behaviors. We review recent progress in characterizing the function of the infant PFC, which suggests that, as in adults, the PFC is functionally specialized and highly connected. Together, we present an integrative account of infant minds and brains, in which the infant PFC represents multiple intrinsic motivations, which are leveraged for active learning.
Collapse
Affiliation(s)
- Gal Raz
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Rebecca Saxe
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
16
|
Pecukonis M, Perdue KL, Wong J, Tager-Flusberg H, Nelson CA. Exploring the relation between brain response to speech at 6-months and language outcomes at 24-months in infants at high and low risk for autism spectrum disorder: A preliminary functional near-infrared spectroscopy study. Dev Cogn Neurosci 2020; 47:100897. [PMID: 33338817 PMCID: PMC7750322 DOI: 10.1016/j.dcn.2020.100897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 11/03/2020] [Accepted: 11/30/2020] [Indexed: 11/19/2022] Open
Abstract
Brain response distributed across regions in infants at high risk for autism. Brain response localized to anterior regions in 6-month-old low risk infants. Comparing groups, high risk infants had reduced response in anterior regions. High risk infants had greater response than low risk infants in right posterior. Brain response to speech predicted language outcomes in low risk infants only.
Infants at high familial risk for autism spectrum disorder (ASD) are at increased risk for language impairments. Studies have demonstrated that atypical brain response to speech is related to language impairments in this population, but few have examined this relation longitudinally. We used functional near-infrared spectroscopy (fNIRS) to investigate the neural correlates of speech processing in 6-month-old infants at high (HRA) and low risk (LRA) for autism. We also assessed the relation between brain response to speech at 6-months and verbal developmental quotient (VDQ) scores at 24-months. LRA infants exhibited greater brain response to speech in bilateral anterior regions of interest (ROIs) compared to posterior ROIs, while HRA infants exhibited similar brain response across all ROIs. Compared to LRA infants, HRA+ infants who were later diagnosed with ASD had reduced brain response in bilateral anterior ROIs, while HRA- infants who were not later diagnosed with ASD had increased brain response in right posterior ROI. Greater brain response in left anterior ROI predicted VDQ scores for LRA infants only. Findings highlight the importance of studying HRA+ and HRA- infants separately, and implicate a different, more distributed neural system for speech processing in HRA infants that is not related to language functioning.
Collapse
Affiliation(s)
- Meredith Pecukonis
- Department of Psychological & Brain Sciences, Boston University, Boston, MA 02215, USA.
| | - Katherine L Perdue
- Division of Developmental Medicine, Boston Children's Hospital, Boston, MA 02215, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02215, USA
| | - Jillian Wong
- Department of Psychological & Brain Sciences, Boston University, Boston, MA 02215, USA
| | - Helen Tager-Flusberg
- Department of Psychological & Brain Sciences, Boston University, Boston, MA 02215, USA
| | - Charles A Nelson
- Division of Developmental Medicine, Boston Children's Hospital, Boston, MA 02215, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02215, USA; Harvard Graduate School of Education, Cambridge, MA, 02138, USA
| |
Collapse
|
17
|
Vinci-Booher S, James KH. Visual experiences during letter production contribute to the development of the neural systems supporting letter perception. Dev Sci 2020; 23:e12965. [PMID: 32176426 PMCID: PMC7901804 DOI: 10.1111/desc.12965] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 09/12/2019] [Accepted: 10/29/2019] [Indexed: 11/27/2022]
Abstract
Letter production through handwriting creates visual experiences that may be important for the development of visual letter perception. We sought to better understand the neural responses to different visual percepts created during handwriting at different levels of experience. Three groups of participants, younger children, older children, and adults, ranging in age from 4.5 to 22 years old, were presented with dynamic and static presentations of their own handwritten letters, static presentations of an age-matched control's handwritten letters, and typeface letters during fMRI. First, data from each group were analyzed through a series of contrasts designed to highlight neural systems that were most sensitive to each visual experience in each age group. We found that younger children recruited ventral-temporal cortex during perception and this response was associated with the variability present in handwritten forms. Older children and adults also recruited ventral-temporal cortex; this response, however, was significant for typed letter forms but not variability. The adult response to typed letters was more distributed than in the children, including ventral-temporal, parietal, and frontal motor cortices. The adult response was also significant for one's own handwritten letters in left parietal cortex. Second, we compared responses among age groups. Compared to older children, younger children demonstrated a greater fusiform response associated with handwritten form variability. When compared to adults, younger children demonstrated a greater response to this variability in left parietal cortex. Our results suggest that the visual perception of the variability present in handwritten forms that occurs during handwriting may contribute to developmental changes in the neural systems that support letter perception.
Collapse
Affiliation(s)
- Sophia Vinci-Booher
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Karin H James
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| |
Collapse
|
18
|
Emberson LL, Misyak JB, Schwade JA, Christiansen MH, Goldstein MH. Comparing statistical learning across perceptual modalities in infancy: An investigation of underlying learning mechanism(s). Dev Sci 2019; 22:e12847. [PMID: 31077516 PMCID: PMC7294581 DOI: 10.1111/desc.12847] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 04/03/2019] [Accepted: 04/10/2019] [Indexed: 11/29/2022]
Abstract
Statistical learning (SL), sensitivity to probabilistic regularities in sensory input, has been widely implicated in cognitive and perceptual development. Little is known, however, about the underlying mechanisms of SL and whether they undergo developmental change. One way to approach these questions is to compare SL across perceptual modalities. While a decade of research has compared auditory and visual SL in adults, we present the first direct comparison of visual and auditory SL in infants (8-10 months). Learning was evidenced in both perceptual modalities but with opposite directions of preference: Infants in the auditory condition displayed a novelty preference, while infants in the visual condition showed a familiarity preference. Interpreting these results within the Hunter and Ames model (1988), where familiarity preferences reflect a weaker stage of encoding than novelty preferences, we conclude that there is weaker learning in the visual modality than the auditory modality for this age. In addition, we found evidence of different developmental trajectories across modalities: Auditory SL increased while visual SL did not change for this age range. The results suggest that SL is not an abstract, amodal ability; for the types of stimuli and statistics tested, we find that auditory SL precedes the development of visual SL and is consistent with recent work comparing SL across modalities in older children.
Collapse
Affiliation(s)
| | - Jennifer B. Misyak
- Behavioural Science Group, Warwick Business School, University of Warwick, Coventry, UK
| | | | | | | |
Collapse
|
19
|
Bhat AN, McDonald NM, Eilbott JE, Pelphrey KA. Exploring cortical activation and connectivity in infants with and without familial risk for autism during naturalistic social interactions: A preliminary study. Infant Behav Dev 2019; 57:101337. [PMID: 31450025 DOI: 10.1016/j.infbeh.2019.101337] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 05/09/2019] [Accepted: 07/01/2019] [Indexed: 11/29/2022]
Abstract
Behavioral signs of Autism Spectrum Disorder (ASD) are typically observable by the second year of life and a reliable diagnosis of ASD is possible by 2 to 3 years of age. Studying infants with familial risk for ASD allows for the investigation of early signs of ASD risk within the first year. Brain abnormalities such as hyper-connectivity within the first year may precede the overt signs of ASD that emerge later in life. In this preliminary study, we use functional near-infrared spectroscopy (fNIRS), an infant-friendly neuroimaging tool that is relatively robust against motion artifacts, to examine functional activation and connectivity during naturalistic social interactions in 9 high-risk (HR; older sibling with ASD) and 6 low-risk (LR; no family history of ASD) infants from 6 to 9 months of age. We obtained two 30-second baseline periods and a 5-minute social interaction period. HR infants showed reduced right and left-hemispheric activation compared to LR infants based on oxy (HbO2) and deoxy (HHb) signal trends. HR infants also had greater functional connectivity than LR infants during the pre- and post-social periods and showed a drop in connectivity during the social period. Our findings are consistent with previous work suggesting early differences in cortical activation associated with familial risk for ASD, and highlight the promise of fNIRS in evaluating potential markers of ASD risk during naturalistic social contexts.
Collapse
Affiliation(s)
- A N Bhat
- Department of Physical Therapy, University of Delaware, 540 S College Ave., Newark, DE, USA; Department of Psychological & Brain Sciences, University of Delaware, 320 McKinly Lab, Newark, DE, USA; Biomechanics & Movement Science Program, University of Delaware, 540 S College Ave., Newark, DE, USA.
| | - N M McDonald
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, 760 Westwood Plaza, Los Angeles, CA, USA
| | - J E Eilbott
- Yale Child Study Center, Yale University, New Haven, CT, USA
| | - K A Pelphrey
- Department of Neurology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
20
|
Emberson LL. How does learning and memory shape perceptual development in infancy? PSYCHOLOGY OF LEARNING AND MOTIVATION 2019. [DOI: 10.1016/bs.plm.2019.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Emberson LL, Boldin AM, Robertson CE, Cannon G, Aslin RN. Expectation affects neural repetition suppression in infancy. Dev Cogn Neurosci 2018; 37:100597. [PMID: 30473471 PMCID: PMC6918478 DOI: 10.1016/j.dcn.2018.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 01/07/2023] Open
Abstract
Recent work provides evidence that the infant brain is able to make top-down predictions, but this has been explored only in limited contexts and domains. We build upon this evidence of predictive processing in infants using a new paradigm to examine auditory repetition suppression (RS). RS is a well-documented neural phenomenon in which repeated presentations of the same stimulus result in reduced neural activation compared to non-repeating stimuli. Many theories explain RS using bottom-up mechanisms, but recent work has posited that top-down expectation and predictive coding may bias, or even explain, RS. Here, we investigate whether RS in the infant brain is similarly sensitive to top-down mechanisms. We use fNIRS to measure infants’ neural response in two experimental conditions, one in which variability in stimulus presentation is expected (occurs 75% of the time) and a control condition where variability and repetition are equally likely (50% of the time). We show that 6-month-old infants exhibit attenuated frontal lobe response to blocks of variable auditory stimuli during contexts when variability is expected as compared to the control condition. These findings suggest that young infants’ neural responses are modulated by predictions gained from experience and not simply by bottom-up mechanisms.
Collapse
|
22
|
Developmental changes in cortical sensory processing during wakefulness and sleep. Neuroimage 2018; 178:519-530. [DOI: 10.1016/j.neuroimage.2018.05.075] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 04/05/2018] [Accepted: 05/30/2018] [Indexed: 12/22/2022] Open
|
23
|
Differences in Neural Correlates of Speech Perception in 3 Month Olds at High and Low Risk for Autism Spectrum Disorder. J Autism Dev Disord 2018; 47:3125-3138. [PMID: 28688078 DOI: 10.1007/s10803-017-3222-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In this study, we investigated neural precursors of language acquisition as potential endophenotypes of autism spectrum disorder (ASD) in 3-month-old infants at high and low familial ASD risk. Infants were imaged using functional near-infrared spectroscopy while they listened to auditory stimuli containing syllable repetitions; their neural responses were analyzed over left and right temporal regions. While female low risk infants showed initial neural activation that decreased over exposure to repetition-based stimuli, potentially indicating a habituation response to repetition in speech, female high risk infants showed no changes in neural activity over exposure. This finding may indicate a potential neural endophenotype of language development or ASD specific to females at risk for the disorder.
Collapse
|
24
|
Boldin AM, Geiger R, Emberson LL. The emergence of top-down, sensory prediction during learning in infancy: A comparison of full-term and preterm infants. Dev Psychobiol 2018; 60:544-556. [PMID: 29687654 DOI: 10.1002/dev.21624] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 02/01/2018] [Indexed: 01/05/2023]
Abstract
Prematurity alters developmental trajectories in preterm infants even in the absence of medical complications. Here, we use fNIRS and learning tasks to probe the nature of the developmental differences between preterm and full-term born infants. Our recent work has found that prematurity disrupts the ability to engage in top-down sensory prediction after learning. We now examine the neural changes during the learning that precede prediction. In full-terms, we found modulation of all cortical regions examined during learning (temporal, frontal, and occipital). By contrast, preterm infants had no evidence of neural changes in the occipital lobe selectively. This is striking as the learning task leads to the emergence of visual prediction. Moreover, the shape of individual infants' occipital lobe trajectories (regardless of prematurity) predicts subsequent visual prediction abilities. These results suggest that modulation of sensory cortices during learning is closely related to the emergence of top-down signals and further indicates that developmental differences in premature infants may be associated with deficits in top-down processing.
Collapse
Affiliation(s)
- Alex M Boldin
- Department of Psychology, Princeton University, Princeton, New Jersey
| | - Romin Geiger
- Department of Psychology, Tennessee State University, Nashville, Tennessee
| | - Lauren L Emberson
- Department of Psychology, Princeton University, Princeton, New Jersey
| |
Collapse
|
25
|
Issard C, Gervain J. Variability of the hemodynamic response in infants: Influence of experimental design and stimulus complexity. Dev Cogn Neurosci 2018; 33:182-193. [PMID: 29397345 PMCID: PMC6969282 DOI: 10.1016/j.dcn.2018.01.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 01/26/2018] [Accepted: 01/26/2018] [Indexed: 12/27/2022] Open
Abstract
Measuring brain activity in developmental populations remains a major challenge despite great technological advances. Among the numerous available methods, functional near-infrared spectroscopy (fNIRS), an imaging modality that probes the hemodynamic response, is a powerful tool for recording brain activity in a great variety of situations and populations. Neurocognitive studies with infants have often reported inverted hemodynamic responses, i.e. a decrease instead of an increase in regional blood oxygenation, but the exact physiological explanation and cognitive interpretation of this response remain unclear. Here, we first provide an overview of the basic principles of NIRS and its use in cognitive developmental neuroscience. We then review the infant fNIRS literature to show that the hemodynamic response is modulated by experimental design and stimulus complexity, sometimes leading to hemodynamic responses with non-canonical shapes. We also argue that this effect is further modulated by the age of participants, the cortical regions involved, and the developmental stage of the tested cognitive process. We argue that this variability needs to be taken into account when designing and interpreting developmental studies measuring the hemodynamic response.
Collapse
Affiliation(s)
- Cécile Issard
- Laboratoire Psychologie de la Perception, Université Paris Descartes, Centre Universitaire des Saints-Pères, 45 rue des Saints Pères, 75006 Paris, France.
| | - Judit Gervain
- Laboratoire Psychologie de la Perception, Université Paris Descartes, Centre Universitaire des Saints-Pères, 45 rue des Saints Pères, 75006 Paris, France; Laboratoire Psychologie de la Perception, CNRS UMR 8242, Centre Universitaire des Saints-Pères, 45 rue des Saints Pères, 75006 Paris, France.
| |
Collapse
|
26
|
Emberson LL, Zinszer BD, Raizada RDS, Aslin RN. Decoding the infant mind: Multivariate pattern analysis (MVPA) using fNIRS. PLoS One 2017; 12:e0172500. [PMID: 28426802 PMCID: PMC5398514 DOI: 10.1371/journal.pone.0172500] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 02/06/2017] [Indexed: 12/13/2022] Open
Abstract
The MRI environment restricts the types of populations and tasks that can be studied by cognitive neuroscientists (e.g., young infants, face-to-face communication). FNIRS is a neuroimaging modality that records the same physiological signal as fMRI but without the constraints of MRI, and with better spatial localization than EEG. However, research in the fNIRS community largely lacks the analytic sophistication of analogous fMRI work, restricting the application of this imaging technology. The current paper presents a method of multivariate pattern analysis for fNIRS that allows the authors to decode the infant mind (a key fNIRS population). Specifically, multivariate pattern analysis (MVPA) employs a correlation-based decoding method where a group model is constructed for all infants except one; both average patterns (i.e., infant-level) and single trial patterns (i.e., trial-level) of activation are decoded. Between subjects decoding is a particularly difficult task, because each infant has their own somewhat idiosyncratic patterns of neural activation. The fact that our method succeeds at across-subject decoding demonstrates the presence of group-level multi-channel regularities across infants. The code for implementing these analyses has been made readily available online to facilitate the quick adoption of this method to advance the methodological tools available to the fNIRS researcher.
Collapse
Affiliation(s)
- Lauren L. Emberson
- Psychology Department, Princeton University, Princeton, NJ, United States of America
- Brain and Cognitive Sciences Department, University of Rochester, Rochester, NY, United States of America
- Rochester Center for Brain Imaging, University of Rochester, Rochester, NY, United States of America
| | - Benjamin D. Zinszer
- Brain and Cognitive Sciences Department, University of Rochester, Rochester, NY, United States of America
- Rochester Center for Brain Imaging, University of Rochester, Rochester, NY, United States of America
| | - Rajeev D. S. Raizada
- Brain and Cognitive Sciences Department, University of Rochester, Rochester, NY, United States of America
- Rochester Center for Brain Imaging, University of Rochester, Rochester, NY, United States of America
| | - Richard N. Aslin
- Brain and Cognitive Sciences Department, University of Rochester, Rochester, NY, United States of America
- Rochester Center for Brain Imaging, University of Rochester, Rochester, NY, United States of America
| |
Collapse
|
27
|
The Lateral Occipital Cortex Is Selective for Object Shape, Not Texture/Color, at Six Months. J Neurosci 2017; 37:3698-3703. [PMID: 28264984 DOI: 10.1523/jneurosci.3300-16.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/04/2017] [Accepted: 02/08/2017] [Indexed: 11/21/2022] Open
Abstract
Understanding how the human visual system develops is crucial to understanding the nature and organization of our complex and varied visual representations. However, previous investigations of the development of the visual system using fMRI are primarily confined to a subset of the visual system (high-level vision: faces, scenes) and relatively late in visual development (starting at 4-5 years of age). The current study extends our understanding of human visual development by presenting the first systematic investigation of a mid-level visual region [the lateral occipital cortex (LOC)] in a population much younger than has been investigated in the past: 6 month olds. We use functional near-infrared spectroscopy (fNIRS), an emerging optical method for recording cortical hemodynamics, to perform neuroimaging with this very young population. Whereas previous fNIRS studies have suffered from imprecise neuroanatomical localization, we rely on the most rigorous MR coregistration of fNIRS data to date to image the infant LOC. We find surprising evidence that at 6 months the LOC has functional specialization that is highly similar to adults. Following Cant and Goodale (2007), we investigate whether the LOC tracks shape information and not other cues to object identity (e.g., texture/material). This finding extends evidence of LOC specialization from early childhood into infancy and earlier than developmental trajectories of high-level visual regions.SIGNIFICANCE STATEMENT Understanding visual development is crucial to understanding the nature of visual representations in the human brain. Previous studies of visual development have investigated children (4 years and older) and high-level visual areas. This study expands our knowledge of visual development by investigating the functional development of mid-level vision [lateral occipital cortex (LOC)] early in infancy. We find surprisingly adult-like functional specialization of the LOC by 6 months of age: infants exhibit shape selectivity, but not object selectivity, in this region.
Collapse
|
28
|
Emberson LL. How Does Experience Shape Early Development? Considering the Role of Top-Down Mechanisms. ADVANCES IN CHILD DEVELOPMENT AND BEHAVIOR 2017; 52:1-41. [PMID: 28215282 DOI: 10.1016/bs.acdb.2016.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Perceptual development requires infants to adapt their perceptual systems to the structures and statistical information of their environment. In this way, perceptual development is not only important in its own right, but is a case study for behavioral and neural plasticity-powerful mechanisms that have the potential to support developmental change in numerous domains starting early in life. While it is widely assumed that perceptual development is a bottom-up process, where simple exposure to sensory input modifies perceptual representations starting early in the perceptual system, there are several critical phenomena in this literature that cannot be explained with an exclusively bottom-up model. This chapter proposes a complementary mechanism where nascent top-down information, feeding back from higher-level regions of the brain, helps to guide perceptual development. Supporting this theoretical proposal, recent behavioral and neuroimaging studies have established that young infants already have the capacity to engage in top-down modulation of their perceptual systems.
Collapse
Affiliation(s)
- L L Emberson
- Princeton University, Princeton, NJ, United States.
| |
Collapse
|
29
|
Emberson LL, Crosswhite SL, Goodwin JR, Berger AJ, Aslin RN. Isolating the effects of surface vasculature in infant neuroimaging using short-distance optical channels: a combination of local and global effects. NEUROPHOTONICS 2016; 3:031406. [PMID: 27158631 PMCID: PMC4835587 DOI: 10.1117/1.nph.3.3.031406] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 03/08/2016] [Indexed: 05/20/2023]
Abstract
Functional near-infrared spectroscopy (fNIRS) records hemodynamic changes in the cortex arising from neurovascular coupling. However, (noninvasive) fNIRS recordings also record surface vascular signals arising from noncortical sources (e.g., in the skull, skin, dura, and other tissues located between the sensors and the brain). A current and important focus in the fNIRS community is determining how to remove these noncortical vascular signals to reduce noise and to prevent researchers from erroneously attributing responses to cortical sources. The current study is the first to test a popular method for removing signals from the surface vasculature (removing short, 1 cm, channel recordings from long, 3 cm, channel recordings) in human infants, a population frequently studied using fNIRS. We find evidence that this method does remove surface vasculature signals and indicates the presence of both local and global surface vasculature signals. However, we do not find that the removal of this information changes the statistical inferences drawn from the data. This latter result not only questions the importance of removing surface vasculature responses for empiricists employing this method, but also calls for future research using other tasks (e.g., ones with a weaker initial result) with this population and possibly additional methods for removing signals arising from the surface vasculature in infants.
Collapse
Affiliation(s)
- Lauren L. Emberson
- University of Rochester, Brain and Cognitive Sciences, Meliora Hall, Box 270268, Rochester, New York 14627, United States
- University of Rochester, Rochester Center for Brain Imaging, 430 Elmwood Avenue, Box 278917, Rochester, New York 14627, United States
- Princeton University, Peretsman-Scully Hall, Psychology Department, Princeton, New Jersey 08544, United States
- Address all correspondence to: Lauren L. Emberson, E-mail:
| | - Stephen L. Crosswhite
- University of Rochester, Brain and Cognitive Sciences, Meliora Hall, Box 270268, Rochester, New York 14627, United States
| | - James R. Goodwin
- University of Rochester, The Institute of Optics, Wilmot Building, 275 Hutchinson Road, Rochester, New York 14627, United States
| | - Andrew J. Berger
- University of Rochester, The Institute of Optics, Wilmot Building, 275 Hutchinson Road, Rochester, New York 14627, United States
| | - Richard N. Aslin
- University of Rochester, Brain and Cognitive Sciences, Meliora Hall, Box 270268, Rochester, New York 14627, United States
- University of Rochester, Rochester Center for Brain Imaging, 430 Elmwood Avenue, Box 278917, Rochester, New York 14627, United States
| |
Collapse
|