1
|
Charron V, Talbot J, Labelle PR, Konkle ATM, Plamondon H. In search of prosociality in rodents: A scoping review. PLoS One 2024; 19:e0310771. [PMID: 39509367 PMCID: PMC11542798 DOI: 10.1371/journal.pone.0310771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 09/06/2024] [Indexed: 11/15/2024] Open
Abstract
Studying prosociality in rodents can provide insight into brain mechanisms potentially related to neurodevelopmental disorders known to impact social behaviors (e.g., autism spectrum disorder). While many studies have been published suggesting promising models, current knowledge remains scattered, including potential factors mediating prosocial behaviors in rodents. Prosocial behavior is characterized by an action done to benefit another or promote their well-being. The goal of this scoping review is to characterize current findings regarding prosocial paradigms in rodents, highlight current gaps in reporting, and identify factors shown to be important in mediating prosocial responses in rodents. Five databases were consulted in search of relevant studies published between 2000 and 2020 (APA PsycInfo, Embase, MEDLINE, Scopus, Web of Science). An update using a semi-supervised machine learning approach (ASReview) was then conducted to collect studies from 2021-2023. In total, 80 articles were included. Findings were the following: (1) Three categories of prosocial paradigm were extracted: cooperation, helping, and sharing tasks, (2) Rodents showed the ability to perform prosocial actions in all three categories, (3) Significant gaps in reported methodologies (e.g., failure to report animals' characteristics, housing conditions, and/or experimental protocol) and mediating factors (e.g., sex, strain, housing, food restriction) were found, and (4) Behaviors are determinant when investigating prosociality in rodents, however many studies omitted to include such analyses. Together these results inform future studies on the impact of mediating factors and the importance of behavioral analyses on the expression of prosocial behaviors in rodents.
Collapse
Affiliation(s)
- Valérie Charron
- Behavioural Neuroscience Group, School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
| | - Joey Talbot
- Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Patrick R. Labelle
- University of Ottawa Library, University of Ottawa, Ottawa, Ontario, Canada
| | - Anne T. M. Konkle
- Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
| | - Hélène Plamondon
- Behavioural Neuroscience Group, School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Gachomba MJM, Esteve-Agraz J, Márquez C. Prosocial behaviors in rodents. Neurosci Biobehav Rev 2024; 163:105776. [PMID: 38909642 DOI: 10.1016/j.neubiorev.2024.105776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/21/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Prosocial behaviors (i.e., actions that benefit others) are central for social interactions in humans and other animals, by fostering social bonding and cohesion. To study prosociality in rodents, scientists have developed behavioral paradigms where animals can display actions that benefit conspecifics in distress or need. These paradigms have provided insights into the role of social interactions and transfer of emotional states in the expression of prosociality, and increased knowledge of its neural bases. However, prosociality levels are variable: not all tested animals are prosocial. Such variation has been linked to differences in animals' ability to process another's state as well as to contextual factors. Moreover, evidence suggests that prosocial behaviors involve the orchestrated activity of multiple brain regions and neuromodulators. This review aims to synthesize findings across paradigms both at the level of behavior and neural mechanisms. Growing evidence confirms that these processes can be studied in rodents, and intense research in the past years is rapidly advancing our knowledge. We discuss a strong bias in the field towards the study of these processes in negative valence contexts (e.g., pain, fear, stress), which should be taken as an opportunity to open new venues for future research.
Collapse
Affiliation(s)
- Michael J M Gachomba
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Joan Esteve-Agraz
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; Instituto de Neurociencias de Alicante, Universidad Miguel Hernández de Elche, Alicante, Spain
| | - Cristina Márquez
- CNC-UC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
3
|
Walker SL, Sud N, Beyene R, Palin N, Glasper ER. Paternal deprivation induces vigilance-avoidant behavior and accompanies sex-specific alterations in stress reactivity and central proinflammatory cytokine response in California mice (Peromyscus californicus). Psychopharmacology (Berl) 2023; 240:2317-2334. [PMID: 36988696 PMCID: PMC10599166 DOI: 10.1007/s00213-023-06354-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 03/07/2023] [Indexed: 03/30/2023]
Abstract
RATIONALE Early-life stress (ELS) can increase anxiety, reduce prosocial behaviors, and impair brain regions that facilitate emotional and social development. This knowledge greatly stems from assessing disrupted mother-child relationships, while studies investigating the long-term effects of father-child relationships on behavioral development in children are scarce. However, available evidence suggests that fathers may uniquely influence a child's behavioral development in a sex-specific manner. Rodent models examining mother-offspring interaction demonstrate relationships among ELS, neuroinflammatory mediators, and behavioral development; yet, the role paternal care may play in neuroimmune functioning remains unreported. OBJECTIVES Using the biparental California mouse (Peromyscus californicus), we examined to what extent paternal deprivation impairs social and anxiety-like behaviors, augments peripheral corticosterone (CORT) response, and alters central proinflammatory cytokine production following an acute stressor in adulthood. METHODS Biparentally reared and paternally deprived (permanent removal of the sire 24 h post-birth) adult mice were assessed for sociability, preference for social novelty, social vigilance, and social avoidance behaviors, followed by novelty-suppressed feeding (NSF) testing for general anxiety-like behavior. Following an acute stressor, circulating CORT concentrations and region-specific proinflammatory cytokine concentrations were determined via radioimmunoassay and Luminex multianalyte analysis, respectively. RESULTS In response to a novel same-sex conspecific, social vigilance behavior was associated with reduced sociability and increased avoidance in paternally deprived mice-an effect not observed in biparentally reared counterparts. Yet, in response to a familiar same-sex conspecific, social vigilance persisted but only in paternally deprived females. The latency to consume during NSF testing was not significantly altered by paternal deprivation. In response to an acute physical stressor, lower circulating CORT concentrations were observed in paternally deprived females. Compared to control-reared males, paternal deprivation increased hypothalamic interleukin-1β, but decreased hippocampal IL-6 protein concentration. CONCLUSION Greater social vigilance behavior was demonstrated in paternally deprived mice while they avoided social interaction with a novel same-sex conspecific; however, in response to a familiar same-sex conspecific, paternal deprivation increased social vigilance behavior but only in females. It is possible that different neurobiological mechanisms underlie these observed behavioral outcomes as sex-specific central proinflammatory cytokine and stress responsivity were observed in paternally deprived offspring.
Collapse
Affiliation(s)
- Shakeera L Walker
- Department of Neuroscience, The Ohio State University, Columbus, OH, 43210, USA
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, 20742, USA
| | - Neilesh Sud
- Department of Psychology, University of Maryland, College Park, MD, 20742, USA
| | - Rita Beyene
- Department of Neuroscience, The Ohio State University, Columbus, OH, 43210, USA
| | - Nicole Palin
- Department of Psychology, University of Maryland, College Park, MD, 20742, USA
| | - Erica R Glasper
- Department of Neuroscience, The Ohio State University, Columbus, OH, 43210, USA.
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, 43210, USA.
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, 43210, USA.
- Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, 20742, USA.
- Department of Psychology, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
4
|
Misiołek K, Klimczak M, Chrószcz M, Szumiec Ł, Bryksa A, Przyborowicz K, Rodriguez Parkitna J, Harda Z. Prosocial behavior, social reward and affective state discrimination in adult male and female mice. Sci Rep 2023; 13:5583. [PMID: 37019941 PMCID: PMC10076499 DOI: 10.1038/s41598-023-32682-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Prosocial behavior, defined as voluntary behavior intended to benefit another, has long been regarded as a primarily human characteristic. In recent years, it was reported that laboratory animals also favor prosocial choices in various experimental paradigms, thus demonstrating that prosocial behaviors are evolutionarily conserved. Here, we investigated prosocial choices in adult male and female C57BL/6 laboratory mice in a task where a subject mouse was equally rewarded for entering any of the two compartments of the experimental cage, but only entering of the compartment designated as "prosocial" rewarded an interaction partner. In parallel we have also assessed two traits that are regarded as closely related to prosociality: sensitivity to social reward and the ability to recognize the affective state of another individual. We found that female, but not male, mice increased frequency of prosocial choices from pretest to test. However, both sexes showed similar rewarding effects of social contact in the conditioned place preference test, and similarly, there was no effect of sex on affective state discrimination measured as the preference for interaction with a hungry or relieved mouse over a neutral animal. These observations bring interesting parallels to differences between sexes observed in humans, and are in line with reported higher propensity for prosocial behavior in human females, but differ with regard to sensitivity to social stimuli in males.
Collapse
Affiliation(s)
- Klaudia Misiołek
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Smętna 12, 31-343, Krakow, Poland
| | - Marta Klimczak
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Smętna 12, 31-343, Krakow, Poland
| | - Magdalena Chrószcz
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Smętna 12, 31-343, Krakow, Poland
| | - Łukasz Szumiec
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Smętna 12, 31-343, Krakow, Poland
| | - Anna Bryksa
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Smętna 12, 31-343, Krakow, Poland
- Laboratory of Emotions Neurobiology, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093, Warszawa, Poland
| | - Karolina Przyborowicz
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Smętna 12, 31-343, Krakow, Poland
| | - Jan Rodriguez Parkitna
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Smętna 12, 31-343, Krakow, Poland.
| | - Zofia Harda
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Smętna 12, 31-343, Krakow, Poland.
| |
Collapse
|
5
|
Gachomba MJM, Esteve-Agraz J, Caref K, Maroto AS, Bortolozzo-Gleich MH, Laplagne DA, Márquez C. Multimodal cues displayed by submissive rats promote prosocial choices by dominants. Curr Biol 2022; 32:3288-3301.e8. [PMID: 35803272 DOI: 10.1016/j.cub.2022.06.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/25/2022] [Accepted: 06/09/2022] [Indexed: 12/30/2022]
Abstract
Animals often display prosocial behaviors, performing actions that benefit others. Although prosociality is essential for social bonding and cooperation, we still know little about how animals integrate behavioral cues from those in need to make decisions that increase their well-being. To address this question, we used a two-choice task where rats can provide rewards to a conspecific in the absence of self-benefit and investigated which conditions promote prosociality by manipulating the social context of the interacting animals. Although sex or degree of familiarity did not affect prosocial choices in rats, social hierarchy revealed to be a potent modulator, with dominant decision-makers showing faster emergence and higher levels of prosocial choices toward their submissive cage mates. Leveraging quantitative analysis of multimodal social dynamics prior to choice, we identified that pairs with dominant decision-makers exhibited more proximal interactions. Interestingly, these closer interactions were driven by submissive animals that modulated their position and movement following their dominants and whose 50-kHz vocalization rate correlated with dominants' prosociality. Moreover, Granger causality revealed stronger bidirectional influences in pairs with dominant focals and submissive recipients, indicating increased behavioral coordination. Finally, multivariate analysis highlighted body language as the main information dominants use on a trial-by-trial basis to learn that their actions have effects on others. Our results provide a refined understanding of the behavioral dynamics that rats use for action-selection upon perception of socially relevant cues and navigate social decision-making.
Collapse
Affiliation(s)
- Michael Joe Munyua Gachomba
- Neural Circuits of Social Behaviour Laboratory, Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Alicante, Spain
| | - Joan Esteve-Agraz
- Neural Circuits of Social Behaviour Laboratory, Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Alicante, Spain
| | - Kevin Caref
- Neural Circuits of Social Behaviour Laboratory, Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Alicante, Spain
| | - Aroa Sanz Maroto
- Neural Circuits of Social Behaviour Laboratory, Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Alicante, Spain
| | - Maria Helena Bortolozzo-Gleich
- Neural Circuits of Social Behaviour Laboratory, Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Alicante, Spain
| | - Diego Andrés Laplagne
- Laboratory of Behavioural Neurophysiology, Brain Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Cristina Márquez
- Neural Circuits of Social Behaviour Laboratory, Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d'Alacant, Alicante, Spain.
| |
Collapse
|
6
|
Keysers C, Knapska E, Moita MA, Gazzola V. Emotional contagion and prosocial behavior in rodents. Trends Cogn Sci 2022; 26:688-706. [PMID: 35667978 DOI: 10.1016/j.tics.2022.05.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/06/2022] [Accepted: 05/12/2022] [Indexed: 01/09/2023]
Abstract
Empathy is critical to adjusting our behavior to the state of others. The past decade dramatically deepened our understanding of the biological origin of this capacity. We now understand that rodents robustly show emotional contagion for the distress of others via neural structures homologous to those involved in human empathy. Their propensity to approach others in distress strengthens this effect. Although rodents can also learn to favor behaviors that benefit others via structures overlapping with those of emotional contagion, they do so less reliably and more selectively. Together, this suggests evolution selected mechanisms for emotional contagion to prepare animals for dangers by using others as sentinels. Such shared emotions additionally can, under certain circumstances, promote prosocial behavior.
Collapse
Affiliation(s)
- Christian Keysers
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences, Amsterdam, the Netherlands; Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands.
| | - Ewelina Knapska
- Laboratory of Emotions' Neurobiology, Center of Excellence for Neural Plasticity and Brain Disorders BRAINCITY, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Marta A Moita
- Champalimaud Neuroscience Progamme, Champalimaud Foundation, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Valeria Gazzola
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences, Amsterdam, the Netherlands; Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
7
|
Maccioni P, Bratzu J, Lobina C, Acciaro C, Corrias G, Capra A, Carai MAM, Agabio R, Muntoni AL, Gessa GL, Colombo G. Exposure to an enriched environment reduces alcohol self-administration in Sardinian alcohol-preferring rats. Physiol Behav 2022; 249:113771. [PMID: 35247441 DOI: 10.1016/j.physbeh.2022.113771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 10/19/2022]
Abstract
Living in an enriched environment (EE) produces a notable impact on several rodent behaviors, including those motivated by drugs of abuse. This picture is somewhat less clear when referring to alcohol-motivated behaviors. With the intent of contributing to this research field with data from one of the few rat lines selectively bred for excessive alcohol consumption, the present study investigated the effect of EE on operant oral alcohol self-administration in Sardinian alcohol-preferring (sP) rats. Starting from Postnatal Day (PND) 21, male sP rats were kept under 3 different housing conditions: impoverished environment (IE; single housing in shoebox-like cages with no environmental enrichment); standard environment (SE; small colony cages with 3 rats and no environmental enrichment); EE (large colony cages with 6 rats and multiple elements of environmental enrichment, including 2 floors, ladders, maze, running wheels, and shelter). From PND 60, rats were exposed to different phases of shaping and training of alcohol self-administration. IE, SE, and EE rats were then compared under (i) fixed ratio (FR) 4 (FR4) schedule of alcohol reinforcement for 20 daily sessions and (ii) progressive ratio (PR) schedule of alcohol reinforcement in a final single session. Acquisition of the lever-responding task (shaping) was slower in EE than IE and SE rats, as the likely consequence of a "devaluation" of the novel stimuli provided by the operant chamber in comparison to those to which EE rats were continuously exposed in their homecage or an alteration, induced by EE, of the rat "emotionality" state when facing the novel environment represented by the operant chamber. Training of alcohol self-administration was slower in EE than IE rats, with SE rats displaying intermediate values. A similar ranking order (IE>SE>EE) was also observed in number of lever-responses for alcohol, amount of self-administered alcohol, and breakpoint for alcohol under FR4 and PR schedules of reinforcement. These data suggest that living in a complex environment reduced the reinforcing and motivational properties of alcohol in sP rats. These results are interpreted in terms of the reinforcing and motivational properties of the main components of EE (i.e., social interactions, physical activities, exploration, novelty) substituting, at least partially, for those of alcohol.
Collapse
Affiliation(s)
- Paola Maccioni
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, I-09042 Monserrato (CA), Italy
| | - Jessica Bratzu
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, I-09042 Monserrato (CA), Italy
| | - Carla Lobina
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, I-09042 Monserrato (CA), Italy
| | - Carla Acciaro
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, I-09042 Monserrato (CA), Italy
| | - Gianluigi Corrias
- Department of Physics, University of Cagliari, I-09042 Monserrato (CA), Italy
| | - Alessandro Capra
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, I-09042 Monserrato (CA), Italy
| | - Mauro A M Carai
- Cagliari Pharmacological Research, I-09127 Cagliari (CA), Italy
| | - Roberta Agabio
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, I-09042 Monserrato (CA), Italy
| | - Anna Lisa Muntoni
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, I-09042 Monserrato (CA), Italy
| | - Gian Luigi Gessa
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, I-09042 Monserrato (CA), Italy; Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, I-09042 Monserrato (CA), Italy
| | - Giancarlo Colombo
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, I-09042 Monserrato (CA), Italy.
| |
Collapse
|
8
|
Kalamari A, Kentrop J, Hinna Danesi C, Graat EAM, van IJzendoorn MH, Bakermans-Kranenburg MJ, Joëls M, van der Veen R. Complex Housing, but Not Maternal Deprivation Affects Motivation to Liberate a Trapped Cage-Mate in an Operant Rat Task. Front Behav Neurosci 2021; 15:698501. [PMID: 34512284 PMCID: PMC8427758 DOI: 10.3389/fnbeh.2021.698501] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
Early life environment influences the development of various aspects of social behavior, particularly during sensitive developmental periods. We studied how challenges in the early postnatal period or (early) adolescence affect pro-social behavior. To this end, we designed a lever-operated liberation task, to be able to measure motivation to liberate a trapped conspecific (by progressively increasing required lever pressing for door-opening). Liberation of the trapped rat resulted either in social contact or in liberation into a separate compartment. Additionally, a condition was tested in which both rats could freely move in two separate compartments and lever pressing resulted in social contact. When partners were not trapped, rats were more motivated to press the lever for opening the door than in either of the trapped configurations. Contrary to our expectations, the trapped configuration resulted in a reduced motivation to act. Early postnatal stress (24 h maternal deprivation on postnatal day 3) did not affect behavior in the liberation task. However, rearing rats from early adolescence onwards in complex housing conditions (Marlau cages) reduced the motivation to door opening, both in the trapped and freely moving conditions, while the motivation for a sucrose reward was not affected.
Collapse
Affiliation(s)
- Aikaterini Kalamari
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Jiska Kentrop
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Chiara Hinna Danesi
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Evelien A M Graat
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Marinus H van IJzendoorn
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, Netherlands.,Primary Care Unit, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Marian Joëls
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,University Medical Center Groningen, Groningen University, Groningen, Netherlands
| | - Rixt van der Veen
- Brain Plasticity group, SILS Center for Neuroscience, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
9
|
Costa DF, Moita MA, Márquez C. Novel competition test for food rewards reveals stable dominance status in adult male rats. Sci Rep 2021; 11:14599. [PMID: 34272430 PMCID: PMC8285491 DOI: 10.1038/s41598-021-93818-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
Social hierarchy is a potent modulator of behavior, that is typically established through overt agonistic interactions between individuals in the group. Once established, social ranks are maintained through subtler interactions allowing the redirection of energy away from agonistic interactions towards other needs. The available tasks for assessing social rank in rats allow the study of the mechanisms by which social hierarches are formed in early phases but fail to assess the maintenance of established hierarchies between stable pairs of animals, which might rely on distinct neurobiological mechanisms. Here we present and validate a novel trial-based dominancy assay, the modified Food Competition test, where established social hierarchies can be identified in the home cage of non-food deprived pairs of male rats. In this task, we introduce a small conflict in the home cage, where access to a new feeder containing palatable pellets can only be gained by one animal at a time. We found that this subtle conflict triggered asymmetric social interactions and resulted in higher consumption of food by one of the animals in the pair, which reliably predicted hierarchy in other tests. Our findings reveal stable dominance status in pair-housed rats and provide a novel tool for the evaluation of established social hierarchies, the modified Food Competition test, that is robust and easy to implement.
Collapse
Affiliation(s)
- Diana F Costa
- Neural Circuits of Social Behavior Laboratory, Instituto de Neurociencias (CSIC-UMH), Avenida Ramon y Cajal s/n, Sant Joan d'Alacant, 03550, Alicante, Spain
| | - Marta A Moita
- Behavioral Neuroscience Laboratory, Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasilia, 1400-038, Lisbon, Portugal
| | - Cristina Márquez
- Neural Circuits of Social Behavior Laboratory, Instituto de Neurociencias (CSIC-UMH), Avenida Ramon y Cajal s/n, Sant Joan d'Alacant, 03550, Alicante, Spain.
| |
Collapse
|
10
|
Ebbesen CL, Froemke RC. Body language signals for rodent social communication. Curr Opin Neurobiol 2021; 68:91-106. [PMID: 33582455 PMCID: PMC8243782 DOI: 10.1016/j.conb.2021.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/09/2021] [Accepted: 01/25/2021] [Indexed: 12/15/2022]
Abstract
Integration of social cues to initiate adaptive emotional and behavioral responses is a fundamental aspect of animal and human behavior. In humans, social communication includes prominent nonverbal components, such as social touch, gestures and facial expressions. Comparative studies investigating the neural basis of social communication in rodents has historically been centered on olfactory signals and vocalizations, with relatively less focus on non-verbal social cues. Here, we outline two exciting research directions: First, we will review recent observations pointing to a role of social facial expressions in rodents. Second, we will review observations that point to a role of 'non-canonical' rodent body language: body posture signals beyond stereotyped displays in aggressive and sexual behavior. In both sections, we will outline how social neuroscience can build on recent advances in machine learning, robotics and micro-engineering to push these research directions forward towards a holistic systems neurobiology of rodent body language.
Collapse
Affiliation(s)
- Christian L Ebbesen
- Skirball Institute of Biomolecular Medicine, Neuroscience Institute, Departments of Otolaryngology, Neuroscience and Physiology, New York University School of Medicine, New York, NY, 10016, USA; Center for Neural Science, New York University, New York, NY, 10003, USA.
| | - Robert C Froemke
- Skirball Institute of Biomolecular Medicine, Neuroscience Institute, Departments of Otolaryngology, Neuroscience and Physiology, New York University School of Medicine, New York, NY, 10016, USA; Center for Neural Science, New York University, New York, NY, 10003, USA; Howard Hughes Medical Institute Faculty Scholar, USA.
| |
Collapse
|
11
|
Manduca A, Carbone E, Schiavi S, Cacchione C, Buzzelli V, Campolongo P, Trezza V. The neurochemistry of social reward during development: What have we learned from rodent models? J Neurochem 2021; 157:1408-1435. [PMID: 33569830 DOI: 10.1111/jnc.15321] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/02/2021] [Accepted: 02/07/2021] [Indexed: 12/14/2022]
Abstract
Social rewards are fundamental to survival and overall health. Several studies suggest that adequate social stimuli during early life are critical for developing appropriate socioemotional and cognitive skills, whereas adverse social experiences negatively affect the proper development of brain and behavior, by increasing the susceptibility to develop neuropsychiatric conditions. Therefore, a better understanding of the neural mechanisms underlying social interactions, and their rewarding components in particular, is an important challenge of current neuroscience research. In this context, preclinical research has a crucial role: Animal models allow to investigate the neurobiological aspects of social reward in order to shed light on possible neurochemical alterations causing aberrant social reward processing in neuropsychiatric diseases, and they allow to test the validity and safety of innovative therapeutic strategies. Here, we discuss preclinical research that has investigated the rewarding properties of two forms of social interaction that occur in different phases of the lifespan of mammals, that is, mother-infant interaction and social interactions with peers, by focusing on the main neurotransmitter systems mediating their rewarding components. Together, the research performed so far helped to elucidate the mechanisms of social reward and its psychobiological components throughout development, thus increasing our understanding of the neurobiological substrates sustaining social functioning in health conditions and social dysfunction in major psychiatric disorders.
Collapse
Affiliation(s)
- Antonia Manduca
- Department of Science, Section of Biomedical Sciences and Technologies, Roma Tre University, Rome, Italy.,Neuroendocrinology, Metabolism and Neuropharmacology Unit, IRCSS Fondazione Santa Lucia, Rome, Italy
| | - Emilia Carbone
- Department of Science, Section of Biomedical Sciences and Technologies, Roma Tre University, Rome, Italy
| | - Sara Schiavi
- Department of Science, Section of Biomedical Sciences and Technologies, Roma Tre University, Rome, Italy
| | - Claudia Cacchione
- Department of Science, Section of Biomedical Sciences and Technologies, Roma Tre University, Rome, Italy
| | - Valeria Buzzelli
- Department of Science, Section of Biomedical Sciences and Technologies, Roma Tre University, Rome, Italy.,Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Patrizia Campolongo
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy.,Neurobiology of Behavior Laboratory, IRCSS Fondazione Santa Lucia, Rome, Italy
| | - Viviana Trezza
- Department of Science, Section of Biomedical Sciences and Technologies, Roma Tre University, Rome, Italy
| |
Collapse
|
12
|
Kemner C, van Duijvenvoorde A, Nelemans S, Peeters M, Sarabdjitsingh A, de Zeeuw E. Teaming up to understand individual development. Dev Cogn Neurosci 2021; 48:100910. [PMID: 33518478 PMCID: PMC8055707 DOI: 10.1016/j.dcn.2021.100910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
13
|
van der Veen R, Bonapersona V, Joëls M. The relevance of a rodent cohort in the Consortium on Individual Development. Dev Cogn Neurosci 2020; 45:100846. [PMID: 32957026 PMCID: PMC7509002 DOI: 10.1016/j.dcn.2020.100846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/29/2020] [Accepted: 08/23/2020] [Indexed: 12/31/2022] Open
Abstract
One of the features of the Consortium on Individual Development is the existence of a rodent cohort, in parallel with the human cohorts. Here we give an overview of the current status. We first elaborate on the choice of rat and mouse models mimicking early life adverse or beneficial conditions during development. We performed a systematic literature search on early life adversity and adult social behavior to address the status quo. Next, we describe the behavioral tasks we used and designed to examine behavioral control and social competence in rodents. The results so far indicate that manipulation of the environment in the first postnatal week only subtly affects social behavior. Stronger effects were seen in the model that targeted early adolescence; once adult, these rats are characterized by increased attention, a higher degree of impulsiveness and reduced social interest in peers. Many experiments in our rodent models with tightly controlled conditions were inspired by findings in human cohorts, and now allow in-depth mechanistic investigations. Vice versa, some of the findings in rodents are currently followed up by dedicated investigations in the human cohorts. This exemplifies the added value of animal investigations in a consortium encompassing primarily human developmental cohorts.
Collapse
Affiliation(s)
- Rixt van der Veen
- Dept. Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Faculty of Social and Behavioral Sciences, Leiden University, Leiden, the Netherlands.
| | - Valeria Bonapersona
- Dept. Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Marian Joëls
- Dept. Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|