1
|
Chen S, Yan J, Lock M, Wang T, Wang M, Wang L, Yuan L, Zhuang Q, Dong GH. Alterations of gray matter asymmetry in internet gaming disorder. Sci Rep 2024; 14:28282. [PMID: 39550457 PMCID: PMC11569135 DOI: 10.1038/s41598-024-79659-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024] Open
Abstract
Structural asymmetry is a subtle but pervasive property of the human brain, which has been found altered in various psychiatric and neurocognitive disorders. However, little is known regarding potential alterations of structural asymmetry underlying internet gaming disorder (IGD). Therefore, this study aimed to investigate the structural features of gray matter asymmetry in IGD. High-resolution structural magnetic resonance imaging data were collected from 104 individuals with IGD and 104 recreational game users (RGUs). We applied a whole-brain voxel-based asymmetry (VBA) approach to determine the asymmetrical aberrations of gray matter in relation to IGD. Furthermore, the local abnormalities of structural asymmetry were employed as features to examine the effect of classification using a support vector machine (SVM). The results indicated that individuals with IGD as compared to RGUs showed asymmetrical alterations of gray matter in the medial prefrontal cortex (mPFC), orbitofrontal cortex, precuneus, middle temporal gyrus, superior parietal lobule and inferior temporal gyrus, regions implicated in hedonic motivation, self-reflection, information integration and visuospatial attention processing. Moreover, these atypical asymmetrical features can distinguish IGD subjects from RGUs with high accuracy. These results suggested that disrupted structural asymmetry of motivational reward, visuospatial and default mode circuits might be potential biomarkers for identifying pathological gaming dependence. These findings extended our understanding of structural underpinnings of IGD and provided new insights for developing effective interventions to alleviate compulsive gaming usage.
Collapse
Affiliation(s)
- Shuaiyu Chen
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, China
| | - Jin Yan
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, China
| | - Matthew Lock
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, China
| | - Tongtong Wang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, China
| | - Min Wang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, China
| | - Lingxiao Wang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, China
| | - LiXia Yuan
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, China
| | - Qian Zhuang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, China.
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, China.
| | - Guang-Heng Dong
- Department of Psychology, Yunnan Normal University, Kunming, Yunnan Province, China.
| |
Collapse
|
2
|
Martin E, Cao M, Schulz KP, Hildebrandt T, Sysko R, Berner LA, Li X. Distinct Topological Properties of the Reward Anticipation Network in Preadolescent Children With Binge Eating Disorder Symptoms. J Am Acad Child Adolesc Psychiatry 2024; 63:1158-1168. [PMID: 38461893 PMCID: PMC11380707 DOI: 10.1016/j.jaac.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 02/01/2024] [Accepted: 03/01/2024] [Indexed: 03/12/2024]
Abstract
OBJECTIVE Few studies have considered the neural underpinnings of binge eating disorder (BED) in children, despite clinical and subclinical symptom presentation occurring in this age group. Symptom presentation at this age is of clinical relevance, as early onset of binge eating is linked to negative health outcomes. Studies in adults have highlighted dysfunction in the frontostriatal reward system as a potential candidate for binge eating pathophysiology, although the exact nature of such dysfunction is currently unclear. METHOD Data from 83 children (mean age 9.9 years, SD = 0.60) with symptoms of BED (57% girls) and 123 control participants (mean age 10.0 years, SD = 0.60) (52% girls) were acquired from the 4.0 baseline release of the Adolescent Brain Cognitive Development Study. Task-based graph theoretic techniques were used to analyze data from anticipation trials of the monetary incentive delay task. Network and nodal properties were compared between groups. RESULTS The BED-S group showed alterations in topological properties associated with the frontostriatal subnetwork, such as reduced nodal efficiency in the superior frontal gyrus, nucleus accumbens, putamen, and in normal sex-difference patterns of these properties, such as diminished girls-greater-than-boys pattern of betweenness-centrality in nucleus accumbens observed in controls. CONCLUSION Distinct network properties and sex-difference patterns in preadolescent children with BED-S suggest dysregulation in the reward system compared to those of matched controls. For the first time, these results quantify this dysregulation in terms of systems-level properties during anticipation of monetary reward and significantly inform the early and sex-related brain markers of BED symptoms. PLAIN LANGUAGE SUMMARY Binge eating disorder is the most common eating disorder. One factor that may contribute to binge eating is dysregulation of the reward system in the brain. This study analyzed brain activity during anticipation of monetary rewards in 83 youth with and 123 children without binge eating disorder symptoms from the Adolescent Brain Cognitive Development Study. The authors found specific alterations in the frontostriatal system, responsible for reward processing, in children with binge eating disorder symptoms, compared to the control group, suggesting dysregulation of the reward system.
Collapse
Affiliation(s)
- Elizabeth Martin
- Icahn School of Medicine at Mount Sinai, New York, New Jersey; New Jersey Institute of Technology, Newark, New Jersey
| | - Meng Cao
- New Jersey Institute of Technology, Newark, New Jersey
| | - Kurt P Schulz
- Icahn School of Medicine at Mount Sinai, New York, New Jersey
| | - Tom Hildebrandt
- Icahn School of Medicine at Mount Sinai, New York, New Jersey
| | - Robyn Sysko
- Icahn School of Medicine at Mount Sinai, New York, New Jersey
| | - Laura A Berner
- Icahn School of Medicine at Mount Sinai, New York, New Jersey
| | - Xiaobo Li
- New Jersey Institute of Technology, Newark, New Jersey.
| |
Collapse
|
3
|
Lee Y, Yuan JP, Winkler AM, Kircanski K, Pine DS, Gotlib IH. Task-Rest Reconfiguration Efficiency of the Reward Network Across Adolescence and Its Association With Early Life Stress and Depressive Symptoms. J Am Acad Child Adolesc Psychiatry 2024:S0890-8567(24)00313-7. [PMID: 38878818 PMCID: PMC11638404 DOI: 10.1016/j.jaac.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 04/17/2024] [Accepted: 06/06/2024] [Indexed: 06/29/2024]
Abstract
OBJECTIVE Adolescents face significant changes in many domains of their daily lives that require them to flexibly adapt to changing environmental demands. To shift efficiently among various goals, adolescents must reconfigure their brains, disengaging from previous tasks and engaging in new activities. METHOD To examine this reconfiguration, we obtained resting-state and task-based functional magnetic resonance imaging (fMRI) scans in a community sample of 164 youths. We assessed the similarity of functional connectivity (FC) of the reward network between resting state and a reward-processing state, indexing the degree of reward network reconfiguration required to meet task demands. Given research documenting relations among reward network function, early life stress (ELS), and adolescent depression, we examined the association of reconfiguration efficiency with age across adolescence, the moderating effect of ELS on this association, and the relation between reconfiguration efficiency and depressive symptoms. RESULTS We found that older adolescents showed greater reconfiguration efficiency than younger adolescents and, furthermore, that this age-related association was moderated by the experience of ELS. CONCLUSION These findings suggest that reconfiguration efficiency of the reward network increases over adolescence, a developmental pattern that is attenuated in adolescents exposed to severe ELS. In addition, even after controlling for the effects of age and exposure to ELS, adolescents with higher levels of depressive symptoms exhibited greater reconfiguration efficiency, suggesting that they have brain states at rest that are more strongly optimized for reward processing than do asymptomatic youth. DIVERSITY & INCLUSION STATEMENT We worked to ensure race, ethnic, and/or other types of diversity in the recruitment of human participants. We worked to ensure sex and gender balance in the recruitment of human participants. We worked to ensure that the study questionnaires were prepared in an inclusive way. One or more of the authors of this paper self-identifies as a member of one or more historically underrepresented racial and/or ethnic groups in science.
Collapse
Affiliation(s)
- Yoonji Lee
- Stanford University, Stanford, California.
| | | | | | | | - Daniel S Pine
- National Institute of Mental Health, Bethesda, Maryland
| | | |
Collapse
|
4
|
Gadassi Polack R, Mollick JA, Keren H, Joormann J, Watts R. Neural responses to reward valence and magnitude from pre- to early adolescence. Neuroimage 2023; 275:120166. [PMID: 37178821 PMCID: PMC10311119 DOI: 10.1016/j.neuroimage.2023.120166] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/04/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Neural activation during reward processing is thought to underlie critical behavioral changes that take place during the transition to adolescence (e.g., learning, risk-taking). Though literature on the neural basis of reward processing in adolescence is booming, important gaps remain. First, more information is needed regarding changes in functional neuroanatomy in early adolescence. Another gap is understanding whether sensitivity to different aspects of the incentive (e.g., magnitude and valence) changes during the transition into adolescence. We used fMRI from a large sample of preadolescent children to characterize neural responses to incentive valence vs. magnitude during anticipation and feedback, and their change over a period of two years. METHODS Data were taken from the Adolescent Cognitive and Brain DevelopmentSM (ABCD®) study release 3.0. Children completed the Monetary Incentive Delay task at baseline (ages 9-10) and year 2 follow-up (ages 11-12). Based on data from two sites (N = 491), we identified activation-based Regions of Interest (ROIs; e.g., striatum, prefrontal regions, etc.) that were sensitive to trial type (win $5, win $0.20, neutral, lose $0.20, lose $5) during anticipation and feedback phases. Then, in an independent subsample (N = 1470), we examined whether these ROIs were sensitive to valence and magnitude and whether that sensitivity changed over two years. RESULTS Our results show that most ROIs involved in reward processing (including the striatum, prefrontal cortex, and insula) are specialized, i.e., mainly sensitive to either incentive valence or magnitude, and this sensitivity was consistent over a 2-year period. The effect sizes of time and its interactions were significantly smaller (0.002≤η2≤0.02) than the effect size of trial type (0.06≤η2≤0.30). Interestingly, specialization was moderated by reward processing phase but was stable across development. Biological sex and pubertal status differences were few and inconsistent. Developmental changes were mostly evident during success feedback, where neural reactivity increased over time. CONCLUSIONS Our results suggest sub-specialization to valence vs. magnitude within many ROIs of the reward circuitry. Additionally, in line with theoretical models of adolescent development, our results suggest that the ability to benefit from success increases from pre- to early adolescence. These findings can inform educators and clinicians and facilitate empirical research of typical and atypical motivational behaviors during a critical time of development.
Collapse
Affiliation(s)
- Reuma Gadassi Polack
- Psychology Department, Yale University, United States; Psychiatry Department, Yale University, United States; School of Behavioral Sciences, Tel Aviv-Yaffo Academic College, Israel.
| | | | - Hanna Keren
- Faculty of Medicine, Bar-Ilan University, Israel
| | | | - Richard Watts
- Psychology Department, Yale University, United States
| |
Collapse
|
5
|
Petrican R, Fornito A. Adolescent neurodevelopment and psychopathology: The interplay between adversity exposure and genetic risk for accelerated brain ageing. Dev Cogn Neurosci 2023; 60:101229. [PMID: 36947895 PMCID: PMC10041470 DOI: 10.1016/j.dcn.2023.101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/08/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023] Open
Abstract
In adulthood, stress exposure and genetic risk heighten psychological vulnerability by accelerating neurobiological senescence. To investigate whether molecular and brain network maturation processes play a similar role in adolescence, we analysed genetic, as well as longitudinal task neuroimaging (inhibitory control, incentive processing) and early life adversity (i.e., material deprivation, violence) data from the Adolescent Brain and Cognitive Development study (N = 980, age range: 9-13 years). Genetic risk was estimated separately for Major Depressive Disorder (MDD) and Alzheimer's Disease (AD), two pathologies linked to stress exposure and allegedly sharing a causal connection (MDD-to-AD). Adversity and genetic risk for MDD/AD jointly predicted functional network segregation patterns suggestive of accelerated (GABA-linked) visual/attentional, but delayed (dopamine [D2]/glutamate [GLU5R]-linked) somatomotor/association system development. A positive relationship between brain maturation and psychopathology emerged only among the less vulnerable adolescents, thereby implying that normatively maladaptive neurodevelopmental alterations could foster adjustment among the more exposed and genetically more stress susceptible youths. Transcriptomic analyses suggested that sensitivity to stress may underpin the joint neurodevelopmental effect of adversity and genetic risk for MDD/AD, in line with the proposed role of negative emotionality as a precursor to AD, likely to account for the alleged causal impact of MDD on dementia onset.
Collapse
Affiliation(s)
- Raluca Petrican
- Institute of Population Health, Department of Psychology, University of Liverpool, Bedford Street South, Liverpool L69 7ZA, United Kingdom.
| | - Alex Fornito
- The Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Ojha A, Parr AC, Foran W, Calabro FJ, Luna B. Puberty contributes to adolescent development of fronto-striatal functional connectivity supporting inhibitory control. Dev Cogn Neurosci 2022; 58:101183. [PMID: 36495791 PMCID: PMC9730138 DOI: 10.1016/j.dcn.2022.101183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/06/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Adolescence is defined by puberty and represents a period characterized by neural circuitry maturation (e.g., fronto-striatal systems) facilitating cognitive improvements. Though studies have characterized age-related changes, the extent to which puberty influences maturation of fronto-striatal networks is less known. Here, we combine two longitudinal datasets to characterize the role of puberty in the development of fronto-striatal resting-state functional connectivity (rsFC) and its relationship to inhibitory control in 106 10-18-year-olds. Beyond age effects, we found that puberty was related to decreases in rsFC between the caudate and the anterior vmPFC, rostral and ventral ACC, and v/dlPFC, as well as with rsFC increases between the dlPFC and nucleus accumbens (NAcc) across males and females. Stronger caudate rsFC with the dlPFC and vlPFC during early puberty was associated with worse inhibitory control and slower correct responses, respectively, whereas by late puberty, stronger vlPFC rsFC with the dorsal striatum was associated with faster correct responses. Taken together, our findings suggest that certain fronto-striatal connections are associated with pubertal maturation beyond age effects, which, in turn are related to inhibitory control. We discuss implications of puberty-related fronto-striatal maturation to further our understanding of pubertal effects related to adolescent cognitive and affective neurodevelopment.
Collapse
Affiliation(s)
- Amar Ojha
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA,Correspondence to: Laboratory of Neurocognitive Development, University of Pittsburgh, 121 Meyran Ave, Pittsburgh, PA 15213, USA.
| | - Ashley C. Parr
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA,Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - William Foran
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Finnegan J. Calabro
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA,Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Beatriz Luna
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA,Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA,Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Sun J, Guo C, Ma Y, Du Z, Wang Z, Luo Y, Chen L, Gao D, Li X, Xu K, Hong Y, Yu X, Xiao X, Fang J, Liu Y. A comparative study of amplitude of low-frequence fluctuation of resting-state fMRI between the younger and older treatment-resistant depression in adults. Front Neurosci 2022; 16:949698. [PMID: 36090288 PMCID: PMC9462398 DOI: 10.3389/fnins.2022.949698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/08/2022] [Indexed: 12/02/2022] Open
Abstract
Background Treatment-resistant depression (TRD) may have different physiopathological neuromechanism in different age groups. This study used the amplitude of low frequency fluctuations (ALFF) to initially compare abnormalities in local functional brain activity in younger and older patients with TRD. Materials and methods A total of 21 older TRD patients, 19 younger TRD, 19 older healthy controls (HCs), and 19 younger HCs underwent resting-state functional MRI scans, and the images were analyzed using the ALFF and further analyzed for correlation between abnormal brain regions and clinical symptoms in TRD patients of different age groups. Results Compared with the older TRD, the younger TRD group had increased ALFF in the left middle frontal gyrus and decreased ALFF in the left caudate nucleus. Compared with the matched HC group, ALFF was increased in the right middle temporal gyrus and left pallidum in the older TRD group, whereas no significant differences were found in the younger TRD group. In addition, ALFF values in the left middle frontal gyrus in the younger TRD group and in the right middle temporal gyrus in the older TRD were both positively correlated with the 17-item Hamilton Rating Scale for Depression score. Conclusion Different neuropathological mechanisms may exist in TRD patients of different ages, especially in the left middle frontal gyrus and left caudate nucleus. This study is beneficial in providing potential key targets for the clinical management of TRD patients of different ages.
Collapse
Affiliation(s)
- Jifei Sun
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chunlei Guo
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue Ma
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhongming Du
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhi Wang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Luo
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Limei Chen
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Deqiang Gao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaojiao Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ke Xu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Hong
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xue Yu
- Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, China
| | - Xue Xiao
- Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, China
| | - Jiliang Fang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Jiliang Fang,
| | - Yong Liu
- Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, China
- Yong Liu,
| |
Collapse
|