1
|
Ås J, Bertulyte I, Norgren N, Johansson A, Eriksson N, Green H, Wadelius M, Hallberg P. Whole genome case-control study of central nervous system toxicity due to antimicrobial drugs. PLoS One 2024; 19:e0299075. [PMID: 38422004 PMCID: PMC10903854 DOI: 10.1371/journal.pone.0299075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 02/03/2024] [Indexed: 03/02/2024] Open
Abstract
A genetic predisposition to central nervous system (CNS) toxicity induced by antimicrobial drugs (antibiotics, antivirals, antifungals, and antiparasitic drugs) has been suspected. Whole genome sequencing of 66 cases and 833 controls was performed to investigate whether antimicrobial drug-induced CNS toxicity was associated with genetic variation. The primary objective was to test whether antimicrobial-induced CNS toxicity was associated with seventeen efflux transporters at the blood-brain barrier. In this study, variants or structural elements in efflux transporters were not significantly associated with CNS toxicity. Secondary objectives were to test whether antimicrobial-induced CNS toxicity was associated with genes over the whole genome, with HLA, or with structural genetic variation. Uncommon variants in and close to three genes were significantly associated with CNS toxicity according to a sequence kernel association test combined with an optimal unified test (SKAT-O). These genes were LCP1 (q = 0.013), RETSAT (q = 0.013) and SFMBT2 (q = 0.035). Two variants were driving the LCP1 association: rs6561297 (p = 1.15x10-6, OR: 4.60 [95% CI: 2.51-8.46]) and the regulatory variant rs10492451 (p = 1.15x10-6, OR: 4.60 [95% CI: 2.51-8.46]). No common genetic variant, HLA-type or structural variation was associated with CNS toxicity. In conclusion, CNS toxicity due to antimicrobial drugs was associated with uncommon variants in LCP1, RETSAT and SFMBT2.
Collapse
Affiliation(s)
- Joel Ås
- Department of Medical Sciences, Clinical Pharmacogenomics and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Ilma Bertulyte
- Department of Medical Sciences, Clinical Pharmacogenomics and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Nina Norgren
- Department of Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Umeå University, Umeå, Sweden
| | - Anna Johansson
- Dept of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Niclas Eriksson
- Department of Medical Sciences, Clinical Pharmacogenomics and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Uppsala Clinical Research Center, Uppsala, Sweden
| | - Henrik Green
- Division of Clinical Chemistry and Pharmacology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden
| | - Mia Wadelius
- Department of Medical Sciences, Clinical Pharmacogenomics and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Pär Hallberg
- Department of Medical Sciences, Clinical Pharmacogenomics and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Stefanucci A, Della Valle A, Scioli G, Marinaccio L, Pieretti S, Minosi P, Szucs E, Benyhe S, Masci D, Tanguturi P, Chou K, Barlow D, Houseknecht K, Streicher JM, Mollica A. Discovery of κ Opioid Receptor (KOR)-Selective d-Tetrapeptides with Improved In Vivo Antinociceptive Effect after Peripheral Administration. ACS Med Chem Lett 2022; 13:1707-1714. [PMID: 36385929 PMCID: PMC9661715 DOI: 10.1021/acsmedchemlett.2c00237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 10/13/2022] [Indexed: 11/29/2022] Open
Abstract
Peripherally active tetrapeptides as selective κ opioid receptor (KOR) agonists have been prepared in good overall yields and high purity following solid-phase peptide synthesis via Fmoc protection strategy. Structural modifications at the first and second position of the lead compound FF(d-Nle)R-NH2 (FE200041) were contemplated with aromatic side chains containing d-amino acids, such as (d)-pF-Phe, (d)-mF-Phe, (d)-oF-Phe, which led to highly selective and efficacious KOR agonists endowed with strong antinociceptive activity in vivo following intravenous (i.v.) and subcutaneous (s.c.) administration in the tail flick and formalin tests. These results suggest potential clinical applications in the treatment of neuropathic and inflammatory pain.
Collapse
Affiliation(s)
- Azzurra Stefanucci
- Dipartimento
di Farmacia, Università di Chieti-Pescara
“G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| | - Alice Della Valle
- Dipartimento
di Farmacia, Università di Chieti-Pescara
“G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| | - Giuseppe Scioli
- Dipartimento
di Farmacia, Università di Chieti-Pescara
“G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| | - Lorenza Marinaccio
- Dipartimento
di Farmacia, Università di Chieti-Pescara
“G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| | - Stefano Pieretti
- Istituto
Superiore di Sanità, Centro Nazionale Ricerca e Valutazione Preclinica e Clinica dei farmaci, Viale Regina Elena 299, 00161 Rome, Italy
| | - Paola Minosi
- Istituto
Superiore di Sanità, Centro Nazionale Ricerca e Valutazione Preclinica e Clinica dei farmaci, Viale Regina Elena 299, 00161 Rome, Italy
| | - Edina Szucs
- Institute
of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary
| | - Sandor Benyhe
- Institute
of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary
| | - Domiziana Masci
- Department
of Basic Biotechnological Sciences, Intensivological and Perioperative
Clinics, Catholic University of Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy
| | | | - Kerry Chou
- Department
of Pharmacology, College of Medicine, University
of Arizona, Tucson, Arizona 85724, United States
| | - Deborah Barlow
- Department
of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine 04005, United States
| | - Karen Houseknecht
- Department
of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine 04005, United States
| | - John M. Streicher
- Department
of Pharmacology, College of Medicine, University
of Arizona, Tucson, Arizona 85724, United States
| | - Adriano Mollica
- Dipartimento
di Farmacia, Università di Chieti-Pescara
“G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| |
Collapse
|
3
|
Liu KG, Kim JI, Olszewski K, Barsotti AM, Morris K, Lamarque C, Yu X, Gaffney J, Feng XJ, Patel JP, Poyurovsky MV. Discovery and Optimization of Glucose Uptake Inhibitors. J Med Chem 2020; 63:5201-5211. [PMID: 32282207 DOI: 10.1021/acs.jmedchem.9b02153] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aerobic glycolysis, originally identified by Warburg as a hallmark of cancer, has recently been implicated in immune cell activation and growth. Glucose, the starting material for glycolysis, is transported through the cellular membrane by a family of glucose transporters (GLUTs). Therefore, targeting glucose transporters to regulate aerobic glycolysis is an attractive approach to identify potential therapeutic agents for cancers and autoimmune diseases. Herein, we describe the discovery and optimization of a class of potent, orally bioavailable inhibitors of glucose transporters, targeting both GLUT1 and GLUT3.
Collapse
Affiliation(s)
- Kevin G Liu
- Kadmon Corporation, LLC., 450 East 29th Street, New York, New York 10016, United States
| | - Ji-In Kim
- Kadmon Corporation, LLC., 450 East 29th Street, New York, New York 10016, United States
| | - Kellen Olszewski
- Kadmon Corporation, LLC., 450 East 29th Street, New York, New York 10016, United States
| | - Anthony M Barsotti
- Kadmon Corporation, LLC., 450 East 29th Street, New York, New York 10016, United States
| | - Koi Morris
- Kadmon Corporation, LLC., 450 East 29th Street, New York, New York 10016, United States
| | - Christophe Lamarque
- Kadmon Corporation, LLC., 450 East 29th Street, New York, New York 10016, United States
| | - Xuemei Yu
- Kadmon Corporation, LLC., 450 East 29th Street, New York, New York 10016, United States
| | - Jack Gaffney
- Kadmon Corporation, LLC., 450 East 29th Street, New York, New York 10016, United States
| | - Xiao-Jiang Feng
- Kadmon Corporation, LLC., 450 East 29th Street, New York, New York 10016, United States
| | - Jeegar P Patel
- Kadmon Corporation, LLC., 450 East 29th Street, New York, New York 10016, United States
| | - Masha V Poyurovsky
- Kadmon Corporation, LLC., 450 East 29th Street, New York, New York 10016, United States
| |
Collapse
|
4
|
Cannon RE, Richards AC, Trexler AW, Juberg CT, Sinha B, Knudsen GA, Birnbaum LS. Effect of GenX on P-Glycoprotein, Breast Cancer Resistance Protein, and Multidrug Resistance-Associated Protein 2 at the Blood-Brain Barrier. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:37002. [PMID: 32212926 PMCID: PMC7137913 DOI: 10.1289/ehp5884] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 05/12/2023]
Abstract
BACKGROUND Ammonium 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)propanoic acid (GenX) is a replacement for perfluorooctanoic acid in the production of fluoropolymers used in a variety of consumer products. GenX alters fetal development and antibody production and elicits toxic responses in the livers and kidneys of rodents. The GenX effect on the blood-brain barrier (BBB) is unknown. The BBB protects the brain from xenobiotic neurotoxicants and harmful endogenous metabolites. OBJECTIVES We aimed to investigate the effects of GenX on the transport activity and expression of P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), and multidrug resistance-associated protein 2 (MRP2) at the BBB. METHODS Transporter activities were measured in isolated rat brain capillaries by a confocal microscopy-based method. ATPase (enzymatic hydrolysis of adenosine triphosphate to inorganic phosphate) levels were measured in vitro. Western blotting determined P-gp and BCRP protein levels. Cell survival after GenX exposure was determined for two human cell lines. RESULTS Nanomolar levels of GenX inhibited P-gp and BCRP but not MRP2 transport activities in male and female rat brain capillaries. P-gp transport activity returned to control levels after GenX removal. GenX did not reduce P-gp- or BCRP-associated ATPase activity in an in vitro transport assay system. Reductions of P-gp but not BCRP transport activity were blocked by a peroxisome proliferator-activated receptor γ (PPAR γ ) antagonist. GenX reduced P-gp and BCRP transport activity in human cells. CONCLUSION In rats, GenX at 0.1 - 100 nM rapidly (in 1-2 h) inhibited P-gp and BCRP transport activities at the BBB through different mechanisms. PPAR γ was required for the GenX effects on P-gp but not BCRP transport activity. https://doi.org/10.1289/EHP5884.
Collapse
Affiliation(s)
- Ronald E Cannon
- Laboratory of Toxicology and Toxicokinetics, National Cancer Institute at National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Alicia C Richards
- Laboratory of Toxicology and Toxicokinetics, National Cancer Institute at National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Andrew W Trexler
- Laboratory of Toxicology and Toxicokinetics, National Cancer Institute at National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Christopher T Juberg
- Laboratory of Toxicology and Toxicokinetics, National Cancer Institute at National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Birandra Sinha
- Laboratory of Toxicology and Toxicokinetics, National Cancer Institute at National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Gabriel A Knudsen
- Laboratory of Toxicology and Toxicokinetics, National Cancer Institute at National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Linda S Birnbaum
- Laboratory of Toxicology and Toxicokinetics, National Cancer Institute at National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
5
|
Validation of Human MDR1-MDCK and BCRP-MDCK Cell Lines to Improve the Prediction of Brain Penetration. J Pharm Sci 2019; 108:2476-2483. [DOI: 10.1016/j.xphs.2019.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/04/2019] [Accepted: 02/08/2019] [Indexed: 01/16/2023]
|
6
|
Trapa PE, Troutman MD, Lau TY, Wager TT, Maurer TS, Patel NC, West MA, Umland JP, Carlo AA, Feng B, Liras JL. In Vitro-In Vivo Extrapolation of Key Transporter Activity at the Blood-Brain Barrier. Drug Metab Dispos 2019; 47:405-411. [PMID: 30683809 DOI: 10.1124/dmd.118.083279] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 01/07/2019] [Indexed: 02/13/2025] Open
Abstract
Understanding the quantitative implications of P-glycoprotein and breast cancer resistance protein efflux is a key hurdle in the design of effective, centrally acting or centrally restricted therapeutics. Previously, a comprehensive physiologically based pharmacokinetic model was developed to describe the in vivo unbound brain-to-plasma concentration ratio as a function of efflux activity measured in vitro. In the present work, the predictive utility of this framework was examined through application to in vitro and in vivo data generated on 133 unique compounds across three preclinical species. Two approaches were examined for the scaling of efflux activity to in vivo, namely relative expression as determined by independent proteomics measurements and relative activity as determined via fitting the in vivo neuropharmacokinetic data. The results with both approaches indicate that in vitro efflux data can be used to accurately predict the degree of brain penetration across species within the context of the proposed physiologically based pharmacokinetic framework.
Collapse
Affiliation(s)
- Patrick E Trapa
- Pfizer Worldwide Research and Development, Pharmacokinetics, Dynamics, and Metabolism (PDM), Cambridge, Massachusetts (P.E.T., T.S.M., J.L.L.); Pfizer Worldwide Research and Development, Pharmacokinetics, Dynamics, and Metabolism (PDM), Groton, Connecticut (M.D.T., M.A.W., J.P.U., A.A.C., B.F.); Pfizer Biomedicine Design (T.Y.L.) and Pfizer Medicinal Chemistry (T.T.W., N.C.P.), Cambridge, Massachusetts
| | - Matthew D Troutman
- Pfizer Worldwide Research and Development, Pharmacokinetics, Dynamics, and Metabolism (PDM), Cambridge, Massachusetts (P.E.T., T.S.M., J.L.L.); Pfizer Worldwide Research and Development, Pharmacokinetics, Dynamics, and Metabolism (PDM), Groton, Connecticut (M.D.T., M.A.W., J.P.U., A.A.C., B.F.); Pfizer Biomedicine Design (T.Y.L.) and Pfizer Medicinal Chemistry (T.T.W., N.C.P.), Cambridge, Massachusetts
| | - Thomas Y Lau
- Pfizer Worldwide Research and Development, Pharmacokinetics, Dynamics, and Metabolism (PDM), Cambridge, Massachusetts (P.E.T., T.S.M., J.L.L.); Pfizer Worldwide Research and Development, Pharmacokinetics, Dynamics, and Metabolism (PDM), Groton, Connecticut (M.D.T., M.A.W., J.P.U., A.A.C., B.F.); Pfizer Biomedicine Design (T.Y.L.) and Pfizer Medicinal Chemistry (T.T.W., N.C.P.), Cambridge, Massachusetts
| | - Travis T Wager
- Pfizer Worldwide Research and Development, Pharmacokinetics, Dynamics, and Metabolism (PDM), Cambridge, Massachusetts (P.E.T., T.S.M., J.L.L.); Pfizer Worldwide Research and Development, Pharmacokinetics, Dynamics, and Metabolism (PDM), Groton, Connecticut (M.D.T., M.A.W., J.P.U., A.A.C., B.F.); Pfizer Biomedicine Design (T.Y.L.) and Pfizer Medicinal Chemistry (T.T.W., N.C.P.), Cambridge, Massachusetts
| | - Tristan S Maurer
- Pfizer Worldwide Research and Development, Pharmacokinetics, Dynamics, and Metabolism (PDM), Cambridge, Massachusetts (P.E.T., T.S.M., J.L.L.); Pfizer Worldwide Research and Development, Pharmacokinetics, Dynamics, and Metabolism (PDM), Groton, Connecticut (M.D.T., M.A.W., J.P.U., A.A.C., B.F.); Pfizer Biomedicine Design (T.Y.L.) and Pfizer Medicinal Chemistry (T.T.W., N.C.P.), Cambridge, Massachusetts
| | - Nandini C Patel
- Pfizer Worldwide Research and Development, Pharmacokinetics, Dynamics, and Metabolism (PDM), Cambridge, Massachusetts (P.E.T., T.S.M., J.L.L.); Pfizer Worldwide Research and Development, Pharmacokinetics, Dynamics, and Metabolism (PDM), Groton, Connecticut (M.D.T., M.A.W., J.P.U., A.A.C., B.F.); Pfizer Biomedicine Design (T.Y.L.) and Pfizer Medicinal Chemistry (T.T.W., N.C.P.), Cambridge, Massachusetts
| | - Mark A West
- Pfizer Worldwide Research and Development, Pharmacokinetics, Dynamics, and Metabolism (PDM), Cambridge, Massachusetts (P.E.T., T.S.M., J.L.L.); Pfizer Worldwide Research and Development, Pharmacokinetics, Dynamics, and Metabolism (PDM), Groton, Connecticut (M.D.T., M.A.W., J.P.U., A.A.C., B.F.); Pfizer Biomedicine Design (T.Y.L.) and Pfizer Medicinal Chemistry (T.T.W., N.C.P.), Cambridge, Massachusetts
| | - John P Umland
- Pfizer Worldwide Research and Development, Pharmacokinetics, Dynamics, and Metabolism (PDM), Cambridge, Massachusetts (P.E.T., T.S.M., J.L.L.); Pfizer Worldwide Research and Development, Pharmacokinetics, Dynamics, and Metabolism (PDM), Groton, Connecticut (M.D.T., M.A.W., J.P.U., A.A.C., B.F.); Pfizer Biomedicine Design (T.Y.L.) and Pfizer Medicinal Chemistry (T.T.W., N.C.P.), Cambridge, Massachusetts
| | - Anthony A Carlo
- Pfizer Worldwide Research and Development, Pharmacokinetics, Dynamics, and Metabolism (PDM), Cambridge, Massachusetts (P.E.T., T.S.M., J.L.L.); Pfizer Worldwide Research and Development, Pharmacokinetics, Dynamics, and Metabolism (PDM), Groton, Connecticut (M.D.T., M.A.W., J.P.U., A.A.C., B.F.); Pfizer Biomedicine Design (T.Y.L.) and Pfizer Medicinal Chemistry (T.T.W., N.C.P.), Cambridge, Massachusetts
| | - Bo Feng
- Pfizer Worldwide Research and Development, Pharmacokinetics, Dynamics, and Metabolism (PDM), Cambridge, Massachusetts (P.E.T., T.S.M., J.L.L.); Pfizer Worldwide Research and Development, Pharmacokinetics, Dynamics, and Metabolism (PDM), Groton, Connecticut (M.D.T., M.A.W., J.P.U., A.A.C., B.F.); Pfizer Biomedicine Design (T.Y.L.) and Pfizer Medicinal Chemistry (T.T.W., N.C.P.), Cambridge, Massachusetts
| | - Jennifer L Liras
- Pfizer Worldwide Research and Development, Pharmacokinetics, Dynamics, and Metabolism (PDM), Cambridge, Massachusetts (P.E.T., T.S.M., J.L.L.); Pfizer Worldwide Research and Development, Pharmacokinetics, Dynamics, and Metabolism (PDM), Groton, Connecticut (M.D.T., M.A.W., J.P.U., A.A.C., B.F.); Pfizer Biomedicine Design (T.Y.L.) and Pfizer Medicinal Chemistry (T.T.W., N.C.P.), Cambridge, Massachusetts
| |
Collapse
|
7
|
Zubiaur P, Saiz-Rodríguez M, Koller D, Ovejero-Benito MC, Wojnicz A, Abad-Santos F. How to make P-glycoprotein (ABCB1, MDR1) harbor mutations and measure its expression and activity in cell cultures? Pharmacogenomics 2018; 19:1285-1297. [PMID: 30334473 DOI: 10.2217/pgs-2018-0101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Several polymorphisms have been identified in ABCB1, the gene encoding for the P-glycoprotein. This transporter alters the pharmacokinetics or effectiveness of drugs by excreting them from cells where it is expressed (e.g., blood-brain barrier, intestine or tumors). No consensus has been reached regarding the functional consequences of these polymorphisms in the transporter's function. The aim of this review was to describe a methodology that allows the assessment of P-gp function when harboring polymorphisms. We describe how to obtain cell lines with high expression levels of the transporter with polymorphisms and several tactics to measure its expression and activity. This methodology may help elucidate the contribution of polymorphisms in ABCB1 to drug pharmacokinetics, effectiveness and safety or to cancer chemotherapy failure.
Collapse
Affiliation(s)
- Pablo Zubiaur
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IP), Madrid, Spain
| | - Miriam Saiz-Rodríguez
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IP), Madrid, Spain
| | - Dora Koller
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IP), Madrid, Spain
| | - María Carmen Ovejero-Benito
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IP), Madrid, Spain
| | - Aneta Wojnicz
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IP), Madrid, Spain
| | - Francisco Abad-Santos
- Clinical Pharmacology Department, Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria la Princesa (IP), Madrid, Spain.,UICEC Hospital Universitario de la Princesa, Plataforma SCReN (Spanish Clinical Reseach Network), Instituto de Investigación Sanitaria la Princesa (IP), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
8
|
Bagal SK, Andrews M, Bechle BM, Bian J, Bilsland J, Blakemore DC, Braganza JF, Bungay PJ, Corbett MS, Cronin CN, Cui JJ, Dias R, Flanagan NJ, Greasley SE, Grimley R, James K, Johnson E, Kitching L, Kraus ML, McAlpine I, Nagata A, Ninkovic S, Omoto K, Scales S, Skerratt SE, Sun J, Tran-Dubé M, Waldron GJ, Wang F, Warmus JS. Discovery of Potent, Selective, and Peripherally Restricted Pan-Trk Kinase Inhibitors for the Treatment of Pain. J Med Chem 2018; 61:6779-6800. [PMID: 29944371 DOI: 10.1021/acs.jmedchem.8b00633] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hormones of the neurotrophin family, nerve growth factor (NGF), brain derived neurotrophic factor (BDNF), neurotrophin 3 (NT3), and neurotrophin 4 (NT4), are known to activate the family of Tropomyosin receptor kinases (TrkA, TrkB, and TrkC). Moreover, inhibition of the TrkA kinase pathway in pain has been clinically validated by the NGF antibody tanezumab, leading to significant interest in the development of small molecule inhibitors of TrkA. Furthermore, Trk inhibitors having an acceptable safety profile will require minimal brain availability. Herein, we discuss the discovery of two potent, selective, peripherally restricted, efficacious, and well-tolerated series of pan-Trk inhibitors which successfully delivered three candidate quality compounds 10b, 13b, and 19. All three compounds are predicted to possess low metabolic clearance in human that does not proceed via aldehyde oxidase-catalyzed reactions, thus addressing the potential clearance prediction liability associated with our current pan-Trk development candidate PF-06273340.
Collapse
Affiliation(s)
- Sharan K Bagal
- Worldwide Medicinal Chemistry , Pfizer Worldwide R&D U.K. , The Portway Building, Granta Park , Cambridge CB21 6GS , U.K
| | - Mark Andrews
- Pfizer Worldwide R&D U.K. , Sandwich , Kent CT13 9NJ , U.K
| | - Bruce M Bechle
- Pfizer Worldwide R&D, Groton Laboratories , Eastern Point Road , Groton , Connecticut 06340 , United States
| | - Jianwei Bian
- Pfizer Worldwide R&D, Groton Laboratories , Eastern Point Road , Groton , Connecticut 06340 , United States
| | - James Bilsland
- Pfizer Worldwide R&D U.K. , The Portway Building, Granta Park , Cambridge CB21 6GS , U.K
| | - David C Blakemore
- Worldwide Medicinal Chemistry , Pfizer Worldwide R&D U.K. , The Portway Building, Granta Park , Cambridge CB21 6GS , U.K
| | - John F Braganza
- Pfizer Worldwide R&D, La Jolla Laboratories , 10770 Science Center Drive , San Diego , California 92121 , United States
| | - Peter J Bungay
- Pharmacokinetics, Dynamics & Metabolism , Pfizer Worldwide R&D U.K. , The Portway Building, Granta Park , Cambridge CB21 6GS , U.K
| | - Matthew S Corbett
- Pfizer Worldwide R&D, Groton Laboratories , Eastern Point Road , Groton , Connecticut 06340 , United States
| | - Ciaran N Cronin
- Pfizer Worldwide R&D, La Jolla Laboratories , 10770 Science Center Drive , San Diego , California 92121 , United States
| | - Jingrong Jean Cui
- Pfizer Worldwide R&D, La Jolla Laboratories , 10770 Science Center Drive , San Diego , California 92121 , United States
| | - Rebecca Dias
- Pfizer Worldwide R&D U.K. , The Portway Building, Granta Park , Cambridge CB21 6GS , U.K
| | - Neil J Flanagan
- Pfizer Worldwide R&D U.K. , The Portway Building, Granta Park , Cambridge CB21 6GS , U.K
| | - Samantha E Greasley
- Pfizer Worldwide R&D, La Jolla Laboratories , 10770 Science Center Drive , San Diego , California 92121 , United States
| | - Rachel Grimley
- Pfizer Worldwide R&D U.K. , The Portway Building, Granta Park , Cambridge CB21 6GS , U.K
| | - Kim James
- Peakdale Molecular , Discovery Park House, Ramsgate Road , Sandwich CT13 9ND , U.K
| | - Eric Johnson
- Pfizer Worldwide R&D, La Jolla Laboratories , 10770 Science Center Drive , San Diego , California 92121 , United States
| | - Linda Kitching
- Pfizer Worldwide R&D U.K. , The Portway Building, Granta Park , Cambridge CB21 6GS , U.K
| | - Michelle L Kraus
- Pfizer Worldwide R&D, La Jolla Laboratories , 10770 Science Center Drive , San Diego , California 92121 , United States
| | - Indrawan McAlpine
- Pfizer Worldwide R&D, La Jolla Laboratories , 10770 Science Center Drive , San Diego , California 92121 , United States
| | - Asako Nagata
- Pfizer Worldwide R&D, La Jolla Laboratories , 10770 Science Center Drive , San Diego , California 92121 , United States
| | - Sacha Ninkovic
- Pfizer Worldwide R&D, La Jolla Laboratories , 10770 Science Center Drive , San Diego , California 92121 , United States
| | - Kiyoyuki Omoto
- Worldwide Medicinal Chemistry , Pfizer Worldwide R&D U.K. , The Portway Building, Granta Park , Cambridge CB21 6GS , U.K
| | - Stephanie Scales
- Pfizer Worldwide R&D, La Jolla Laboratories , 10770 Science Center Drive , San Diego , California 92121 , United States
| | - Sarah E Skerratt
- Worldwide Medicinal Chemistry , Pfizer Worldwide R&D U.K. , The Portway Building, Granta Park , Cambridge CB21 6GS , U.K
| | - Jianmin Sun
- Pfizer Worldwide R&D, Groton Laboratories , Eastern Point Road , Groton , Connecticut 06340 , United States
| | - Michelle Tran-Dubé
- Pfizer Worldwide R&D, La Jolla Laboratories , 10770 Science Center Drive , San Diego , California 92121 , United States
| | - Gareth J Waldron
- Pfizer Worldwide R&D U.K. , The Portway Building, Granta Park , Cambridge CB21 6GS , U.K
| | - Fen Wang
- Pfizer Worldwide R&D, La Jolla Laboratories , 10770 Science Center Drive , San Diego , California 92121 , United States
| | - Joseph S Warmus
- Pfizer Worldwide R&D, Groton Laboratories , Eastern Point Road , Groton , Connecticut 06340 , United States
| |
Collapse
|
9
|
Chen C, Lee MH, Weng CF, Leong MK. Theoretical Prediction of the Complex P-Glycoprotein Substrate Efflux Based on the Novel Hierarchical Support Vector Regression Scheme. Molecules 2018; 23:E1820. [PMID: 30037151 PMCID: PMC6100076 DOI: 10.3390/molecules23071820] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 12/13/2022] Open
Abstract
P-glycoprotein (P-gp), a membrane-bound transporter, can eliminate xenobiotics by transporting them out of the cells or blood⁻brain barrier (BBB) at the expense of ATP hydrolysis. Thus, P-gp mediated efflux plays a pivotal role in altering the absorption and disposition of a wide range of substrates. Nevertheless, the mechanism of P-gp substrate efflux is rather complex since it can take place through active transport and passive permeability in addition to multiple P-gp substrate binding sites. A nonlinear quantitative structure⁻activity relationship (QSAR) model was developed in this study using the novel machine learning-based hierarchical support vector regression (HSVR) scheme to explore the perplexing relationships between descriptors and efflux ratio. The predictions by HSVR were found to be in good agreement with the observed values for the molecules in the training set (n = 50, r² = 0.96, qCV2 = 0.94, RMSE = 0.10, s = 0.10) and test set (n = 13, q² = 0.80⁻0.87, RMSE = 0.21, s = 0.22). When subjected to a variety of statistical validations, the developed HSVR model consistently met the most stringent criteria. A mock test also asserted the predictivity of HSVR. Consequently, this HSVR model can be adopted to facilitate drug discovery and development.
Collapse
Affiliation(s)
- Chun Chen
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 97401, Taiwan.
| | - Ming-Han Lee
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 97401, Taiwan.
| | - Ching-Feng Weng
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Shoufeng, Hualien 97401, Taiwan.
| | - Max K Leong
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien 97401, Taiwan.
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Shoufeng, Hualien 97401, Taiwan.
| |
Collapse
|
10
|
Bagal SK, Omoto K, Blakemore DC, Bungay PJ, Bilsland JG, Clarke PJ, Corbett MS, Cronin CN, Cui JJ, Dias R, Flanagan NJ, Greasley SE, Grimley R, Johnson E, Fengas D, Kitching L, Kraus ML, McAlpine I, Nagata A, Waldron GJ, Warmus JS. Discovery of Allosteric, Potent, Subtype Selective, and Peripherally Restricted TrkA Kinase Inhibitors. J Med Chem 2018; 62:247-265. [PMID: 29672039 DOI: 10.1021/acs.jmedchem.8b00280] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Tropomyosin receptor kinases (TrkA, TrkB, TrkC) are activated by hormones of the neurotrophin family: nerve growth factor (NGF), brain derived neurotrophic factor (BDNF), neurotrophin 3 (NT3), and neurotrophin 4 (NT4). Moreover, the NGF antibody tanezumab has provided clinical proof of concept for inhibition of the TrkA kinase pathway in pain leading to significant interest in the development of small molecule inhibitors of TrkA. However, achieving TrkA subtype selectivity over TrkB and TrkC via a Type I and Type II inhibitor binding mode has proven challenging and Type III or Type IV allosteric inhibitors may present a more promising selectivity design approach. Furthermore, TrkA inhibitors with minimal brain availability are required to deliver an appropriate safety profile. Herein, we describe the discovery of a highly potent, subtype selective, peripherally restricted, efficacious, and well-tolerated series of allosteric TrkA inhibitors that culminated in the delivery of candidate quality compound 23.
Collapse
Affiliation(s)
- Sharan K Bagal
- Worldwide Medicinal Chemistry , Pfizer Global R&D U.K. , The Portway Building, Granta Park , Cambridge CB21 6GS , U.K
| | - Kiyoyuki Omoto
- Worldwide Medicinal Chemistry , Pfizer Global R&D U.K. , The Portway Building, Granta Park , Cambridge CB21 6GS , U.K
| | - David C Blakemore
- Worldwide Medicinal Chemistry , Pfizer Global R&D U.K. , The Portway Building, Granta Park , Cambridge CB21 6GS , U.K
| | - Peter J Bungay
- Pharmacokinetics, Dynamics & Metabolism , Pfizer Global R&D U.K. , The Portway Building, Granta Park , Cambridge CB21 6GS , U.K
| | - James G Bilsland
- Pfizer Global R&D U.K. , The Portway Building, Granta Park , Cambridge CB21 6GS , U.K
| | - Philip J Clarke
- Peakdale Molecular , Discovery Park House, Ramsgate Road , Sandwich , Kent CT13 9ND , U.K
| | - Matthew S Corbett
- Pfizer Global R&D, Groton Laboratories , Eastern Point Road , Groton , Connecticut 06340 , United States
| | - Ciaran N Cronin
- Pfizer Global R&D, La Jolla Laboratories , 10770 Science Center Drive, San Diego , California 92121 , United States
| | - J Jean Cui
- Pfizer Global R&D, La Jolla Laboratories , 10770 Science Center Drive, San Diego , California 92121 , United States
| | - Rebecca Dias
- Pfizer Global R&D U.K. , The Portway Building, Granta Park , Cambridge CB21 6GS , U.K
| | - Neil J Flanagan
- Pfizer Global R&D U.K. , The Portway Building, Granta Park , Cambridge CB21 6GS , U.K
| | - Samantha E Greasley
- Pfizer Global R&D, La Jolla Laboratories , 10770 Science Center Drive, San Diego , California 92121 , United States
| | - Rachel Grimley
- Pfizer Global R&D U.K. , The Portway Building, Granta Park , Cambridge CB21 6GS , U.K
| | - Eric Johnson
- Pfizer Global R&D, La Jolla Laboratories , 10770 Science Center Drive, San Diego , California 92121 , United States
| | - David Fengas
- Peakdale Molecular , Discovery Park House, Ramsgate Road , Sandwich , Kent CT13 9ND , U.K
| | - Linda Kitching
- Pfizer Global R&D U.K. , The Portway Building, Granta Park , Cambridge CB21 6GS , U.K
| | - Michelle L Kraus
- Pfizer Global R&D, La Jolla Laboratories , 10770 Science Center Drive, San Diego , California 92121 , United States
| | - Indrawan McAlpine
- Pfizer Global R&D, La Jolla Laboratories , 10770 Science Center Drive, San Diego , California 92121 , United States
| | - Asako Nagata
- Pfizer Global R&D, La Jolla Laboratories , 10770 Science Center Drive, San Diego , California 92121 , United States
| | - Gareth J Waldron
- Pfizer Global R&D U.K. , The Portway Building, Granta Park , Cambridge CB21 6GS , U.K
| | - Joseph S Warmus
- Pfizer Global R&D, Groton Laboratories , Eastern Point Road , Groton , Connecticut 06340 , United States
| |
Collapse
|
11
|
Screening of pharmacokinetic properties of fifty dihydropyrimidin(thi)one derivatives using a combo of in vitro and in silico assays. Eur J Pharm Sci 2017; 109:334-346. [DOI: 10.1016/j.ejps.2017.08.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 08/16/2017] [Accepted: 08/18/2017] [Indexed: 11/19/2022]
|
12
|
Abstract
Drug-drug interactions (DDIs) occur commonly and may lead to severe adverse drug reactions if not handled appropriately. Considerable information to support clinical decision making regarding potential DDIs is available in the literature and through various systems providing electronic decision support for healthcare providers. The challenge for the prescribing physician lies in sorting out the evidence and identifying those drugs for which potential interactions are likely to become clinically manifest. P-glycoprotein (P-gp) is a drug transporting protein that is found in the plasma membranes in cells of barrier and elimination organs, and plays a role in drug absorption and excretion. Increasingly, P-gp has been acknowledged as an important player in potential DDIs and a growing body of information on the role of this transporter in DDIs has become available from research and from the drug approval process. This has led to a clear need for a comprehensive review of P-gp-mediated DDIs with a focus on highlighting the drugs that are likely to lead to clinically relevant DDIs. The objective of this review is to provide information for identifying and interpreting evidence of P-gp-mediated DDIs and to suggest a classification for individual drugs based on both in vitro and in vivo evidence (substrates, inhibitors and inducers). Further, various ways of handling potential DDIs in clinical practice are described and exemplified in relation to drugs interfering with P-gp.
Collapse
|
13
|
Skerratt SE, Andrews M, Bagal SK, Bilsland J, Brown D, Bungay PJ, Cole S, Gibson KR, Jones R, Morao I, Nedderman A, Omoto K, Robinson C, Ryckmans T, Skinner K, Stupple P, Waldron G. The Discovery of a Potent, Selective, and Peripherally Restricted Pan-Trk Inhibitor (PF-06273340) for the Treatment of Pain. J Med Chem 2016; 59:10084-10099. [PMID: 27766865 DOI: 10.1021/acs.jmedchem.6b00850] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The neurotrophin family of growth factors, comprised of nerve growth factor (NGF), brain derived neurotrophic factor (BDNF), neurotrophin 3 (NT3), and neurotrophin 4 (NT4), is implicated in the physiology of chronic pain. Given the clinical efficacy of anti-NGF monoclonal antibody (mAb) therapies, there is significant interest in the development of small molecule modulators of neurotrophin activity. Neurotrophins signal through the tropomyosin related kinase (Trk) family of tyrosine kinase receptors, hence Trk kinase inhibition represents a potentially "druggable" point of intervention. To deliver the safety profile required for chronic, nonlife threatening pain indications, highly kinase-selective Trk inhibitors with minimal brain availability are sought. Herein we describe how the use of SBDD, 2D QSAR models, and matched molecular pair data in compound design enabled the delivery of the highly potent, kinase-selective, and peripherally restricted clinical candidate PF-06273340.
Collapse
Affiliation(s)
- Sarah E Skerratt
- Pfizer Global Research & Development , The Portway Building, Granta Park, Great Abington, Cambridge, CB21 6GS, U.K
| | - Mark Andrews
- Pfizer Global Research & Development , Ramsgate Road, Sandwich CT13 9NJ, U.K
| | - Sharan K Bagal
- Pfizer Global Research & Development , The Portway Building, Granta Park, Great Abington, Cambridge, CB21 6GS, U.K
| | - James Bilsland
- Pfizer Global Research & Development , The Portway Building, Granta Park, Great Abington, Cambridge, CB21 6GS, U.K
| | - David Brown
- Pfizer Global Research & Development , Ramsgate Road, Sandwich CT13 9NJ, U.K
| | - Peter J Bungay
- Pfizer Global Research & Development , The Portway Building, Granta Park, Great Abington, Cambridge, CB21 6GS, U.K
| | - Susan Cole
- Pfizer Global Research & Development , Ramsgate Road, Sandwich CT13 9NJ, U.K
| | - Karl R Gibson
- Pfizer Global Research & Development , Ramsgate Road, Sandwich CT13 9NJ, U.K
| | - Russell Jones
- Pfizer Global Research & Development , Ramsgate Road, Sandwich CT13 9NJ, U.K
| | - Inaki Morao
- Pfizer Global Research & Development , Ramsgate Road, Sandwich CT13 9NJ, U.K
| | - Angus Nedderman
- Pfizer Global Research & Development , Ramsgate Road, Sandwich CT13 9NJ, U.K
| | - Kiyoyuki Omoto
- Pfizer Global Research & Development , The Portway Building, Granta Park, Great Abington, Cambridge, CB21 6GS, U.K
| | - Colin Robinson
- Pfizer Global Research & Development , Ramsgate Road, Sandwich CT13 9NJ, U.K
| | - Thomas Ryckmans
- Pfizer Global Research & Development , Ramsgate Road, Sandwich CT13 9NJ, U.K
| | - Kimberly Skinner
- Pfizer Global Research & Development , Ramsgate Road, Sandwich CT13 9NJ, U.K
| | - Paul Stupple
- Pfizer Global Research & Development , Ramsgate Road, Sandwich CT13 9NJ, U.K
| | - Gareth Waldron
- Pfizer Global Research & Development , The Portway Building, Granta Park, Great Abington, Cambridge, CB21 6GS, U.K
| |
Collapse
|
14
|
Abstract
INTRODUCTION The blood-brain barrier (BBB) possesses an outstanding ability to protect the brain against xenobiotics and potentially poisonous metabolites. Owing to this, ATP binding cassette (ABC) export proteins have garnered significant interest in the research community. These transport proteins are predominantly localized to the luminal membrane of brain microvessels, where they recognize a wide range of different substrates and transport them back into the blood circulation. AREAS COVERED This review summarizes recent findings on these transport proteins, including their expression in the endothelial cell membrane and their substrate recognition. Signaling cascades underlying the expression and function of these proteins will be discussed as well as their role in diseases such as Alzheimer's disease, epilepsy, amyotrophic lateral sclerosis and brain tumors. EXPERT OPINION ABC transporters represent an integral part of the human transportome and are of particular interest at the blood-brain barrier they as they significantly contribute to brain homeostasis. In addition, they appear to be involved in myriad CNS diseases. Therefore studying their mechanisms of action as well as their signaling cascades and responses to internal and external stimuli will help us understand the pathogenesis of these diseases.
Collapse
Affiliation(s)
- Anne Mahringer
- a Institute of Pharmacy and Molecular Biotechnology , Ruprecht-Karls University , Heidelberg , Germany
| | - Gert Fricker
- a Institute of Pharmacy and Molecular Biotechnology , Ruprecht-Karls University , Heidelberg , Germany
| |
Collapse
|
15
|
Isomeric methoxy analogs of nimesulide for development of brain cyclooxygense-2 (COX-2)-targeted imaging agents: Synthesis, in vitro COX-2-inhibitory potency, and cellular transport properties. Bioorg Med Chem 2015; 23:6807-14. [DOI: 10.1016/j.bmc.2015.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/03/2015] [Accepted: 10/05/2015] [Indexed: 12/23/2022]
|
16
|
Kell DB, Oliver SG. How drugs get into cells: tested and testable predictions to help discriminate between transporter-mediated uptake and lipoidal bilayer diffusion. Front Pharmacol 2014; 5:231. [PMID: 25400580 PMCID: PMC4215795 DOI: 10.3389/fphar.2014.00231] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 09/29/2014] [Indexed: 12/12/2022] Open
Abstract
One approach to experimental science involves creating hypotheses, then testing them by varying one or more independent variables, and assessing the effects of this variation on the processes of interest. We use this strategy to compare the intellectual status and available evidence for two models or views of mechanisms of transmembrane drug transport into intact biological cells. One (BDII) asserts that lipoidal phospholipid Bilayer Diffusion Is Important, while a second (PBIN) proposes that in normal intact cells Phospholipid Bilayer diffusion Is Negligible (i.e., may be neglected quantitatively), because evolution selected against it, and with transmembrane drug transport being effected by genetically encoded proteinaceous carriers or pores, whose “natural” biological roles, and substrates are based in intermediary metabolism. Despite a recent review elsewhere, we can find no evidence able to support BDII as we can find no experiments in intact cells in which phospholipid bilayer diffusion was either varied independently or measured directly (although there are many papers where it was inferred by seeing a covariation of other dependent variables). By contrast, we find an abundance of evidence showing cases in which changes in the activities of named and genetically identified transporters led to measurable changes in the rate or extent of drug uptake. PBIN also has considerable predictive power, and accounts readily for the large differences in drug uptake between tissues, cells and species, in accounting for the metabolite-likeness of marketed drugs, in pharmacogenomics, and in providing a straightforward explanation for the late-stage appearance of toxicity and of lack of efficacy during drug discovery programmes despite macroscopically adequate pharmacokinetics. Consequently, the view that Phospholipid Bilayer diffusion Is Negligible (PBIN) provides a starting hypothesis for assessing cellular drug uptake that is much better supported by the available evidence, and is both more productive and more predictive.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry, The University of Manchester Manchester, UK ; Manchester Institute of Biotechnology, The University of Manchester Manchester, UK
| | - Stephen G Oliver
- Department of Biochemistry, University of Cambridge Cambridge, UK ; Cambridge Systems Biology Centre, University of Cambridge Cambridge, UK
| |
Collapse
|