1
|
Severi AA, Akbari B. CRISPR-Cas9 delivery strategies and applications: Review and update. Genesis 2024; 62:e23598. [PMID: 38727638 DOI: 10.1002/dvg.23598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 06/28/2024]
Abstract
Nowadays, a significant part of the investigations carried out in the medical field belong to cancer treatment. Generally, conventional cancer treatments, including chemotherapy, radiotherapy, and surgery, which have been used for a long time, are not sufficient, especially in malignant cancers. Because genetic mutations cause cancers, researchers are trying to treat these diseases using genetic engineering tools. One of them is clustered regularly interspaced short palindromic repeats (CRISPR), a powerful tool in genetic engineering in the last decade. CRISPR, which forms the CRISPR-Cas structure with its endonuclease protein, Cas, is known as a part of the immune system (adaptive immunity) in bacteria and archaea. Among the types of Cas proteins, Cas9 endonuclease has been used in many scientific studies due to its high accuracy and efficiency. This review reviews the CRISPR system, focusing on the history, classification, delivery methods, applications, new generations, and challenges of CRISPR-Cas9 technology.
Collapse
Affiliation(s)
- Ali Alizadeh Severi
- Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Bahman Akbari
- Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Science, Kermanshah, Iran
| |
Collapse
|
2
|
Chehelgerdi M, Chehelgerdi M, Khorramian-Ghahfarokhi M, Shafieizadeh M, Mahmoudi E, Eskandari F, Rashidi M, Arshi A, Mokhtari-Farsani A. Comprehensive review of CRISPR-based gene editing: mechanisms, challenges, and applications in cancer therapy. Mol Cancer 2024; 23:9. [PMID: 38195537 PMCID: PMC10775503 DOI: 10.1186/s12943-023-01925-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024] Open
Abstract
The CRISPR system is a revolutionary genome editing tool that has the potential to revolutionize the field of cancer research and therapy. The ability to precisely target and edit specific genetic mutations that drive the growth and spread of tumors has opened up new possibilities for the development of more effective and personalized cancer treatments. In this review, we will discuss the different CRISPR-based strategies that have been proposed for cancer therapy, including inactivating genes that drive tumor growth, enhancing the immune response to cancer cells, repairing genetic mutations that cause cancer, and delivering cancer-killing molecules directly to tumor cells. We will also summarize the current state of preclinical studies and clinical trials of CRISPR-based cancer therapy, highlighting the most promising results and the challenges that still need to be overcome. Safety and delivery are also important challenges for CRISPR-based cancer therapy to become a viable clinical option. We will discuss the challenges and limitations that need to be overcome, such as off-target effects, safety, and delivery to the tumor site. Finally, we will provide an overview of the current challenges and opportunities in the field of CRISPR-based cancer therapy and discuss future directions for research and development. The CRISPR system has the potential to change the landscape of cancer research, and this review aims to provide an overview of the current state of the field and the challenges that need to be overcome to realize this potential.
Collapse
Affiliation(s)
- Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Milad Khorramian-Ghahfarokhi
- Division of Biotechnology, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | - Esmaeil Mahmoudi
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Fatemeh Eskandari
- Faculty of Molecular and Cellular Biology -Genetics, Islamic Azad University of Falavarjan, Isfahan, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Asghar Arshi
- Young Researchers and Elite Club, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Abbas Mokhtari-Farsani
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Department of Biology, Nourdanesh Institute of Higher Education, Meymeh, Isfahan, Iran
| |
Collapse
|
3
|
Agrawal P, Harish V, Mohd S, Singh SK, Tewari D, Tatiparthi R, Harshita, Vishwas S, Sutrapu S, Dua K, Gulati M. Role of CRISPR/Cas9 in the treatment of Duchenne muscular dystrophy and its delivery strategies. Life Sci 2023; 330:122003. [PMID: 37544379 DOI: 10.1016/j.lfs.2023.122003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/27/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Duchenne muscular dystrophy (DMD) is a neuromuscular disorder brought on by mutations in the DMD gene, which prevent muscle cells from expressing the dystrophin protein. CRISPR/Cas9 technology has evolved as potential option to treat DMD due to its ability to permanently skip exons, restoring the disrupted DMD reading frame and leading to dystrophin restoration. Even though, having potential to treat DMD, the delivery, safety and efficacy of this technology is still challenging. Several delivery methods, including viral vectors, nanoparticles, and electroporation, have been explored to deliver CRISPR/Cas9 to the targeted cells. Despite the potential of CRISPR/Cas9 technology in the treatment of DMD, several limitations need to be addressed. The off-target effects of CRISPR/Cas9 are a major concern that needs to be addressed to avoid unintended mutations. The delivery of CRISPR/Cas9 to the target cells and the immune response due to the viral vectors used for delivery are a few other limitations. The clinical trials of CRISPR/Cas9 for DMD provide valuable insights into the safety and efficacy of this technology in humans and the limitations that need to be known. Therefore, in this review we insightfully discussed the challenges and limitations of CRISPR/Cas9 in the treatment of DMD and delivery strategies used, and the ongoing efforts to overcome these challenges and restore dystrophin expression in DMD patients in the ongoing trials.
Collapse
Affiliation(s)
- Pooja Agrawal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Vancha Harish
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India.
| | - Sharfuddin Mohd
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Ramanjireddy Tatiparthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Harshita
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Srinivas Sutrapu
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
4
|
Lučanský V, Holubeková V, Kolková Z, Halašová E, Samec M, Golubnitschaja O. Multi-faceted CRISPR/Cas technological innovation aspects in the framework of 3P medicine. EPMA J 2023; 14:201-217. [PMID: 37275547 PMCID: PMC10201107 DOI: 10.1007/s13167-023-00324-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/10/2023] [Indexed: 06/07/2023]
Abstract
Since 2009, the European Association for Predictive, Preventive and Personalised Medicine (EPMA, Brussels) promotes the paradigm change from reactive approach to predictive, preventive, and personalized medicine (PPPM/3PM) to protect individuals in sub-optimal health conditions from the health-to-disease transition, to increase life-quality of the affected patient cohorts improving, therefore, ethical standards and cost-efficacy of healthcare to great benefits of the society at large. The gene-editing technology utilizing CRISPR/Cas gene-editing approach has demonstrated its enormous value as a powerful tool in a broad spectrum of bio/medical research areas. Further, CRISPR/Cas gene-editing system is considered applicable to primary and secondary healthcare, in order to prevent disease spread and to treat clinically manifested disorders, involving diagnostics of SARS-Cov-2 infection and experimental treatment of COVID-19. Although the principle of the proposed gene editing is simple and elegant, there are a lot of technological challenges and ethical considerations to be solved prior to its broadly scaled clinical implementation. This article highlights technological innovation beyond the state of the art, exemplifies current achievements, discusses unsolved technological and ethical problems, and provides clinically relevant outlook in the framework of 3PM.
Collapse
Affiliation(s)
- Vincent Lučanský
- Jessenius Faculty of Medicine in Martin (JFMED CU), Biomedical Center, Comenius University in Bratislava, Martin, Slovakia
| | - Veronika Holubeková
- Jessenius Faculty of Medicine in Martin (JFMED CU), Biomedical Center, Comenius University in Bratislava, Martin, Slovakia
| | - Zuzana Kolková
- Jessenius Faculty of Medicine in Martin (JFMED CU), Biomedical Center, Comenius University in Bratislava, Martin, Slovakia
| | - Erika Halašová
- Jessenius Faculty of Medicine in Martin (JFMED CU), Biomedical Center, Comenius University in Bratislava, Martin, Slovakia
| | - Marek Samec
- Department of Pathophysiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Olga Golubnitschaja
- Predictive, Preventive, Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| |
Collapse
|
5
|
Zhang F, Huang Z. Mechanistic insights into the versatile class II CRISPR toolbox. Trends Biochem Sci 2021; 47:433-450. [PMID: 34920928 DOI: 10.1016/j.tibs.2021.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/12/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022]
Abstract
The constantly expanding group of class II CRISPR-Cas (clustered regularly interspaced short palindromic repeats-associated) effectors and their engineered variants exhibit distinct editing modes and efficiency, fidelity, target range, and molecular size. Their enormous diversity of capabilities provides a formidable toolkit for a large array of technologies. We review the structural and biochemical mechanisms of versatile effector proteins from class II CRISPR-Cas systems to provide mechanistic insights into their target specificity, protospacer adjacent motif (PAM) restriction, and activity regulation, and discuss possible strategies to enhance genome-engineering tools in terms of accuracy, efficiency, applicability, and controllability.
Collapse
Affiliation(s)
- Fan Zhang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Zhiwei Huang
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China.
| |
Collapse
|
6
|
Petraitytė G, Preikšaitienė E, Mikštienė V. Genome Editing in Medicine: Tools and Challenges. Acta Med Litu 2021; 28:205-219. [PMID: 35637939 PMCID: PMC9133615 DOI: 10.15388/amed.2021.28.2.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022] Open
Abstract
Studies which seek fundamental, thorough knowledge of biological processes, and continuous advancement in natural sciences and biotechnology enable the establishment of molecular strategies and tools to treat disorders caused by genetic mutations. Over the years biological therapy evolved from using stem cells and viral vectors to RNA therapy and testing different genome editing tools as promising gene therapy agents. These genome editing technologies (Zinc finger nucleases, TAL effector nucleases), specifically CRISPR-Cas system, revolutionized the field of genetic engineering and is widely applied to create cell and animal models for various hereditary, infectious human diseases and cancer, to analyze and understand the molecular and cellular base of pathogenesis, to find potential drug/treatment targets, to eliminate pathogenic DNA changes in various medical conditions and to create future “precise medication”. Although different concerning factors, such as precise system delivery to the target cells, efficacy and accuracy of editing process, different approaches of making the DNA changes as well as worrying bioethical issues remain, the importance of genome editing technologies in medicine is undeniable. The future of innovative genome editing approach and strategies to treat diseases is complicated but interesting and exciting at once for all related parties – researchers, clinicians, and patients.
Collapse
|
7
|
Shafqat S, Tariq E, Parnes AD, Dasouki MJ, Ahmed SO, Hashmi SK. Role of gene therapy in Fanconi anemia: A systematic and literature review with future directions. Hematol Oncol Stem Cell Ther 2021; 14:290-301. [PMID: 33736979 DOI: 10.1016/j.hemonc.2021.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/24/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Gene therapy (GT) has been reported to improve bone marrow function in individuals with Fanconi anemia (FA); however, its clinical application is still in the initial stages. We conducted this systematic review, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, to assess the long-term safety and clinical outcomes of GT in FA patients. Electronic searches from PubMed, Web of Science, Cochrane Library, and Google Scholar were conducted and full texts of articles meeting our inclusion criteria were reviewed. Three clinical trials were included, with a total of nine patients and mean age of 10.7 ± 5.7 years. All patients had lentiviral-mediated GT. A 1-year follow-up showed stabilization in blood lineages, without any serious adverse effects from GT. A metaregression analysis could not be conducted, as very little long-term follow-up data of patients was observed, and the median survival rate could not be calculated. Thus, we can conclude that GT seems to be a safe procedure in FA; however, further research needs to be conducted on the longitudinal clinical effects of GT in FA, for a better insight into its potential to become a standard form of treatment.
Collapse
Affiliation(s)
| | - Eleze Tariq
- Medical College, Aga Khan University, Karachi, Pakistan
| | - Aric D Parnes
- Division of Hematology, Brigham and Women's Hospital, Boston, MA, USA
| | - Majed J Dasouki
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Syed O Ahmed
- Department of Adult Hematology and Stem Cell Transplantation, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Shahrukh K Hashmi
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
8
|
Nonsense Suppression Therapy: New Hypothesis for the Treatment of Inherited Bone Marrow Failure Syndromes. Int J Mol Sci 2020; 21:ijms21134672. [PMID: 32630050 PMCID: PMC7369780 DOI: 10.3390/ijms21134672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 12/13/2022] Open
Abstract
Inherited bone marrow failure syndromes (IBMFS) are a group of cancer-prone genetic diseases characterized by hypocellular bone marrow with impairment in one or more hematopoietic lineages. The pathogenesis of IBMFS involves mutations in several genes which encode for proteins involved in DNA repair, telomere biology and ribosome biogenesis. The classical IBMFS include Shwachman–Diamond syndrome (SDS), Diamond–Blackfan anemia (DBA), Fanconi anemia (FA), dyskeratosis congenita (DC), and severe congenital neutropenia (SCN). IBMFS are associated with high risk of myelodysplastic syndrome (MDS), acute myeloid leukemia (AML), and solid tumors. Unfortunately, no specific pharmacological therapies have been highly effective for IBMFS. Hematopoietic stem cell transplantation provides a cure for aplastic or myeloid neoplastic complications. However, it does not affect the risk of solid tumors. Since approximately 28% of FA, 24% of SCN, 21% of DBA, 20% of SDS, and 17% of DC patients harbor nonsense mutations in the respective IBMFS-related genes, we discuss the use of the nonsense suppression therapy in these diseases. We recently described the beneficial effect of ataluren, a nonsense suppressor drug, in SDS bone marrow hematopoietic cells ex vivo. A similar approach could be therefore designed for treating other IBMFS. In this review we explain in detail the new generation of nonsense suppressor molecules and their mechanistic roles. Furthermore, we will discuss strengths and limitations of these molecules which are emerging from preclinical and clinical studies. Finally we discuss the state-of-the-art of preclinical and clinical therapeutic studies carried out for IBMFS.
Collapse
|
9
|
Balistreri CR, De Falco E, Bordin A, Maslova O, Koliada A, Vaiserman A. Stem cell therapy: old challenges and new solutions. Mol Biol Rep 2020; 47:3117-3131. [PMID: 32128709 DOI: 10.1007/s11033-020-05353-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 02/26/2020] [Indexed: 12/11/2022]
Abstract
Stem cell therapy (SCT), born as therapeutic revolution to replace pharmacological treatments, remains a hope and not yet an effective solution. Accordingly, stem cells cannot be conceivable as a "canonical" drug, because of their unique biological properties. A new reorientation in this field is emerging, based on a better understanding of stem cell biology and use of cutting-edge technologies and innovative disciplines. This will permit to solve the gaps, failures, and long-term needs, such as the retention, survival and integration of stem cells, by employing pharmacology, genetic manipulation, biological or material incorporation. Consequently, the clinical applicability of SCT for chronic human diseases will be extended, as well as its effectiveness and success, leading to long-awaited medical revolution. Here, some of these aspects are summarized, reviewing and discussing recent advances in this rapidly developing research field.
Collapse
Affiliation(s)
- Carmela Rita Balistreri
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy.
| | - Elena De Falco
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
- Mediterranea Cardiocentro, Napoli, Italy
| | - Antonella Bordin
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Olga Maslova
- National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
| | | | | |
Collapse
|
10
|
Banan M. Recent advances in CRISPR/Cas9-mediated knock-ins in mammalian cells. J Biotechnol 2020; 308:1-9. [DOI: 10.1016/j.jbiotec.2019.11.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/16/2019] [Accepted: 11/17/2019] [Indexed: 12/16/2022]
|
11
|
Bezzerri V, Cipolli M. Shwachman-Diamond Syndrome: Molecular Mechanisms and Current Perspectives. Mol Diagn Ther 2019; 23:281-290. [PMID: 30413969 DOI: 10.1007/s40291-018-0368-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Shwachman-Diamond syndrome (SDS) is a rare inherited disease mainly caused by mutations in the Shwachman-Bodian-Diamond Syndrome (SBDS) gene. However, it has recently been reported that other genes, including DnaJ heat shock protein family (Hsp40) member C21 (DNAJC21), elongation factor-like 1 (EFL1) and signal recognition particle 54 (SRP54) are also associated with an SDS-like phenotype. Interestingly, SBDS, DNAJC21, EFL1 and SRP54 are involved in ribosome biogenesis: SBDS, through direct interaction with EFL1, promotes the release of the eukaryotic initiation factor 6 (eIF6) during ribosome maturation, DNAJC21 stabilizes the 80S ribosome, and SRP54 facilitates protein trafficking. These findings strengthen the postulate that SDS is a ribosomopathy. SDS is a multiple-organ disease mainly characterized by bone marrow failure, bone malformations, pancreatic insufficiency and cognitive disorders. Almost 15-20% of patients with SDS present myelodysplastic syndrome with a high risk of acute myeloid leukemia (AML) transformation. Unfortunately, besides bone marrow transplantation, no gene-based therapy for SDS has yet been developed. This review aims to recapitulate the recent findings on the molecular mechanisms of SDS underlying bone marrow failure, hematopoiesis and AML development and to draw a realistic picture of current perspectives.
Collapse
Affiliation(s)
- Valentino Bezzerri
- Cystic Fibrosis Center, Azienda Ospedaliero Universitaria Ospedali Riuniti di Ancona, Via Conca 71, 60126, Torrette, Ancona, Italy
| | - Marco Cipolli
- Cystic Fibrosis Center, Azienda Ospedaliero Universitaria Ospedali Riuniti di Ancona, Via Conca 71, 60126, Torrette, Ancona, Italy.
| |
Collapse
|
12
|
Wilbie D, Walther J, Mastrobattista E. Delivery Aspects of CRISPR/Cas for in Vivo Genome Editing. Acc Chem Res 2019; 52:1555-1564. [PMID: 31099553 PMCID: PMC6584901 DOI: 10.1021/acs.accounts.9b00106] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Indexed: 12/15/2022]
Abstract
The discovery of CRISPR/Cas has revolutionized the field of genome editing. CRIPSR/Cas components are part of the bacterial immune system and are able to induce double-strand DNA breaks in the genome, which are resolved by endogenous DNA repair mechanisms. The most relevant of these are the error-prone nonhomologous end joining and homology directed repair pathways. The former can lead to gene knockout by introduction of insertions and deletions at the cut site, while the latter can be used for gene correction based on a provided repair template. In this Account, we focus on the delivery aspects of CRISPR/Cas for therapeutic applications in vivo. Safe and effective delivery of the CRISPR/Cas components into the nucleus of affected cells is essential for therapeutic gene editing. These components can be delivered in several formats, such as pDNA, viral vectors, or ribonuclear complexes. In the ideal case, the delivery system should address the current limitations of CRISPR gene editing, which are (1) lack of targeting specific tissues or cells, (2) the inability to enter cells, (3) activation of the immune system, and (4) off-target events. To circumvent most of these problems, initial therapeutic applications of CRISPR/Cas were performed on cells ex vivo via classical methods (e.g., microinjection or electroporation) and novel methods (e.g., TRIAMF and iTOP). Ideal candidates for such methods are, for example, hematopoietic cells, but not all tissue types are suited for ex vivo manipulation. For direct in vivo application, however, delivery systems are needed that can target the CRISPR/Cas components to specific tissues or cells in the human body, without causing immune activation or causing high frequencies of off-target effects. Viral systems have been used as a first resort to transduce cells in vivo. These systems suffer from problems related to packaging constraints, immunogenicity, and longevity of Cas expression, which favors off-target events. Viral vectors are as such not the best choice for direct in vivo delivery of CRISPR/Cas. Synthetic vectors can deliver nucleic acids as well, without the innate disadvantages of viral vectors. They can be classed into lipid, polymeric, and inorganic particles, all of which have been reported in the literature. The advantage of synthetic systems is that they can deliver the CRISPR/Cas system also as a preformed ribonucleoprotein complex. The transient nature of this approach favors low frequencies of off-target events and minimizes the window of immune activation. Moreover, from a pharmaceutical perspective, synthetic delivery systems are much easier to scale up for clinical use compared to viral vectors and can be chemically functionalized with ligands to obtain target cell specificity. The first preclinical results with lipid nanoparticles delivering CRISPR/Cas either as mRNA or ribonucleoproteins are very promising. The goal is translating these CRISPR/Cas therapeutics to a clinical setting as well. Taken together, these current trends seem to favor the use of sgRNA/Cas ribonucleoprotein complexes delivered in vivo by synthetic particles.
Collapse
Affiliation(s)
- Danny Wilbie
- Department of Pharmaceutics,
Utrecht Institute of Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Johanna Walther
- Department of Pharmaceutics,
Utrecht Institute of Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Enrico Mastrobattista
- Department of Pharmaceutics,
Utrecht Institute of Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|