1
|
Zhuang Z, Miao YL, Song SS, Leng GT, Zhang XF, He Q, Ding J, He JX, Yang CH. Discovery of pyrrolo[2,3-d]pyrimidin-4-one derivative YCH3124 as a potent USP7 inhibitor for cancer therapy. Eur J Med Chem 2024; 277:116752. [PMID: 39133975 DOI: 10.1016/j.ejmech.2024.116752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/29/2024] [Accepted: 08/04/2024] [Indexed: 09/06/2024]
Abstract
USP7 is one of the most studied deubiquitinating enzymes, which is involved in the regulation of multiple cell signaling pathways and has been shown to be associated with the occurrence and progression of a variety of cancers. Inhibitors targeting USP7 have been studied by several teams, but most of them lack selectivity and have low activities. Herein, we reported a serious of pyrrole[2,3-d]pyrimidin-4-one derivatives through scaffold hopping of recently reported 4-hydroxypiperidine compounds. The representative compound Z33 (YCH3124) exhibited highly potent USP7 inhibition activity as well as anti-proliferative activity against four kinds of cancer cell lines. Further study revealed that YCH3124 effectively inhibited the downstream USP7 pathway and resulted in the accumulation of both p53 and p21 in a dose-dependent manner. Notably, YCH3124 disrupted cell cycle progression through restricting G1 phase and induced significant apoptosis in CHP-212 cells. In summary, our efforts provided a series of novel pyrrole[2,3-d]pyrimidin-4-one analogs as potent USP7 inhibitors with excellent anti-cancer activity.
Collapse
Affiliation(s)
- Zhen Zhuang
- State Key Laboratory of Drug Research, Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Yu-Ling Miao
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| | - Shan-Shan Song
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| | - Guang-Tong Leng
- State Key Laboratory of Drug Research, Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Xiao-Fei Zhang
- State Key Laboratory of Drug Research, Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Qian He
- State Key Laboratory of Drug Research, Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Jian Ding
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China; State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| | - Jin-Xue He
- University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China; State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China.
| | - Chun-Hao Yang
- State Key Laboratory of Drug Research, Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
2
|
van der Laan L, ten Voorde N, Mannens MMAM, Henneman P. Molecular signatures in Mendelian neurodevelopment: a focus on ubiquitination driven DNA methylation aberrations. Front Mol Neurosci 2024; 17:1446686. [PMID: 39135741 PMCID: PMC11317395 DOI: 10.3389/fnmol.2024.1446686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024] Open
Abstract
Mendelian disorders, arising from pathogenic variations within single genetic loci, often manifest as neurodevelopmental disorders (NDDs), affecting a significant portion of the pediatric population worldwide. These disorders are marked by atypical brain development, intellectual disabilities, and various associated phenotypic traits. Genetic testing aids in clinical diagnoses, but inconclusive results can prolong confirmation processes. Recent focus on epigenetic dysregulation has led to the discovery of DNA methylation signatures, or episignatures, associated with NDDs, accelerating diagnostic precision. Notably, TRIP12 and USP7, genes involved in the ubiquitination pathway, exhibit specific episignatures. Understanding the roles of these genes within the ubiquitination pathway sheds light on their potential influence on episignature formation. While TRIP12 acts as an E3 ligase, USP7 functions as a deubiquitinase, presenting contrasting roles within ubiquitination. Comparison of phenotypic traits in patients with pathogenic variations in these genes reveals both distinctions and commonalities, offering insights into underlying pathophysiological mechanisms. This review contextualizes the roles of TRIP12 and USP7 within the ubiquitination pathway, their influence on episignature formation, and the potential implications for NDD pathogenesis. Understanding these intricate relationships may unveil novel therapeutic targets and diagnostic strategies for NDDs.
Collapse
Affiliation(s)
- Liselot van der Laan
- Department of Human Genetics, Amsterdam UMC, Amsterdam, Netherlands
- Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Nicky ten Voorde
- Department of Human Genetics, Amsterdam UMC, Amsterdam, Netherlands
| | - Marcel M. A. M. Mannens
- Department of Human Genetics, Amsterdam UMC, Amsterdam, Netherlands
- Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Peter Henneman
- Department of Human Genetics, Amsterdam UMC, Amsterdam, Netherlands
- Amsterdam Reproduction and Development, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
3
|
Jurisic A, Sung P, Wappett M, Daubriac J, Lobb IT, Kung W, Crawford N, Page N, Cassidy E, Feutren‐Burton S, Rountree JSS, Helm MD, O'Dowd CR, Kennedy RD, Gavory G, Cranston AN, Longley DB, Jacq X, Harrison T. USP7 inhibitors suppress tumour neoangiogenesis and promote synergy with immune checkpoint inhibitors by downregulating fibroblast VEGF. Clin Transl Med 2024; 14:e1648. [PMID: 38602256 PMCID: PMC11007818 DOI: 10.1002/ctm2.1648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/23/2024] [Accepted: 03/17/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Understanding how to modulate the microenvironment of tumors that are resistant to immune checkpoint inhibitors represents a major challenge in oncology.Here we investigate the ability of USP7 inhibitors to reprogram the tumor microenvironment (TME) by inhibiting secretion of vascular endothelial growth factor (VEGF) from fibroblasts. METHODS To understand the role played by USP7 in the TME, we systematically evaluated the effects of potent, selective USP7 inhibitors on co-cultures comprising components of the TME, using human primary cells. We also evaluated the effects of USP7 inhibition on tumor growth inhibition in syngeneic models when dosed in combination with immune checkpoint inhibitors (ICIs). RESULTS Abrogation of VEGF secretion from fibroblasts in response to USP7 inhibition resulted in inhibition of tumor neoangiogenesis and increased tumor recruitment of CD8-positive T-lymphocytes, leading to significantly improved sensitivity to immune checkpoint inhibitors. In syngeneic models, treatment with USP7 inhibitors led to striking tumor responses resulting in significantly improved survival. CONCLUSIONS USP7-mediated reprograming of the TME is not linked to its previously characterized role in modulating MDM2 but does require p53 and UHRF1 in addition to the well-characterized VEGF transcription factor, HIF-1α. This represents a function of USP7 that is unique to fibroblasts, and which is not observed in cancer cells or other components of the TME. Given the potential for USP7 inhibitors to transform "immune desert" tumors into "immune responsive" tumors, this paves the way for a novel therapeutic strategy combining USP7 inhibitors with immune checkpoint inhibitors (ICIs).
Collapse
Affiliation(s)
| | - Pei‐Ju Sung
- Almac Discovery Ltd., Health Science BuildingBelfastUK
| | - Mark Wappett
- Almac Discovery Ltd., Health Science BuildingBelfastUK
- Patrick G Johnston Centre for Cancer ResearchQueen's University BelfastBelfastUK
| | | | - Ian T. Lobb
- Almac Discovery Ltd., Health Science BuildingBelfastUK
| | - Wei‐Wei Kung
- Almac Discovery Ltd., Health Science BuildingBelfastUK
| | | | - Natalie Page
- Almac Discovery Ltd., Health Science BuildingBelfastUK
| | - Eamon Cassidy
- Almac Discovery Ltd., Health Science BuildingBelfastUK
| | | | | | | | | | | | - Gerald Gavory
- Almac Discovery Ltd., Health Science BuildingBelfastUK
| | | | - Daniel B. Longley
- Almac Discovery Ltd., Health Science BuildingBelfastUK
- Patrick G Johnston Centre for Cancer ResearchQueen's University BelfastBelfastUK
| | - Xavier Jacq
- Almac Discovery Ltd., Health Science BuildingBelfastUK
| | | |
Collapse
|
4
|
Zhan X, Yang Y, Li Q, He F. The role of deubiquitinases in cardiac disease. Expert Rev Mol Med 2024; 26:e3. [PMID: 38525836 PMCID: PMC11062144 DOI: 10.1017/erm.2024.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/10/2023] [Accepted: 12/28/2023] [Indexed: 03/26/2024]
Abstract
Deubiquitinases are a group of proteins that identify and digest monoubiquitin chains or polyubiquitin chains attached to substrate proteins, preventing the substrate protein from being degraded by the ubiquitin-proteasome system. Deubiquitinases regulate cellular autophagy, metabolism and oxidative stress by acting on different substrate proteins. Recent studies have revealed that deubiquitinases act as a critical regulator in various cardiac diseases, and control the onset and progression of cardiac disease through a board range of mechanism. This review summarizes the function of different deubiquitinases in cardiac disease, including cardiac hypertrophy, myocardial infarction and diabetes mellitus-related cardiac disease. Besides, this review briefly recapitulates the role of deubiquitinases modulators in cardiac disease, providing the potential therapeutic targets in the future.
Collapse
Affiliation(s)
- Xiaona Zhan
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yi Yang
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Qing Li
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Fan He
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
5
|
Li H, Sun Y, Yin H, Zhang Y, Yu J, Hou N, Wang P, Liang H, Xie A, Wang X, Dong J, Xu X. Virtual screening of natural products targeting ubiquitin-specific protease 7. J Biomol Struct Dyn 2024:1-8. [PMID: 38361286 DOI: 10.1080/07391102.2024.2316779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/27/2023] [Indexed: 02/17/2024]
Abstract
Ubiquitin-specific protease 7 (USP7) is a promising prognostic and druggable target for cancer therapy. Inhibition of USP7 can activate the MDM2-P53 signaling pathway, thereby promoting cancer cell apoptosis. This study based on watvina molecular docking of virtual screening method and biological evaluation found the new USP7 inhibitors targeting catalytic active site. Three hits were screened from 3760 natural products and validated as USP7 inhibitors by enzymatic and kinetic assays. The IC50 values of scutellarein (Scu), semethylzeylastera (DML) and salvianolic acid C (SAC) were 3.017, 6.865 and 8.495 μM, respectively. Further, we reported that the hits could downregulate MDM2 and activate p53 signal pathway in HCT116 cells. Molecular dynamics simulation was used to investigate the binding mechanism of USP7 to Scu, the compound with the best performance, which formed stable contact with Val296, Gln297, Phe409, Tyr465 and Tyr514. These interactions are essential for maintaining the biological activity of Scu. Three natural products are suitable as lead compounds for the development of novel USP7 inhibitors, especially anti-colon cancer drugs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hongju Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yujie Sun
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Hua Yin
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co., Ltd, Qingdao, China
| | - Yuzhu Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Junhong Yu
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co., Ltd, Qingdao, China
| | - Ning Hou
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Peng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Huicong Liang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
| | - Aowei Xie
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xiaohong Wang
- Shandong Foreign Trade Vocational College, Qingdao, Shandong, China
| | - Jianjun Dong
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co., Ltd, Qingdao, China
| | - Ximing Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, China
- Qingdao Marine Science and Technology Center, Qingdao, China
- Marine Biomedical Research Institute of Qingdao, Qingdao, Shandong, China
| |
Collapse
|
6
|
Brewitz L, Henry Chan HT, Lukacik P, Strain-Damerell C, Walsh MA, Duarte F, Schofield CJ. Mass spectrometric assays monitoring the deubiquitinase activity of the SARS-CoV-2 papain-like protease inform on the basis of substrate selectivity and have utility for substrate identification. Bioorg Med Chem 2023; 95:117498. [PMID: 37857256 PMCID: PMC10933793 DOI: 10.1016/j.bmc.2023.117498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023]
Abstract
The SARS-CoV-2 papain-like protease (PLpro) and main protease (Mpro) are nucleophilic cysteine enzymes that catalyze hydrolysis of the viral polyproteins pp1a/1ab. By contrast with Mpro, PLpro is also a deubiquitinase (DUB) that accepts post-translationally modified human proteins as substrates. Here we report studies on the DUB activity of PLpro using synthetic Nε-lysine-branched oligopeptides as substrates that mimic post-translational protein modifications by ubiquitin (Ub) or Ub-like modifiers (UBLs), such as interferon stimulated gene 15 (ISG15). Mass spectrometry (MS)-based assays confirm the DUB activity of isolated recombinant PLpro. They reveal that the sequence of both the peptide fragment derived from the post-translationally modified protein and that derived from the UBL affects PLpro catalysis; the nature of substrate binding in the S sites appears to be more important for catalytic efficiency than binding in the S' sites. Importantly, the results reflect the reported cellular substrate selectivity of PLpro, i.e. human proteins conjugated to ISG15 are better substrates than those conjugated to Ub or other UBLs. The combined experimental and modelling results imply that PLpro catalysis is affected not only by the identity of the substrate residues binding in the S and S' sites, but also by the substrate fold and the conformational dynamics of the blocking loop 2 of the PLpro:substrate complex. Nε-Lysine-branched oligopeptides thus have potential to help the identification of PLpro substrates. More generally, the results imply that MS-based assays with Nε-lysine-branched oligopeptides have potential to monitor catalysis by human DUBs and hence to inform on their substrate preferences.
Collapse
Affiliation(s)
- Lennart Brewitz
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom; The Ineos Oxford Institute for Antimicrobial Research, Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom.
| | - H T Henry Chan
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Petra Lukacik
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, OX11 0DE Didcot, United Kingdom; Research Complex at Harwell, Harwell Science and Innovation Campus, OX11 0FA Didcot, United Kingdom
| | - Claire Strain-Damerell
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, OX11 0DE Didcot, United Kingdom; Research Complex at Harwell, Harwell Science and Innovation Campus, OX11 0FA Didcot, United Kingdom
| | - Martin A Walsh
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, OX11 0DE Didcot, United Kingdom; Research Complex at Harwell, Harwell Science and Innovation Campus, OX11 0FA Didcot, United Kingdom
| | - Fernanda Duarte
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom; The Ineos Oxford Institute for Antimicrobial Research, Department of Chemistry, University of Oxford, 12 Mansfield Road, OX1 3TA Oxford, United Kingdom.
| |
Collapse
|
7
|
Metzner K, O’Meara MJ, Halligan B, Wotring JW, Sexton JZ, O’Meara TR. Imaging-Based Screening Identifies Modulators of the eIF3 Translation Initiation Factor Complex in Candida albicans. Antimicrob Agents Chemother 2023; 67:e0050323. [PMID: 37382550 PMCID: PMC10353439 DOI: 10.1128/aac.00503-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/07/2023] [Indexed: 06/30/2023] Open
Abstract
Fungal pathogens like Candida albicans can cause devastating human disease. Treatment of candidemia is complicated by the high rate of resistance to common antifungal therapies. Additionally, there is host toxicity associated with many antifungal compounds due to the conservation between essential mammalian and fungal proteins. An attractive new approach for antimicrobial development is to target virulence factors: non-essential processes that are required for the organism to cause disease in human hosts. This approach expands the potential target space while reducing the selective pressure toward resistance, as these targets are not essential for viability. In C. albicans, a key virulence factor is the ability to transition to hyphal morphology. We developed a high-throughput image analysis pipeline to distinguish between yeast and filamentous growth in C. albicans at the single cell level. Based on this phenotypic assay, we screened the FDA drug repurposing library of 2,017 compounds for their ability to inhibit filamentation and identified 33 compounds that block the hyphal transition in C. albicans with IC50 values ranging from 0.2 to 150 μM. Multiple compounds showed a phenyl sulfone chemotype, prompting further analysis. Of these phenyl sulfones, NSC 697923 displayed the most efficacy, and by selecting for resistant mutants, we identified eIF3 as the target of NSC 697923 in C. albicans.
Collapse
Affiliation(s)
- Katura Metzner
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Matthew J. O’Meara
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Benjamin Halligan
- University of Michigan Center for Drug Repurposing, Ann Arbor, Michigan, USA
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jesse W. Wotring
- University of Michigan Center for Drug Repurposing, Ann Arbor, Michigan, USA
- Department of Medicinal Chemistry, College of Pharmacy, Ann Arbor, Michigan, USA
| | - Jonathan Z. Sexton
- University of Michigan Center for Drug Repurposing, Ann Arbor, Michigan, USA
- Department of Internal Medicine, Gastroenterology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Medicinal Chemistry, College of Pharmacy, Ann Arbor, Michigan, USA
| | - Teresa R. O’Meara
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
8
|
Song Y, Wang S, Zhao M, Yu B. Development of a robust HTRF assay with USP7 full length protein expressed in E. coli prokaryotic system for the identification of USP7 inhibitors. J Pharm Biomed Anal 2023; 227:115305. [PMID: 36812797 DOI: 10.1016/j.jpba.2023.115305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023]
Abstract
Deubiquitinating enzyme ubiquitin-specific protease 7 (USP7) is a promising therapeutic target. Several USP7 inhibitors accommodated in the catalytic triad of USP7 have been reported with the aid of high-throughput screening (HTS) methods using USP7 catalytic domain truncation. However, the drawbacks of previously reported biochemical cleavage assays, including poor stability, fluorescence interference, time-consuming, expensive, more importantly the selectivity issue, have challenged the USP7-targeted drug discovery. In this work, we demonstrated the functional heterogeneity and essential role of different structural elements in the USP7 full activation, highlighting the necessity of USP7 full length in drug discovery. Apart from reported two pockets in the catalytic triad, five additional ligandable pockets were predicted based on the proposed USP7 full length models by AlphaFold and homology modelling. A reliable homogeneous time-resolved fluorescence (HTRF) HTS method was established based on the cleavage mechanism of USP7 towards the ubiquitin precursor UBA10. The USP7 full length protein was successfully expressed in the relatively cost-effective E. coli prokaryotic system and used to simulate the auto-activated USP7 in nature. Via screening our in-house library (∼ 1500 compounds), 19 hit compounds with >20% of inhibition rate were identified for further optimization. This assay will enrich the toolbox for the identification of highly potent and selective USP7 inhibitors for clinical use.
Collapse
Affiliation(s)
- Yihui Song
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou 450001, China.
| | - Shu Wang
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou 450001, China
| | - Min Zhao
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Yu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
9
|
Qin B, Zhou L, Wang F, Wang Y. Ubiquitin-specific protease 20 in human disease: emerging role and therapeutic implications. Biochem Pharmacol 2022; 206:115352. [DOI: 10.1016/j.bcp.2022.115352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/06/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
|
10
|
Tan L, Shan H, Han C, Zhang Z, Shen J, Zhang X, Xiang H, Lu K, Qi C, Li Y, Zhuang G, Chen G, Tan L. Discovery of Potent OTUB1/USP8 Dual Inhibitors Targeting Proteostasis in Non-Small-Cell Lung Cancer. J Med Chem 2022; 65:13645-13659. [PMID: 36221183 DOI: 10.1021/acs.jmedchem.2c00408] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Deubiquitinating enzymes (DUBs) are key regulatory components of the ubiquitination system. Many DUBs have been revealed to play key roles in normal physiology and diseases. However, only very limited DUB members have well-characterized inhibitors. OTUB1 and USP8 are two DUBs reported to promote both immune evasion and tumorigenesis in tumor models, yet their targeted inhibitors are in the early stages of development. Here, we describe the lead identification and optimization of an OTUB1/USP8 dual inhibitor, 61, which exhibits highly potent and selective inhibition of both targets with subnanomolar IC50s in vitro. By inhibiting both DUBs, 61 phenocopies the double knockdown of OTUB1/USP8 and exerts pronounced antiproliferative effects in H1975 and other non-small-cell lung cancer (NSCLC) cell lines. Moreover, 61 efficaciously mitigates tumor growth in vivo. Collectively, our results provide a useful tool for pharmacological perturbation of OTUB1/USP8 and introduce a promising therapeutic strategy of dual DUB inhibition for treating NSCLC.
Collapse
Affiliation(s)
- Lingli Tan
- School of Pharmacy, Fudan University, Shanghai 201203, China.,Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Hengyue Shan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Han
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenfeng Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiali Shen
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Huaijiang Xiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kuankuan Lu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunting Qi
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Ying Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| | - Guanglei Zhuang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Gang Chen
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Li Tan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
| |
Collapse
|
11
|
Oliveira RI, Guedes RA, Salvador JAR. Highlights in USP7 inhibitors for cancer treatment. Front Chem 2022; 10:1005727. [PMID: 36186590 PMCID: PMC9520255 DOI: 10.3389/fchem.2022.1005727] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Ubiquitin-specific protease 7 (USP7) is a member of one of the most largely studied families of deubiquitylating enzymes. It plays a key role modulating the levels of multiple proteins, including tumor suppressors, transcription factors, epigenetic modulators, DNA repair proteins, and regulators of the immune response. The abnormal expression of USP7 is found in various malignant tumors and a high expression signature generally indicates poor tumor prognosis. This suggests USP7 as a promising prognostic and druggable target for cancer therapy. Nonetheless, no approved drugs targeting USP7 have already entered clinical trials. Therefore, the development of potent and selective USP7 inhibitors still requires intensive research and development efforts before the pre-clinical benefits translate into the clinic. This mini review systematically summarizes the role of USP7 as a drug target for cancer therapeutics, as well as the scaffolds, activities, and binding modes of some of the most representative small molecule USP7 inhibitors reported in the scientific literature. To wind up, development challenges and potential combination therapies using USP7 inhibitors for less tractable tumors are also disclosed.
Collapse
Affiliation(s)
- Rita I. Oliveira
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Romina A. Guedes
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Jorge A. R. Salvador
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- *Correspondence: Jorge A. R. Salvador,
| |
Collapse
|
12
|
Xu X, Wang M, Xu H, Liu N, Chen K, Luo C, Chen S, Chen H. Design, synthesis and biological evaluation of 2-aminopyridine derivatives as USP7 inhibitors. Bioorg Chem 2022; 129:106128. [PMID: 36113266 DOI: 10.1016/j.bioorg.2022.106128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/23/2022] [Accepted: 09/03/2022] [Indexed: 11/02/2022]
Abstract
A series of novel 2-aminopyridine derivatives 1-26 have been designed and synthesized by structural modifications on a lead USP7 inhibitor, GNE6640. All the compounds were evaluated for their USP7 inhibitory activities. The results showed that most of the compounds have good USP7 inhibitory activities at the concentration of 50 μM. Among them, compounds 7, 14 and 21 are the most potential ones from each category with the IC50 values of 7.6 ± 0.1 μM, 17.0 ± 0.2 μM and 11.6 ± 0.5 μM, respectively. Compounds 7 and 21 expressed significant binding interactions with USP7 by surface plasmon resonance (SPR)-based binding assay, but both of them presented moderate antiproliferative activities against HCT116 cells. They could effectively promote MDM2 degradation, p53 stabilization and p21 gene expression in the western blot analysis.
Collapse
Affiliation(s)
- Xiaoming Xu
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Mingchen Wang
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hailong Xu
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Na Liu
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Kaixian Chen
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Luo
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Shijie Chen
- The Center for Chemical Biology, Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hua Chen
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
13
|
Deubiquitinases in cell death and inflammation. Biochem J 2022; 479:1103-1119. [PMID: 35608338 PMCID: PMC9162465 DOI: 10.1042/bcj20210735] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/07/2022] [Accepted: 05/10/2022] [Indexed: 11/20/2022]
Abstract
Apoptosis, pyroptosis, and necroptosis are distinct forms of programmed cell death that eliminate infected, damaged, or obsolete cells. Many proteins that regulate or are a part of the cell death machinery undergo ubiquitination, a post-translational modification made by ubiquitin ligases that modulates protein abundance, localization, and/or activity. For example, some ubiquitin chains target proteins for degradation, while others function as scaffolds for the assembly of signaling complexes. Deubiquitinases (DUBs) are the proteases that counteract ubiquitin ligases by cleaving ubiquitin from their protein substrates. Here, we review the DUBs that have been found to suppress or promote apoptosis, pyroptosis, or necroptosis.
Collapse
|
14
|
On the Study of Deubiquitinases: Using the Right Tools for the Job. Biomolecules 2022; 12:biom12050703. [PMID: 35625630 PMCID: PMC9139131 DOI: 10.3390/biom12050703] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023] Open
Abstract
Deubiquitinases (DUBs) have been the subject of intense scrutiny in recent years. Many of their diverse enzymatic mechanisms are well characterized in vitro; however, our understanding of these enzymes at the cellular level lags due to the lack of quality tool reagents. DUBs play a role in seemingly every biological process and are central to many human pathologies, thus rendering them very desirable and challenging therapeutic targets. This review aims to provide researchers entering the field of ubiquitination with knowledge of the pharmacological modulators and tool molecules available to study DUBs. A focus is placed on small molecule inhibitors, ubiquitin variants (UbVs), and activity-based probes (ABPs). Leveraging these tools to uncover DUB biology at the cellular level is of particular importance and may lead to significant breakthroughs. Despite significant drug discovery efforts, only approximately 15 chemical probe-quality small molecule inhibitors have been reported, hitting just 6 of about 100 DUB targets. UbV technology is a promising approach to rapidly expand the library of known DUB inhibitors and may be used as a combinatorial platform for structure-guided drug design.
Collapse
|
15
|
Abd El-Aziz NM, Khalifa I, Darwish AMG, Badr AN, Aljumayi H, Hafez ES, Shehata MG. Docking Analysis of Some Bioactive Compounds from Traditional Plants against SARS-CoV-2 Target Proteins. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092662. [PMID: 35566014 PMCID: PMC9100219 DOI: 10.3390/molecules27092662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 12/24/2022]
Abstract
COVID-19 is still a global pandemic that has not been stopped. Many traditional medicines have been demonstrated to be incredibly helpful for treating COVID-19 patients while fighting the disease worldwide. We introduced 10 bioactive compounds derived from traditional medicinal plants and assessed their potential for inhibiting viral spike protein (S-protein), Papain-like protease (PLpro), and RNA dependent RNA polymerase (RdRp) using molecular docking protocols where we simulate the inhibitors bound to target proteins in various poses and at different known binding sites using Autodock version 4.0 and Chimera 1.8.1 software. Results found that the chicoric acid, quinine, and withaferin A ligand strongly inhibited CoV-2 S -protein with a binding energy of -8.63, -7.85, and -7.85 kcal/mol, respectively. Our modeling work also suggested that curcumin, quinine, and demothoxycurcumin exhibited high binding affinity toward RdRp with a binding energy of -7.80, -7.80, and -7.64 kcal/mol, respectively. The other ligands, namely chicoric acid, demothoxycurcumin, and curcumin express high binding energy than the other tested ligands docked to PLpro with -7.62, -6.81, and -6.70 kcal/mol, respectively. Prediction of drug-likeness properties revealed that all tested ligands have no violations to Lipinski's Rule of Five except cepharanthine, chicoric acid, and theaflavin. Regarding the pharmacokinetic behavior, all ligand predicted to have high GI-absorption except chicoric acid and theaflavin. At the same way chicoric acid, withaferin A, and withanolide D predicted to be substrate for multidrug resistance protein (P-gp substrate). Caffeic acid, cepharanthine, chicoric acid, withaferin A, and withanolide D also have no inhibitory effect on any cytochrome P450 enzymes. Promisingly, chicoric acid, quinine, curcumin, and demothoxycurcumin exhibited high binding affinity on SARS-CoV-2 target proteins and expressed good drug-likeness and pharmacokinetic properties. Further research is required to investigate the potential uses of these compounds in the treatment of SARS-CoV-2.
Collapse
Affiliation(s)
- Nourhan M. Abd El-Aziz
- Department of Food Technology, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt; (A.M.G.D.); (M.G.S.)
- Correspondence:
| | - Ibrahim Khalifa
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor, Benha 13736, Egypt;
| | - Amira M. G. Darwish
- Department of Food Technology, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt; (A.M.G.D.); (M.G.S.)
| | - Ahmed N. Badr
- Department of Food Toxicology and Contaminants, National Research Centre, Dokki, Cairo 12622, Egypt;
| | - Huda Aljumayi
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - El-Sayed Hafez
- Department of Plant Protection and Biomolecular Diagnosis, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt;
| | - Mohamed G. Shehata
- Department of Food Technology, Arid Lands Cultivation Research Institute (ALCRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt; (A.M.G.D.); (M.G.S.)
- Food Research Section, R&D Division, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi P.O. Box 52150, United Arab Emirates
| |
Collapse
|
16
|
Mahajan S, Majumder A, Stewart PA, Chen YA, Adhikari E, Fang B, Yang Y, Lawrence H, Kinose F, Koomen JM, Haura EB. Deubiquitinase Vulnerabilities Identified through Activity-Based Protein Profiling in Non-Small Cell Lung Cancer. ACS Chem Biol 2022; 17:776-784. [PMID: 35311290 PMCID: PMC11071078 DOI: 10.1021/acschembio.2c00018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
To aid in the prioritization of deubiquitinases (DUBs) as anticancer targets, we developed an approach combining activity-based protein profiling (ABPP) with mass spectrometry in both non-small cell lung cancer (NSCLC) tumor tissues and cell lines along with analysis of available RNA interference and CRISPR screens. We identified 67 DUBs in NSCLC tissues, 17 of which were overexpressed in adenocarcinoma or squamous cell histologies and 12 of which scored as affecting lung cancer cell viability in RNAi or CRISPR screens. We used the CSN5 inhibitor, which targets COPS5/CSN5, as a tool to understand the biological significance of one of these 12 DUBs, COPS6, in lung cancer. Our study provides a powerful resource to interrogate the role of DUB signaling biology and nominates druggable targets for the treatment of lung cancer subtypes.
Collapse
|
17
|
Turgut GT, Altunoglu U, Sarac Sivrikoz T, Toksoy G, Kalaycı T, Avcı Ş, Karaman B, Gulec C, Başaran S, Sayın GY, Kayserili H, Uyguner ZO. Functional loss of ubiquitin‐specific protease 14 may lead to a novel distal arthrogryposis phenotype. Clin Genet 2022; 101:421-428. [DOI: 10.1111/cge.14117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Gozde Tutku Turgut
- Department of Medical Genetics, Istanbul Medical Faculty Istanbul University Istanbul Turkey
| | - Umut Altunoglu
- Department of Medical Genetics, Istanbul Medical Faculty Istanbul University Istanbul Turkey
- Department of Medical Genetics Koç University School of Medicine (KUSoM) Istanbul Turkey
| | - Tugba Sarac Sivrikoz
- Perinatology Unit, Department of Obstetrics and Gynecology, Istanbul Medical Faculty Istanbul University Istanbul Turkey
| | - Guven Toksoy
- Department of Medical Genetics, Istanbul Medical Faculty Istanbul University Istanbul Turkey
| | - Tuğba Kalaycı
- Department of Medical Genetics, Istanbul Medical Faculty Istanbul University Istanbul Turkey
| | - Şahin Avcı
- Department of Medical Genetics, Istanbul Medical Faculty Istanbul University Istanbul Turkey
- Department of Medical Genetics Koç University School of Medicine (KUSoM) Istanbul Turkey
| | - Birsen Karaman
- Department of Medical Genetics, Istanbul Medical Faculty Istanbul University Istanbul Turkey
- Department of Pediatric Basic Sciences, Institute of Child Health Istanbul University Istanbul Turkey
| | - Cagri Gulec
- Department of Medical Genetics, Istanbul Medical Faculty Istanbul University Istanbul Turkey
| | - Seher Başaran
- Department of Medical Genetics, Istanbul Medical Faculty Istanbul University Istanbul Turkey
| | - Gözde Yeşil Sayın
- Department of Medical Genetics, Istanbul Medical Faculty Istanbul University Istanbul Turkey
| | - Hulya Kayserili
- Department of Medical Genetics, Istanbul Medical Faculty Istanbul University Istanbul Turkey
- Department of Medical Genetics Koç University School of Medicine (KUSoM) Istanbul Turkey
| | - Zehra Oya Uyguner
- Department of Medical Genetics, Istanbul Medical Faculty Istanbul University Istanbul Turkey
| |
Collapse
|
18
|
Xu X, Zhang S, Wang Y, Zhao G, Sun Y, Wang J, Liu L, Liu F, Wang P, Yang J. Virtual Screening Inhibitors of Ubiquitin-specific Protease 7 combining Pharmacophore Modeling and Molecular Docking. Mol Inform 2022; 41:e2100273. [PMID: 35037416 DOI: 10.1002/minf.202100273] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/16/2022] [Indexed: 11/07/2022]
Abstract
Ubiquitin-specific protease 7 (USP7) is one of the most extensively studied deubiquitinases. USP7 exhibits a high expression signature in various malignant tumors, suggesting that it is a marker of tumor prognosis and a potential drug target for anti-tumor therapy. In this study, virtual screening based on pharmacophore model and biological evaluation have been applied for the discovery of novel USP7 inhibitors targeting the catalytic active site. The TS-4 was screened from 215,480 small molecules and was found to have USP7 inhibitory activity. Preliminary in vitro studies disclosed its antiproliferative activity on human colon cancer cell lines (HCT-116 and RKO), compared with normal colon cell line (CCD841CoN). Molecular dynamics (MD) simulation revealed the combine mechanism between USP7 with the TS-4. The TS-4 formed stable interactions with Asp295, Phe409 and Tyr514, which were critical to enhance its biological activity. This compound will serve as a promising hit compound for facilitating the further design of novel USP7 inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fang Liu
- Guangzhou University of Chinese Medicine, CHINA
| | | | | |
Collapse
|
19
|
Lange SM, Armstrong LA, Kulathu Y. Deubiquitinases: From mechanisms to their inhibition by small molecules. Mol Cell 2021; 82:15-29. [PMID: 34813758 DOI: 10.1016/j.molcel.2021.10.027] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/15/2021] [Accepted: 10/28/2021] [Indexed: 12/21/2022]
Abstract
Deubiquitinases (DUBs) are specialized proteases that remove ubiquitin from substrates or cleave within ubiquitin chains to regulate ubiquitylation and therefore play important roles in eukaryotic biology. Dysregulation of DUBs is implicated in several human diseases, highlighting the importance of DUB function. In addition, many pathogenic bacteria and viruses encode and deploy DUBs to manipulate host immune responses and establish infectious diseases in humans and animals. Hence, therapeutic targeting of DUBs is an increasingly explored area that requires an in-depth mechanistic understanding of human and pathogenic DUBs. In this review, we summarize the multiple layers of regulation that control autoinhibition, activation, and substrate specificity of DUBs. We discuss different strategies to inhibit DUBs and the progress in developing selective small-molecule DUB inhibitors. Finally, we propose a classification system of DUB inhibitors based on their mode of action.
Collapse
Affiliation(s)
- Sven M Lange
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Lee A Armstrong
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Yogesh Kulathu
- MRC Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
20
|
Brooks DS, Vishal K, Bawa S, Alder A, Geisbrecht ER. Integration of proteomic and genetic approaches to assess developmental muscle atrophy. J Exp Biol 2021; 224:272703. [PMID: 34647571 DOI: 10.1242/jeb.242698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 10/07/2021] [Indexed: 01/04/2023]
Abstract
Muscle atrophy, or a decline in muscle protein mass, is a significant problem in the aging population and in numerous disease states. Unraveling molecular signals that trigger and promote atrophy may lead to a better understanding of treatment options; however, there is no single cause of atrophy identified to date. To gain insight into this problem, we chose to investigate changes in protein profiles during muscle atrophy in Manduca sexta and Drosophila melanogaster. The use of insect models provides an interesting parallel to probe atrophic mechanisms as these organisms undergo a normal developmental atrophy process during the pupal transition stage. Leveraging the inherent advantages of each model organism, we first defined protein signature changes during M. sexta intersegmental muscle (ISM) atrophy and then used genetic approaches to confirm their functional importance in the D. melanogaster dorsal internal oblique muscles (DIOMs). Our data reveal an upregulation of proteasome and peptidase components and a general downregulation of proteins that regulate actin filament formation. Surprisingly, thick filament proteins that comprise the A-band are increased in abundance, providing support for the ordered destruction of myofibrillar components during developmental atrophy. We also uncovered the actin filament regulator ciboulot (Cib) as a novel regulator of muscle atrophy. These insights provide a framework towards a better understanding of global changes that occur during atrophy and may eventually lead to therapeutic targets.
Collapse
Affiliation(s)
- David S Brooks
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Kumar Vishal
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Simranjot Bawa
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Adrienne Alder
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Erika R Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
21
|
Guo JN, Xia BR, Deng SH, Yang C, Pi YN, Cui BB, Jin WL. Deubiquitinating Enzymes Orchestrate the Cancer Stem Cell-Immunosuppressive Niche Dialogue: New Perspectives and Therapeutic Potential. Front Cell Dev Biol 2021; 9:680100. [PMID: 34179009 PMCID: PMC8220152 DOI: 10.3389/fcell.2021.680100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
Cancer stem cells (CSCs) are sparks for igniting tumor recurrence and the instigators of low response to immunotherapy and drug resistance. As one of the important components of tumor microenvironment, the tumor associated immune microenvironment (TAIM) is driving force for the heterogeneity, plasticity and evolution of CSCs. CSCs create the inhibitory TAIM (ITAIM) mainly through four stemness-related signals (SRSs), including Notch-nuclear factor-κB axis, Hedgehog, Wnt and signal transducer and activator of transcription. Ubiquitination and deubiquitination in proteins related to the specific stemness of the CSCs have a profound impact on the regulation of ITAIM. In regulating the balance between ubiquitination and deubiquitination, it is crucial for deubiquitinating enzymes (DUBs) to cleave ubiquitin chains from substrates. Ubiquitin-specific peptidases (USPs) comprise the largest family of DUBs. Growing evidence suggests that they play novel functions in contribution of ITAIM, including regulating tumor immunogenicity, activating stem cell factors, upregulating the SRSs, stabilizing anti-inflammatory receptors, and regulating anti-inflammatory cytokines. These overactive or abnormal signaling may dampen antitumor immune responses. The inhibition of USPs could play a regulatory role in SRSs and reversing ITAIM, and also have great potential in improving immune killing ability against tumor cells, including CSCs. In this review, we focus on the USPs involved in CSCs signaling pathways and regulating ITAIM, which are promising therapeutic targets in antitumor therapy.
Collapse
Affiliation(s)
- Jun-Nan Guo
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Bai-Rong Xia
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, Anhui Provincial Cancer Hospital, University of Science and Technology of China, Hefei, China
| | - Shen-Hui Deng
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chang Yang
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ya-Nan Pi
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Bin-Bin Cui
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wei-Lin Jin
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Institute of Cancer Neuroscience, The First Clinical Medical College of Lanzhou University, Lanzhou, China
| |
Collapse
|
22
|
Small-Molecule Inhibitors Targeting Proteasome-Associated Deubiquitinases. Int J Mol Sci 2021; 22:ijms22126213. [PMID: 34207520 PMCID: PMC8226605 DOI: 10.3390/ijms22126213] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/02/2021] [Accepted: 06/05/2021] [Indexed: 02/06/2023] Open
Abstract
The 26S proteasome is the principal protease for regulated intracellular proteolysis. This multi-subunit complex is also pivotal for clearance of harmful proteins that are produced throughout the lifetime of eukaryotes. Recent structural and kinetic studies have revealed a multitude of conformational states of the proteasome in substrate-free and substrate-engaged forms. These conformational transitions demonstrate that proteasome is a highly dynamic machinery during substrate processing that can be also controlled by a number of proteasome-associated factors. Essentially, three distinct family of deubiquitinases–USP14, RPN11, and UCH37–are associated with the 19S regulatory particle of human proteasome. USP14 and UCH37 are capable of editing ubiquitin conjugates during the process of their dynamic engagement into the proteasome prior to the catalytic commitment. In contrast, RPN11-mediated deubiquitination is directly coupled to substrate degradation by sensing the proteasome’s conformational switch into the commitment steps. Therefore, proteasome-bound deubiquitinases are likely to tailor the degradation events in accordance with substrate processing steps and for dynamic proteolysis outcomes. Recent chemical screening efforts have yielded highly selective small-molecule inhibitors for targeting proteasomal deubiquitinases, such as USP14 and RPN11. USP14 inhibitors, IU1 and its progeny, were found to promote the degradation of a subset of substrates probably by overriding USP14-imposed checkpoint on the proteasome. On the other hand, capzimin, a RPN11 inhibitor, stabilized the proteasome substrates and showed the anti-proliferative effects on cancer cells. It is highly conceivable that these specific inhibitors will aid to dissect the role of each deubiquitinase on the proteasome. Moreover, customized targeting of proteasome-associated deubiquitinases may also provide versatile therapeutic strategies for induced or repressed protein degradation depending on proteolytic demand and cellular context.
Collapse
|
23
|
Gupta A, Behl T, Aleya L, Rahman MH, Yadav HN, Pal G, Kaur I, Arora S. Role of UPP pathway in amelioration of diabetes-associated complications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:19601-19614. [PMID: 33660172 DOI: 10.1007/s11356-021-12781-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
Type 2 diabetes (T2D) is one of the most widely spread metabolic disorder also called as "life style" disease. Due to the alarming number of patients, there is great need to therapies targeting functions which can help in maintaining the homeostasis of glucose levels and improving insulin sensitivity. Detailed analysis was done through various research and review papers which was searched using MEDLINE, BIOSIS, and EMBASE using various keywords. This search retrieved the most appropriate content on these molecules targeting UPP pathway. From this extensive review involving UPP pathway, it was concluded that the role of ubiquitin's is not only limited to neurodegenerative disorders but also plays a critical role in progression of diabetes including obesity, insulin resistance, and various neurogenerative disorders but it also targets proteasomal degradation including mediation of cellular signaling pathways. Thus, drugs targeting UPP not only may show effect against diabetes but also are therapeutically beneficial in the treatment of diabetes-associated complications which may be obtained. Thus, based on the available information and data on UPP functions, it can be concluded that regulation of UPP pathway via downstream regulators mainly E1, E2, and E3 may bring promising results. Drugs targeting these transcriptional factors may emerge as a novel therapy in the treatment of diabetes and diabetes-associated complications.
Collapse
Affiliation(s)
- Amit Gupta
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Md Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Seoul, South Korea
- Department of Pharmacy, Southeast University, Banani, Dhaka, 1213, Bangladesh
| | | | - Giridhari Pal
- Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Ishnoor Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sandeep Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
24
|
Hu B, Zhang D, Zhao K, Wang Y, Pei L, Fu Q, Ma X. Spotlight on USP4: Structure, Function, and Regulation. Front Cell Dev Biol 2021; 9:595159. [PMID: 33681193 PMCID: PMC7935551 DOI: 10.3389/fcell.2021.595159] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 01/15/2021] [Indexed: 02/05/2023] Open
Abstract
The deubiquitinating enzyme (DUB)–mediated cleavage of ubiquitin plays a critical role in balancing protein synthesis and degradation. Ubiquitin-specific protease 4 (USP4), a member of the largest subfamily of cysteine protease DUBs, removes monoubiquitinated and polyubiquitinated chains from its target proteins. USP4 contains a DUSP (domain in USP)–UBL (ubiquitin-like) domain and a UBL-insert catalytic domain, sharing a common domain organization with its paralogs USP11 and USP15. USP4 plays a critical role in multiple cellular and biological processes and is tightly regulated under normal physiological conditions. When its expression or activity is aberrant, USP4 is implicated in the progression of a wide range of pathologies, especially cancers. In this review, we comprehensively summarize the current knowledge of USP4 structure, biological functions, pathological roles, and cellular regulation, highlighting the importance of exploring effective therapeutic interventions to target USP4.
Collapse
Affiliation(s)
- Binbin Hu
- Department of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Dingyue Zhang
- Department of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Kejia Zhao
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Wang
- Department of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lijiao Pei
- Department of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qianmei Fu
- Department of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Department of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
25
|
Ajadi MB, Soremekun OS, Elrashedy AA, Olotu FA, Kumalo HM, Soliman MES. Probing Protein-Protein Interactions and Druggable Site Identification: Mechanistic Binding Events between Ubiquitin and Zinc Finger with UFM1-Specific Peptidase Domain Protein (ZUFSP). Comb Chem High Throughput Screen 2021; 25:831-837. [PMID: 33538664 DOI: 10.2174/1386207324666210203175142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/17/2020] [Accepted: 12/27/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Deubiquitinating enzymes (DUBs) protein family have been implicated in some deregulated pathways involved in carcinogenesis such as cell cycle, gene expression, and DNA damage response (DDR). Zinc finger with UFM1-specific peptidase domain protein (ZUFSP) is one of the recently discovered members of the DUBs Objectives: To identify and cross validate the ZUFSP binding site using the bioinformatic tools including SiteMap & Metapocket respectively. To understand the molecular basis of complementary ZUFSP-Ub interaction and associated structural events using MD Simulation Methods: In this study, four binding pockets were predicted, characterized, and cross-validated based on physiochemical features such as site score, druggability score, site volume, and site size. Also, Molecular dynamics simulation technique was employed to determine the impact of ubiquitin-binding on ZUFSP Results: Site 1 with a site score 1.065, Size 102, D scores 1.00, and size volume 261 was predicted to be the most druggable site. Structural studies revealed that upon ubiquitin-binding, the motional movement of ZUFSP was reduced when compared to the unbound ZUFSP. Also, the ZUFSP helical arm (ZHA) domain orient in such a way that it moves closer to the Ub, this orientation enables the formation of a UBD which is very peculiar to ZUFSP. CONCLUSION The impact of ubiquitin on ZUFSP movement and the characterization of its predicted druggable site can be targeted in the development of therapeutics.
Collapse
Affiliation(s)
- Mary B Ajadi
- Department of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Howard Campus, Durban 4000, . South Africa
| | - Opeyemi S Soremekun
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, . South Africa
| | - Ahmed A Elrashedy
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, . South Africa
| | - Fisayo A Olotu
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, . South Africa
| | - Hezekiel M Kumalo
- Department of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Howard Campus, Durban 4000, . South Africa
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4001, . South Africa
| |
Collapse
|
26
|
Basar MA, Beck DB, Werner A. Deubiquitylases in developmental ubiquitin signaling and congenital diseases. Cell Death Differ 2021; 28:538-556. [PMID: 33335288 PMCID: PMC7862630 DOI: 10.1038/s41418-020-00697-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023] Open
Abstract
Metazoan development from a one-cell zygote to a fully formed organism requires complex cellular differentiation and communication pathways. To coordinate these processes, embryos frequently encode signaling information with the small protein modifier ubiquitin, which is typically attached to lysine residues within substrates. During ubiquitin signaling, a three-step enzymatic cascade modifies specific substrates with topologically unique ubiquitin modifications, which mediate changes in the substrate's stability, activity, localization, or interacting proteins. Ubiquitin signaling is critically regulated by deubiquitylases (DUBs), a class of ~100 human enzymes that oppose the conjugation of ubiquitin. DUBs control many essential cellular functions and various aspects of human physiology and development. Recent genetic studies have identified mutations in several DUBs that cause developmental disorders. Here we review principles controlling DUB activity and substrate recruitment that allow these enzymes to regulate ubiquitin signaling during development. We summarize key mechanisms of how DUBs control embryonic and postnatal differentiation processes, highlight developmental disorders that are caused by mutations in particular DUB members, and describe our current understanding of how these mutations disrupt development. Finally, we discuss how emerging tools from human disease genetics will enable the identification and study of novel congenital disease-causing DUBs.
Collapse
Affiliation(s)
- Mohammed A Basar
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David B Beck
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
- Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Achim Werner
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
27
|
Fu Z, Huang B, Tang J, Liu S, Liu M, Ye Y, Liu Z, Xiong Y, Zhu W, Cao D, Li J, Niu X, Zhou H, Zhao YJ, Zhang G, Huang H. The complex structure of GRL0617 and SARS-CoV-2 PLpro reveals a hot spot for antiviral drug discovery. Nat Commun 2021; 12:488. [PMID: 33473130 PMCID: PMC7817691 DOI: 10.1038/s41467-020-20718-8] [Citation(s) in RCA: 184] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023] Open
Abstract
SARS-CoV-2 is the pathogen responsible for the COVID-19 pandemic. The SARS-CoV-2 papain-like cysteine protease (PLpro) has been implicated in playing important roles in virus maturation, dysregulation of host inflammation, and antiviral immune responses. The multiple functions of PLpro render it a promising drug target. Therefore, we screened a library of approved drugs and also examined available inhibitors against PLpro. Inhibitor GRL0617 showed a promising in vitro IC50 of 2.1 μM and an effective antiviral inhibition in cell-based assays. The co-crystal structure of SARS-CoV-2 PLproC111S in complex with GRL0617 indicates that GRL0617 is a non-covalent inhibitor and it resides in the ubiquitin-specific proteases (USP) domain of PLpro. NMR data indicate that GRL0617 blocks the binding of ISG15 C-terminus to PLpro. Using truncated ISG15 mutants, we show that the C-terminus of ISG15 plays a dominant role in binding PLpro. Structural analysis reveals that the ISG15 C-terminus binding pocket in PLpro contributes a disproportionately large portion of binding energy, thus this pocket is a hot spot for antiviral drug discovery targeting PLpro.
Collapse
Affiliation(s)
- Ziyang Fu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Laboratory of Structural Biology and Drug Discovery, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Bin Huang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Laboratory of Structural Biology and Drug Discovery, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Jinle Tang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Laboratory of Structural Biology and Drug Discovery, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Shuyan Liu
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, 518112, China
| | - Ming Liu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Laboratory of Structural Biology and Drug Discovery, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yuxin Ye
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Laboratory of Structural Biology and Drug Discovery, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zhihong Liu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Laboratory of Structural Biology and Drug Discovery, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yuxian Xiong
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Laboratory of Structural Biology and Drug Discovery, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Wenning Zhu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Laboratory of Structural Biology and Drug Discovery, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Dan Cao
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Laboratory of Structural Biology and Drug Discovery, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Jihui Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
- Laboratory of Structural Biology and Drug Discovery, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xiaogang Niu
- College of Chemistry and Molecular Engineering, Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing, 100871, China
| | - Huan Zhou
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Yong Juan Zhao
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Guoliang Zhang
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, 518112, China.
| | - Hao Huang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
- Laboratory of Structural Biology and Drug Discovery, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
28
|
Liu S, Ten Dijke P. Uncovering the deubiquitinase activity landscape of breast cancer. Oncoscience 2021; 7:85-87. [PMID: 33457450 PMCID: PMC7781487 DOI: 10.18632/oncoscience.518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/26/2020] [Indexed: 12/02/2022] Open
Abstract
Breast cancer is a highly heterogeneous disease with dynamic changes in the tumor microenvironment. Precision medicine will in the future provide the possibility to treat each individual cancer patient with the right (combination) therapy specifically tailored to personal needs. However, in order to accomplish this, more accurate biomarkers for precise diagnosis, prognosis, therapy response, and target-specific drugs are required. Although an increasing number of (epi)genetic driving alterations have been reported in breast cancer, the major stumbling block for clinical application of many of them is that they are difficult to therapeutically target. Deubiquitinases (DUBs) are emerging drug targets that play important roles in cancer progression. Hence, we devoted our efforts to uncover the global DUB activity landscape of breast cancer in order to discover potential novel biomarkers or therapeutic targets. We developed a specific DUB activity-based inhibitor and probe and applied it to obtain new insights into breast cancer.
Collapse
Affiliation(s)
- Sijia Liu
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands.,Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands.,Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
29
|
Verma R. Exploiting Ubiquitin Ligases for Induced Target Degradation as an Antiviral Strategy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1322:339-357. [PMID: 34258747 DOI: 10.1007/978-981-16-0267-2_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Posttranslational modifications of targeted substrates alter their cellular fate. Ubiquitin is a highly conserved and ubiquitous covalent modifier protein that tags substrates with a single molecule or with a polyubiquitin chain. Monoubiquitination affects trafficking and signaling patterns of modified proteins. In contrast, polyubiquitination, particularly K48-linked polyubiquitination, targets the protein for degradation by the Ubiquitin-Proteasome System (UPS) resulting in a committed fate through irreversible inactivation of substrate. Given the diversity of cellular functions impacted by ubiquitination, it is no surprise that the wily pathogenic viruses have co-opted the UPS in myriad ways to ensure their survival. In this review, I describe viral exploitation of nondegradative ubiquitin signaling pathways to effect entry, replication, and egress. Additionally, viruses also harness the UPS to degrade antiviral cellular host factors. Finally, I describe how we can exploit the same proteolytic machinery to enable PROTACs (Proteolysis-Targeting Chimeras) to degrade essential viral proteins. Successful implementation of this modality will add to the arsenal of emerging antiviral therapies.
Collapse
Affiliation(s)
- Rati Verma
- AMGEN Research, One Amgen Center Drive, Thousand Oaks, CA, USA.
| |
Collapse
|
30
|
Götting I, Jendrossek V, Matschke J. A New Twist in Protein Kinase B/Akt Signaling: Role of Altered Cancer Cell Metabolism in Akt-Mediated Therapy Resistance. Int J Mol Sci 2020; 21:ijms21228563. [PMID: 33202866 PMCID: PMC7697684 DOI: 10.3390/ijms21228563] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/23/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer resistance to chemotherapy, radiotherapy and molecular-targeted agents is a major obstacle to successful cancer therapy. Herein, aberrant activation of the phosphatidyl-inositol-3-kinase (PI3K)/protein kinase B (Akt) pathway is one of the most frequently deregulated pathways in cancer cells and has been associated with multiple aspects of therapy resistance. These include, for example, survival under stress conditions, apoptosis resistance, activation of the cellular response to DNA damage and repair of radiation-induced or chemotherapy-induced DNA damage, particularly DNA double strand breaks (DSB). One further important, yet not much investigated aspect of Akt-dependent signaling is the regulation of cell metabolism. In fact, many Akt target proteins are part of or involved in the regulation of metabolic pathways. Furthermore, recent studies revealed the importance of certain metabolites for protection against therapy-induced cell stress and the repair of therapy-induced DNA damage. Thus far, the likely interaction between deregulated activation of Akt, altered cancer metabolism and therapy resistance is not yet well understood. The present review describes the documented interactions between Akt, its target proteins and cancer cell metabolism, focusing on antioxidant defense and DSB repair. Furthermore, the review highlights potential connections between deregulated Akt, cancer cell metabolism and therapy resistance of cancer cells through altered DSB repair and discusses potential resulting therapeutic implications.
Collapse
|
31
|
Adelakun N, Obaseki I, Adeniyi A, Fapohunda O, Obaseki E, Omotuyi O. Discovery of new promising USP14 inhibitors: computational evaluation of the thumb-palm pocket. J Biomol Struct Dyn 2020; 40:3060-3070. [PMID: 33170088 DOI: 10.1080/07391102.2020.1844803] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ubiquitin-specific protease 14 (USP14) is a member of the deubiquitinating enzymes (DUBs) involved in disrupting the ubiquitin-proteasome regulation system, responsible for the degradation of impaired and misfolded proteins, which is an essential mechanism in eukaryotic cells. The involvement of USP14 in cancer progression and neurodegenerative disorders has been reported. Thereof USP14 is a prime therapeutic target; hence, designing efficacious inhibitors against USP14 is central in curbing these conditions. Herein, we relied on structural bioinformatics methods incorporating molecular docking, molecular mechanics generalized born surface area (MM-GBSA), molecular dynamics simulation (MD simulation), and ADME to identify potential allosteric USP14 inhibitors. A library of over 733 compounds from the PubChem repository with >90% match to the IU1 chemical structure was screened in a multi-step framework to attain prospective drug-like inhibitors. Two potential lead compounds (CID 43013232 and CID 112370349) were shown to record better binding affinity compared to IU1, but with subtle difference to IU1-47, a 10-fold potent compound when compared to IU1. The stability of the lead molecules complexed with USP14 was studied via MD simulation. The molecules were found to be stable within the binding site throughout the 50 ns simulation time. Moreover, the protein-ligand interactions across the simulation run time suggest Phe331, Tyr476, and Gln197 as crucial residues for USP14 inhibition. Furthermore, in-silico pharmacological evaluation revealed the lead compounds as pharmacological sound molecules. Overall, the methods deployed in this study revealed two novel candidates that may show selective inhibitory activity against USP14, which could be exploited to produce potent and harmless USP14 inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Niyi Adelakun
- Chemogenomics Unit, Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Nigeria.,Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | - Ikponwmosa Obaseki
- Department of Biochemistry, Bells University of Technology, Ota, Nigeria
| | - Ayobami Adeniyi
- Chemogenomics Unit, Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Nigeria.,Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | - Oluwaseun Fapohunda
- Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| | - Eseiwi Obaseki
- Department of Plant Science and Biotechnology, University of Benin, Benin City, Nigeria
| | - Olaposi Omotuyi
- Chemogenomics Unit, Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Nigeria.,Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Nigeria
| |
Collapse
|
32
|
Tundo GR, Sbardella D, Santoro AM, Coletta A, Oddone F, Grasso G, Milardi D, Lacal PM, Marini S, Purrello R, Graziani G, Coletta M. The proteasome as a druggable target with multiple therapeutic potentialities: Cutting and non-cutting edges. Pharmacol Ther 2020; 213:107579. [PMID: 32442437 PMCID: PMC7236745 DOI: 10.1016/j.pharmthera.2020.107579] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/05/2020] [Indexed: 01/10/2023]
Abstract
Ubiquitin Proteasome System (UPS) is an adaptable and finely tuned system that sustains proteostasis network under a large variety of physiopathological conditions. Its dysregulation is often associated with the onset and progression of human diseases; hence, UPS modulation has emerged as a promising new avenue for the development of treatments of several relevant pathologies, such as cancer and neurodegeneration. The clinical interest in proteasome inhibition has considerably increased after the FDA approval in 2003 of bortezomib for relapsed/refractory multiple myeloma, which is now used in the front-line setting. Thereafter, two other proteasome inhibitors (carfilzomib and ixazomib), designed to overcome resistance to bortezomib, have been approved for treatment-experienced patients, and a variety of novel inhibitors are currently under preclinical and clinical investigation not only for haematological malignancies but also for solid tumours. However, since UPS collapse leads to toxic misfolded proteins accumulation, proteasome is attracting even more interest as a target for the care of neurodegenerative diseases, which are sustained by UPS impairment. Thus, conceptually, proteasome activation represents an innovative and largely unexplored target for drug development. According to a multidisciplinary approach, spanning from chemistry, biochemistry, molecular biology to pharmacology, this review will summarize the most recent available literature regarding different aspects of proteasome biology, focusing on structure, function and regulation of proteasome in physiological and pathological processes, mostly cancer and neurodegenerative diseases, connecting biochemical features and clinical studies of proteasome targeting drugs.
Collapse
Affiliation(s)
- G R Tundo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| | | | - A M Santoro
- CNR, Institute of Crystallography, Catania, Italy
| | - A Coletta
- Department of Chemistry, University of Aarhus, Aarhus, Denmark
| | - F Oddone
- IRCCS-Fondazione Bietti, Rome, Italy
| | - G Grasso
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - D Milardi
- CNR, Institute of Crystallography, Catania, Italy
| | - P M Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, Rome, Italy
| | - S Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - R Purrello
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - G Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.
| | - M Coletta
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
33
|
Dai WL, Yuan SX, Cao JP. The deubiquitinase USP34 stabilizes SOX2 and induces cell survival and drug resistance in laryngeal squamous cell carcinoma. Kaohsiung J Med Sci 2020; 36:983-989. [PMID: 32783291 DOI: 10.1002/kjm2.12285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/13/2020] [Accepted: 07/08/2020] [Indexed: 01/14/2023] Open
Abstract
Recent studies showed that the deubiquitinase ubiquitin-specific protease 34 (USP34) was involved in the tumorigenesis of several tumors, but its function and mechanism are still unclear in laryngeal squamous cell carcinoma (LSCC). In this study, we found that USP34 and SOX2 were elevated in LSCC tumor tissues, and we also found that USP34 expression was positively correlated with SOX2 expression. Our further studies showed that USP34 regulated the protein level of SOX2 in LSCC cells, but not the mRNA level, which suggested that USP34 stabilized SOX2. Moreover, USP34, as a deubiquitinase, could interact with SOX2, and reduce the polyubiquitination of SOX2. In addition, knockdown of USP34 could significantly inhibit LSCC cell growth, but overexpression of SOX2 could reverse this effect. Finally, we also found that USP34 and SOX2 were upregulated in cisplatin-resistant LSCC cells, but knockdown of USP34 could enhance the drug sensitivity of cisplatin in the resistant cells. Collectively, targeting USP34/SOX2 axis may be a promising strategy for the treatment of LSCC.
Collapse
Affiliation(s)
- Wei-Li Dai
- Department of Otolaryngology, Division of Disease Control and Prevention, Office of Hospital Infection Management, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing, P.R. China
| | - Shu-Xian Yuan
- Department of Otolaryngology, Beijing Pinggu Hospital of Traditional Chinese Medicine, Beijing, P.R. China
| | - Jing-Peng Cao
- Department of Otolaryngology, Lhasa People's Hospital, Lhasa, P.R. China
| |
Collapse
|
34
|
Bosken YK, Cholko T, Lou YC, Wu KP, Chang CEA. Insights Into Dynamics of Inhibitor and Ubiquitin-Like Protein Binding in SARS-CoV-2 Papain-Like Protease. Front Mol Biosci 2020; 7:174. [PMID: 32850963 PMCID: PMC7417481 DOI: 10.3389/fmolb.2020.00174] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/06/2020] [Indexed: 11/28/2022] Open
Abstract
Covid-19 is caused by a novel form of coronavirus for which there are currently no vaccines or anti-viral drugs. This virus, termed SARS-CoV-2 (CoV2), contains Papain-like protease (PLpro) involved in viral replication and immune response evasion. Drugs targeting this protease therefore have great potential for inhibiting the virus, and have proven successful in older coronaviruses. Here, we introduce two effective inhibitors of SARS-CoV-1 (CoV1) and MERS-CoV to assess their potential for inhibiting CoV2 PLpro. We ran 1 μs molecular dynamics (MD) simulations of CoV2, CoV1, and MERS-CoV ligand-free PLpro to characterize the dynamics of CoV2 PLpro, and made comparisons between the three to elucidate important similarities and differences relevant to drug design and ubiquitin-like protein binding for deubiquitinating and deISGylating activity of CoV2. Next, we simulated the inhibitors bound to CoV1 and CoV2 PLpro in various poses and at different known binding sites to analyze their binding modes. We found that the naphthalene-based ligand shows strong potential as an inhibitor of CoV2 PLpro by binding at the putative naphthalene inhibitor binding site in both computational predictions and experimental assays. Our modeling work suggested strategies to improve naphthalene-based compounds, and our results from molecular docking showed that the newly designed compounds exhibited improved binding affinity. The other ligand, chemotherapy drug 6-mercaptopurine (6MP), showed little to no stable intermolecular interaction with PLpro and quickly dissociated or remained highly mobile. We demonstrate multiple ways to improve the binding affinity of the naphthalene-based inhibitor scaffold by engaging new residues in the unused space of the binding site. Analysis of CoV2 PLpro also brings insights into recognition of ubiquitin-like proteins that may alter innate immune response.
Collapse
Affiliation(s)
- Yuliana K Bosken
- Department of Chemistry, University of California, Riverside, Riverside, CA, United States
| | - Timothy Cholko
- Department of Chemistry, University of California, Riverside, Riverside, CA, United States
| | - Yuan-Chao Lou
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Kuen-Phon Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chia-En A Chang
- Department of Chemistry, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
35
|
Shin JY, Muniyappan S, Tran NN, Park H, Lee SB, Lee BH. Deubiquitination Reactions on the Proteasome for Proteasome Versatility. Int J Mol Sci 2020; 21:E5312. [PMID: 32726943 PMCID: PMC7432943 DOI: 10.3390/ijms21155312] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/17/2022] Open
Abstract
The 26S proteasome, a master player in proteolysis, is the most complex and meticulously contextured protease in eukaryotic cells. While capable of hosting thousands of discrete substrates due to the selective recognition of ubiquitin tags, this protease complex is also dynamically checked through diverse regulatory mechanisms. The proteasome's versatility ensures precise control over active proteolysis, yet prevents runaway or futile degradation of many essential cellular proteins. Among the multi-layered processes regulating the proteasome's proteolysis, deubiquitination reactions are prominent because they not only recycle ubiquitins, but also impose a critical checkpoint for substrate degradation on the proteasome. Of note, three distinct classes of deubiquitinating enzymes-USP14, RPN11, and UCH37-are associated with the 19S subunits of the human proteasome. Recent biochemical and structural studies suggest that these enzymes exert dynamic influence over proteasome output with limited redundancy, and at times act in opposition. Such distinct activities occur spatially on the proteasome, temporally through substrate processing, and differentially for ubiquitin topology. Therefore, deubiquitinating enzymes on the proteasome may fine-tune the degradation depending on various cellular contexts and for dynamic proteolysis outcomes. Given that the proteasome is among the most important drug targets, the biology of proteasome-associated deubiquitination should be further elucidated for its potential targeting in human diseases.
Collapse
Affiliation(s)
- Ji Yeong Shin
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (J.Y.S.); (S.M.); (N.-N.T.); (H.P.)
- Protein Dynamics-based Proteotoxicity Control Lab, Basic Research Lab, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
- Center for Cell Fate Reprogramming & Control, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Srinivasan Muniyappan
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (J.Y.S.); (S.M.); (N.-N.T.); (H.P.)
| | - Non-Nuoc Tran
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (J.Y.S.); (S.M.); (N.-N.T.); (H.P.)
- Protein Dynamics-based Proteotoxicity Control Lab, Basic Research Lab, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
- Center for Cell Fate Reprogramming & Control, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Hyeonjeong Park
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (J.Y.S.); (S.M.); (N.-N.T.); (H.P.)
- Protein Dynamics-based Proteotoxicity Control Lab, Basic Research Lab, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
| | - Sung Bae Lee
- Protein Dynamics-based Proteotoxicity Control Lab, Basic Research Lab, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
- Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Byung-Hoon Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea; (J.Y.S.); (S.M.); (N.-N.T.); (H.P.)
- Protein Dynamics-based Proteotoxicity Control Lab, Basic Research Lab, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea;
- Center for Cell Fate Reprogramming & Control, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| |
Collapse
|
36
|
Bashore C, Jaishankar P, Skelton NJ, Fuhrmann J, Hearn BR, Liu PS, Renslo AR, Dueber EC. Cyanopyrrolidine Inhibitors of Ubiquitin Specific Protease 7 Mediate Desulfhydration of the Active-Site Cysteine. ACS Chem Biol 2020; 15:1392-1400. [PMID: 32302100 DOI: 10.1021/acschembio.0c00031] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ubiquitin specific protease 7 (USP7) regulates the protein stability of key cellular regulators in pathways ranging from apoptosis to neuronal development, making it a promising therapeutic target. Here we used an engineered, activated variant of the USP7 catalytic domain to perform structure-activity studies of electrophilic peptidomimetic inhibitors. Employing this USP7 variant, we found that inhibitors with a cyanopyrrolidine warhead unexpectedly promoted a β-elimination reaction of the initial covalent adducts, thereby converting the active-site cysteine residue to dehydroalanine. We determined that this phenomenon is specific for the USP7 catalytic cysteine and that structural features of the inhibitor and protein microenvironment impact elimination rates. Using comprehensive docking studies, we propose that the characteristic conformational dynamics of USP7 allow access to conformations that promote the ligand-induced elimination. Unlike in conventional reversible-covalent inhibition, the compounds described here irreversibly destroy a catalytic residue while simultaneously converting the inhibitor to a nonelectrophilic byproduct. Accordingly, this unexpected finding expands the scope of covalent inhibitor modalities and offers intriguing insights into enzyme-inhibitor dynamics.
Collapse
Affiliation(s)
| | - Priyadarshini Jaishankar
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center University of California, San Francisco, California 94143, United States
| | | | | | - Brian R. Hearn
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center University of California, San Francisco, California 94143, United States
| | | | - Adam R. Renslo
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center University of California, San Francisco, California 94143, United States
| | | |
Collapse
|
37
|
Regulation of Deubiquitinating Enzymes by Post-Translational Modifications. Int J Mol Sci 2020; 21:ijms21114028. [PMID: 32512887 PMCID: PMC7312083 DOI: 10.3390/ijms21114028] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 01/04/2023] Open
Abstract
Ubiquitination and deubiquitination play a critical role in all aspects of cellular processes, and the enzymes involved are tightly regulated by multiple factors including posttranslational modifications like most other proteins. Dysfunction or misregulation of these enzymes could have dramatic physiological consequences, sometimes leading to diseases. Therefore, it is important to have a clear understanding of these regulatory processes. Here, we have reviewed the posttranslational modifications of deubiquitinating enzymes and their consequences on the catalytic activity, stability, abundance, localization, and interaction with the partner proteins.
Collapse
|
38
|
Li P, Liu HM. Recent advances in the development of ubiquitin-specific-processing protease 7 (USP7) inhibitors. Eur J Med Chem 2020; 191:112107. [PMID: 32092586 DOI: 10.1016/j.ejmech.2020.112107] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/14/2020] [Accepted: 01/28/2020] [Indexed: 12/16/2022]
Abstract
Ubiquitin-specific-processing protease 7 (USP7) is one among the several deubiquitinating enzymes gaining central attention in the current cancer research. Most recent studies have focused on illustrating how USP7 is involved in the cancer process, while few articles reported the development of small molecule USP7 inhibitors. Although some review articles dealt with USP7, they mainly focused on its physiological role and not on the development of USP7 inhibitors. In this review, we systematically summarise the structures, activities and structure-activity relationship (SAR) of small molecule USP7 inhibitors, recently disclosed in scientific articles and patents from 2000 to 2019. The binding modes of typical compounds and their interactions with USP7 are also presented, while other deubiquitinase inhibitors are described in detail. Meanwhile, we briefly introduce the biochemical and physiological functions of USP7. Finally, challenges and potential strategies in developing small molecule USP7 inhibitors are also discussed.
Collapse
Affiliation(s)
- Peng Li
- Key Laboratory of Advanced Technology of Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, And School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China
| | - Hong-Min Liu
- Key Laboratory of Advanced Technology of Drug Preparation Technologies, Ministry of Education, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, And School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
39
|
Ciulli A, Farnaby W. Protein degradation for drug discovery. DRUG DISCOVERY TODAY. TECHNOLOGIES 2019; 31:1-3. [PMID: 31200853 DOI: 10.1016/j.ddtec.2019.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Alessio Ciulli
- Professor of Chemical & Structural Biology, School of Life Sciences, University of Dundee, Division of Biological Chemistry and Drug Discovery, James Black Centre, Dow Street, Dundee DD1 5EH, United Kingdom
| | - William Farnaby
- Professor of Chemical & Structural Biology, School of Life Sciences, University of Dundee, Division of Biological Chemistry and Drug Discovery, James Black Centre, Dow Street, Dundee DD1 5EH, United Kingdom
| |
Collapse
|
40
|
Lachiondo-Ortega S, Mercado-Gómez M, Serrano-Maciá M, Lopitz-Otsoa F, Salas-Villalobos TB, Varela-Rey M, Delgado TC, Martínez-Chantar ML. Ubiquitin-Like Post-Translational Modifications (Ubl-PTMs): Small Peptides with Huge Impact in Liver Fibrosis. Cells 2019; 8:cells8121575. [PMID: 31817258 PMCID: PMC6953033 DOI: 10.3390/cells8121575] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/29/2019] [Accepted: 12/01/2019] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is characterized by the excessive deposition of extracellular matrix proteins including collagen that occurs in most types of chronic liver disease. Even though our knowledge of the cellular and molecular mechanisms of liver fibrosis has deeply improved in the last years, therapeutic approaches for liver fibrosis remain limited. Profiling and characterization of the post-translational modifications (PTMs) of proteins, and more specifically NEDDylation and SUMOylation ubiquitin-like (Ubls) modifications, can provide a better understanding of the liver fibrosis pathology as well as novel and more effective therapeutic approaches. On this basis, in the last years, several studies have described how changes in the intermediates of the Ubl cascades are altered during liver fibrosis and how specific targeting of particular enzymes mediating these ubiquitin-like modifications can improve liver fibrosis, mainly in in vitro models of hepatic stellate cells, the main fibrogenic cell type, and in pre-clinical mouse models of liver fibrosis. The development of novel inhibitors of the Ubl modifications as well as novel strategies to assess the modified proteome can provide new insights into the overall role of Ubl modifications in liver fibrosis.
Collapse
Affiliation(s)
- Sofia Lachiondo-Ortega
- Liver Disease Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Spain; (S.L.-O.); (M.M.-G.); (M.S.-M.); (M.V.-R.); (M.L.M.-C.)
| | - Maria Mercado-Gómez
- Liver Disease Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Spain; (S.L.-O.); (M.M.-G.); (M.S.-M.); (M.V.-R.); (M.L.M.-C.)
| | - Marina Serrano-Maciá
- Liver Disease Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Spain; (S.L.-O.); (M.M.-G.); (M.S.-M.); (M.V.-R.); (M.L.M.-C.)
| | | | - Tanya B Salas-Villalobos
- Department of Biochemistry and Molecular Medicine, School of Medicine, Autonomous University of Nuevo León, Monterrey, Nuevo León 66450, Mexico;
| | - Marta Varela-Rey
- Liver Disease Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Spain; (S.L.-O.); (M.M.-G.); (M.S.-M.); (M.V.-R.); (M.L.M.-C.)
| | - Teresa C. Delgado
- Liver Disease Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Spain; (S.L.-O.); (M.M.-G.); (M.S.-M.); (M.V.-R.); (M.L.M.-C.)
- Correspondence: ; Tel.: +34-944-061318; Fax: +34-944-061301
| | - María Luz Martínez-Chantar
- Liver Disease Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Spain; (S.L.-O.); (M.M.-G.); (M.S.-M.); (M.V.-R.); (M.L.M.-C.)
| |
Collapse
|