1
|
Marcián P, Borák L, Zikmund T, Horáčková L, Kaiser J, Joukal M, Wolff J. On the limits of finite element models created from (micro)CT datasets and used in studies of bone-implant-related biomechanical problems. J Mech Behav Biomed Mater 2021; 117:104393. [PMID: 33647729 DOI: 10.1016/j.jmbbm.2021.104393] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/12/2021] [Accepted: 02/10/2021] [Indexed: 02/06/2023]
Abstract
Patient-specific approach is gaining a wide popularity in computational simulations of biomechanical systems. Simulations (most often based on the finite element method) are to date routinely created using data from imaging devices such as computed tomography which makes the models seemingly very complex and sophisticated. However, using a computed tomography in finite element calculations does not necessarily enhance the quality or even credibility of the models as these depend on the quality of the input images. Low-resolution (medical-)CT datasets do not always offer detailed representation of trabecular bone in FE models and thus might lead to incorrect calculation of mechanical response to external loading. The effect of image resolution on mechanical simulations of bone-implant interaction has not been thoroughly studied yet. In this study, the effect of image resolution on the modeling procedure and resulting mechanical strains in bone was analyzed on the example of cranial implant. For this purpose, several finite element models of bone interacting with fixation-screws were generated using seven computed tomography datasets of a bone specimen but with different image resolutions (ranging from micro-CT resolution of 25 μm to medical-CT resolution of 1250 μm). The comparative analysis revealed that FE models created from images of low resolution (obtained from medical computed tomography) can produce biased results. There are two main reasons: 1. Medical computed tomography images do not allow generating models with complex trabecular architecture which leads to substituting of the intertrabecular pores with a fictitious mass; 2. Image gray value distribution can be distorted resulting in incorrect mechanical properties of the bone and thus in unrealistic or even completely fictitious mechanical strains. The biased results of calculated mechanical strains can lead to incorrect conclusion, especially when bone-implant interaction is investigated. The image resolution was observed not to significantly affect stresses in the fixation screw itself; however, selection of bone material representation might result in significantly different stresses in the screw.
Collapse
Affiliation(s)
- Petr Marcián
- Institute of Solid Mechanics, Mechatronics and Biomechanics, Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic
| | - Libor Borák
- Institute of Solid Mechanics, Mechatronics and Biomechanics, Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic.
| | - Tomáš Zikmund
- CEITEC - Central European Institute of Technology, Brno University of Technology, Czech Republic
| | - Ladislava Horáčková
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jozef Kaiser
- CEITEC - Central European Institute of Technology, Brno University of Technology, Czech Republic
| | - Marek Joukal
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jan Wolff
- Department of Oral and Maxillofacial Surgery, Division for Regenerative Orofacial Medicine, University Hospital Hamburg-Eppendorf, Hamburg, Germany; Fraunhofer Research Institution for Additive Manufacturing Technologies IAPT, Hamburg, Germany
| |
Collapse
|
2
|
Okawara H, Arai Y, Matsuno H, Marcián P, Borák L, Aoki K, Wakabayashi N. Effect of load-induced local mechanical strain on peri-implant bone cell activity related to bone resorption and formation in mice: An analysis of histology and strain distributions. J Mech Behav Biomed Mater 2021; 116:104370. [PMID: 33545417 DOI: 10.1016/j.jmbbm.2021.104370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023]
Abstract
The purpose of this study was to investigate the effect of load-induced local mechanical strain on bone cell activity of peri-implant bone in mice. Titanium implants were placed in the maxillae of 13-week-old male C57BL/6J mice and subjected to intermittent 0.15 N, 0.3 N, or 0.6 N loads for 30 min/day for 6 days. The animals were sacrificed 2 days after the final loading. Unloaded mice were used as controls. An animal-specific three-dimensional finite element model was constructed based on morphological data retrieved from in vivo microfocus computed tomography for each mouse to calculate the mechanical strain distribution. Strain distribution images were overlaid on corresponding histological images of the same site in the same animal. The buccal cervical region of the peri-implant bone was predetermined as the region of interest (ROI). Each ROI was divided by four strain intensity levels: 0-20 με, 20-60 με, 60-100 με, and ≥100 με, and the bone histomorphometric parameters were analyzed by the total area of each strain range for all loaded samples. The distance between the calcified front and calcein labeling as a parameter representing the mineral apposition rate was significantly greater in the areas with strain intensity ≥100 με than in the area with strain intensity <100 με, suggesting that the bone formation activity of osteoblasts was locally enhanced by a higher mechanical strain. However, the shrunken osteocytes and the empty osteocyte lacunae were significantly lower in the highest strain area, suggesting that osteoclastogenesis was more retarded in higher strain areas than in lower strain areas. The histomorphometric parameters were not affected geometrically in the unloaded animals, suggesting that the load-induced mechanical strain caused differences in the histomorphometric parameters. Our findings support the hypothesis that bone cell activity related to bone resorption and formation is local strain-dependent on implant loading.
Collapse
Affiliation(s)
- Hisami Okawara
- Removable Partial Prosthodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Yuki Arai
- Removable Partial Prosthodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Hitomi Matsuno
- Removable Partial Prosthodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Petr Marcián
- Institute of Solid Mechanics, Mechatronics and Biomechanics, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69, Brno, Czech Republic
| | - Libor Borák
- Institute of Solid Mechanics, Mechatronics and Biomechanics, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69, Brno, Czech Republic
| | - Kazuhiro Aoki
- Department of Basic Oral Health Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan
| | - Noriyuki Wakabayashi
- Removable Partial Prosthodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8549, Japan.
| |
Collapse
|
3
|
Accuracy of complete-arch implant impression made with occlusal registration material. J Prosthet Dent 2020; 123:143-148. [DOI: 10.1016/j.prosdent.2018.12.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/19/2018] [Accepted: 12/19/2018] [Indexed: 11/19/2022]
|
4
|
Marcián P, Wolff J, Horáčková L, Kaiser J, Zikmund T, Borák L. Micro finite element analysis of dental implants under different loading conditions. Comput Biol Med 2018; 96:157-165. [PMID: 29587150 DOI: 10.1016/j.compbiomed.2018.03.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/16/2018] [Accepted: 03/16/2018] [Indexed: 11/29/2022]
Abstract
Osseointegration is paramount for the longevity of dental implants and is significantly influenced by biomechanical stimuli. The aim of the present study was to assess the micro-strain and displacement induced by loaded dental implants at different stages of osseointegration using finite element analysis (FEA). Computational models of two mandible segments with different trabecular densities were constructed using microCT data. Three different implant loading directions and two osseointegration stages were considered in the stress-strain analysis of the bone-implant assembly. The bony segments were analyzed using two approaches. The first approach was based on Mechanostat strain intervals and the second approach was based on tensile/compression yield strains. The results of this study revealed that bone surrounding dental implants is critically strained in cases when only a partial osseointegration is present and when an implant is loaded by buccolingual forces. In such cases, implants also encounter high stresses. Displacements of partially-osseointegrated implant are significantly larger than those of fully-osseointegrated implants. It can be concluded that the partial osseointegration is a potential risk in terms of implant longevity.
Collapse
Affiliation(s)
- Petr Marcián
- Institute of Solid Mechanics, Mechatronics and Biomechanics, Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic.
| | - Jan Wolff
- Department of Oral and Maxillofacial Surgery/Oral Pathology and 3D Innovation Lab, VU University Medical Center, Amsterdam, The Netherlands
| | - Ladislava Horáčková
- Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jozef Kaiser
- X-ray Micro CT and Nano CT Research Group, CEITEC - Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Tomáš Zikmund
- X-ray Micro CT and Nano CT Research Group, CEITEC - Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Libor Borák
- Institute of Solid Mechanics, Mechatronics and Biomechanics, Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic
| |
Collapse
|
5
|
Steiner JA, Christen P, Affentranger R, Ferguson SJ, van Lenthe GH. A novel in silico method to quantify primary stability of screws in trabecular bone. J Orthop Res 2017; 35:2415-2424. [PMID: 28240380 DOI: 10.1002/jor.23551] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 02/16/2017] [Indexed: 02/04/2023]
Abstract
Insufficient primary stability of screws in bone leads to screw loosening and failure. Unlike conventional continuum finite-element models, micro-CT based finite-element analysis (micro-FE) is capable of capturing the patient-specific bone micro-architecture, providing accurate estimates of bone stiffness. However, such in silico models for screws in bone highly overestimate the apparent stiffness. We hypothesized that a more accurate prediction of primary implant stability of screws in bone is possible by considering insertion-related bone damage. We assessed two different screw types and loading scenarios in 20 trabecular bone specimens extracted from 12 cadaveric human femoral heads (N = 5 for each case). In the micro-FE model, we predicted specimen-specific Young's moduli of the peri-implant bone damage region based on morphometric parameters such that the apparent stiffness of each in silico model matched the experimentally measured stiffness of the corresponding in vitro specimen as closely as possible. The standard micro-FE models assuming perfectly intact peri-implant bone overestimated the stiffness by over 330%. The consideration of insertion related damaged peri-implant bone corrected the mean absolute percentage error down to 11.4% for both loading scenarios and screw types. Cross-validation revealed a mean absolute percentage error of 14.2%. We present the validation of a novel micro-FE modeling technique to quantify the apparent stiffness of screws in trabecular bone. While the standard micro-FE model overestimated the bone-implant stiffness, the consideration of insertion-related bone damage was crucial for an accurate stiffness prediction. This approach provides an important step toward more accurate specimen-specific micro-FE models. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2415-2424, 2017.
Collapse
Affiliation(s)
- Juri A Steiner
- Institute for Biomechanics, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Patrik Christen
- Institute for Biomechanics, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Remo Affentranger
- Institute for Biomechanics, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Stephen J Ferguson
- Institute for Biomechanics, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Gerrit Harry van Lenthe
- Institute for Biomechanics, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland.,Biomechanics Section, KU Leuven-University of Leuven, Celestijnenlaan 300, 3001 Leuven, Belgium
| |
Collapse
|
6
|
Blanchard R, Morin C, Malandrino A, Vella A, Sant Z, Hellmich C. Patient-specific fracture risk assessment of vertebrae: A multiscale approach coupling X-ray physics and continuum micromechanics. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2016; 32:e02760. [PMID: 26666734 DOI: 10.1002/cnm.2760] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 10/14/2015] [Indexed: 06/05/2023]
Abstract
While in clinical settings, bone mineral density measured by computed tomography (CT) remains the key indicator for bone fracture risk, there is an ongoing quest for more engineering mechanics-based approaches for safety analyses of the skeleton. This calls for determination of suitable material properties from respective CT data, where the traditional approach consists of regression analyses between attenuation-related grey values and mechanical properties. We here present a physics-oriented approach, considering that elasticity and strength of bone tissue originate from the material microstructure and the mechanical properties of its elementary components. Firstly, we reconstruct the linear relation between the clinically accessible grey values making up a CT, and the X-ray attenuation coefficients quantifying the intensity losses from which the image is actually reconstructed. Therefore, we combine X-ray attenuation averaging at different length scales and over different tissues, with recently identified 'universal' composition characteristics of the latter. This gives access to both the normally non-disclosed X-ray energy employed in the CT-device and to in vivo patient-specific and location-specific bone composition variables, such as voxel-specific mass density, as well as collagen and mineral contents. The latter feed an experimentally validated multiscale elastoplastic model based on the hierarchical organization of bone. Corresponding elasticity maps across the organ enter a finite element simulation of a typical load case, and the resulting stress states are increased in a proportional fashion, so as to check the safety against ultimate material failure. In the young patient investigated, even normal physiological loading is probable to already imply plastic events associated with the hydrated mineral crystals in the bone ultrastructure, while the safety factor against failure is still as high as five. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Romane Blanchard
- TU Wien-Vienna University of Technology, Institute for Mechanics of Materials and Structures, Karlsplatz 13/202, Vienna 1040, Austria
| | - Claire Morin
- CIS-EMSE, CNRS:UMR 5307, LGF, Ecole Nationale Supérieure des Mines, Saint-Etienne, F-42023, France
| | - Andrea Malandrino
- Institute for Bioengineering of Catalonia, C/Baldiri Reixac 10-12, Barcelona 08028, Spain
| | - Alain Vella
- Mechanical Engineering Department, University of Malta, Tal Qroqq, Msida MSD, 2080, Malta
| | - Zdenka Sant
- Mechanical Engineering Department, University of Malta, Tal Qroqq, Msida MSD, 2080, Malta
| | - Christian Hellmich
- TU Wien-Vienna University of Technology, Institute for Mechanics of Materials and Structures, Karlsplatz 13/202, Vienna 1040, Austria
| |
Collapse
|
7
|
Davide A, Raffaella A, Marco T, Michele S, Syed J, Massimo M, Marco F, Antonio A. Direct restoration modalities of fractured central maxillary incisors: A multi-levels validated finite elements analysis with in vivo strain measurements. Dent Mater 2015; 31:e289-305. [DOI: 10.1016/j.dental.2015.09.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 07/19/2015] [Accepted: 09/22/2015] [Indexed: 11/15/2022]
|
8
|
Computational analysis of primary implant stability in trabecular bone. J Biomech 2015; 48:807-15. [DOI: 10.1016/j.jbiomech.2014.12.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2014] [Indexed: 11/20/2022]
|
9
|
Marcián P, Borák L, Valášek J, Kaiser J, Florian Z, Wolff J. Finite element analysis of dental implant loading on atrophic and non-atrophic cancellous and cortical mandibular bone - a feasibility study. J Biomech 2014; 47:3830-6. [PMID: 25468296 DOI: 10.1016/j.jbiomech.2014.10.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 04/10/2014] [Accepted: 10/18/2014] [Indexed: 11/25/2022]
Abstract
The first aim of this study was to assess displacements and micro-strain induced on different grades of atrophic cortical and trabecular mandibular bone by axially loaded dental implants using finite element analysis (FEA). The second aim was to assess the micro-strain induced by different implant geometries and the levels of bone-to-implant contact (BIC) on the surrounding bone. Six mandibular bone segments demonstrating different grades of mandibular bone atrophy and various bone volume fractions (from 0.149 to 0.471) were imaged using a micro-CT device. The acquired bone STL models and implant (Brånemark, Straumann, Ankylos) were merged into a three-dimensional finite elements structure. The mean displacement value for all implants was 3.1 ±1.2 µm. Displacements were lower in the group with a strong BIC. The results indicated that the maximum strain values of cortical and cancellous bone increased with lower bone density. Strain distribution is the first and foremost dependent on the shape of bone and architecture of cancellous bone. The geometry of the implant, thread patterns, grade of bone atrophy and BIC all affect the displacement and micro-strain on the mandible bone. Preoperative finite element analysis could offer improved predictability in the long-term outlook of dental implant restorations.
Collapse
Affiliation(s)
- Petr Marcián
- Institute of Solid Mechanics, Mechatronics and Biomechanics, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic.
| | - Libor Borák
- Institute of Solid Mechanics, Mechatronics and Biomechanics, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic
| | - Jiří Valášek
- Institute of Solid Mechanics, Mechatronics and Biomechanics, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic
| | - Jozef Kaiser
- X-ray Micro CT and Nano CT Research Group, CEITEC - BUT, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic
| | - Zdeněk Florian
- Institute of Solid Mechanics, Mechatronics and Biomechanics, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic
| | - Jan Wolff
- Oral and Maxillofacial Unit, Department of Otorhinolaryngology, Tampere University Hospital, FI-33521, Tampere, Finland; Department of Oral and Maxillofacial Surgery/Oral Pathology, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Bressan E, Lops D, Tomasi C, Ricci S, Stocchero M, Carniel EL. Experimental and computational investigation of Morse taper conometric system reliability for the definition of fixed connections between dental implants and prostheses. Proc Inst Mech Eng H 2014; 228:674-81. [PMID: 25057094 DOI: 10.1177/0954411914545556] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Nowadays, dental implantology is a reliable technique for treatment of partially and completely edentulous patients. The achievement of stable dentition is ensured by implant-supported fixed dental prostheses. Morse taper conometric system may provide fixed retention between implants and dental prostheses. The aim of this study was to investigate retentive performance and mechanical strength of a Morse taper conometric system used as implant-supported fixed dental prostheses retention. Experimental and finite element investigations were performed. Experimental tests were achieved on a specific abutment-coping system, accounting for both cemented and non-cemented situations. The results from the experimental activities were processed to identify the mechanical behavior of the coping-abutment interface. Finally, the achieved information was applied to develop reliable finite element models of different abutment-coping systems. The analyses were developed accounting for different geometrical conformations of the abutment-coping system, such as different taper angle. The results showed that activation process, occurred through a suitable insertion force, could provide retentive performances equal to a cemented system without compromising the mechanical functionality of the system. These findings suggest that Morse taper conometrical system can provide a fixed connection between implants and dental prostheses if proper insertion force is applied. Activation process does not compromise the mechanical functionality of the system.
Collapse
Affiliation(s)
- Eriberto Bressan
- Department of Neurosciences, University of Padova, Padova, Italy
| | - Diego Lops
- Department of Prosthodontics, Dental Clinic, School of Dentistry, University of Milan, Milan, Italy
| | - Cristiano Tomasi
- Department of Periodontology, Institute of Odontology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Sara Ricci
- Department of Neurosciences, University of Padova, Padova, Italy
| | | | - Emanuele Luigi Carniel
- Department of Industrial Engineering, University of Padova, Padova, Italy Centre for Mechanics of Biological Materials, University of Padova, Padova, Italy
| |
Collapse
|
11
|
Corrêa CB, Margonar R, Noritomi PY, Vaz LG. Mechanical behavior of dental implants in different positions in the rehabilitation of the anterior maxilla. J Prosthet Dent 2014; 111:301-9. [DOI: 10.1016/j.prosdent.2013.06.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 06/04/2013] [Accepted: 06/09/2013] [Indexed: 10/25/2022]
|
12
|
Blanchard R, Dejaco A, Bongaers E, Hellmich C. Intravoxel bone micromechanics for microCT-based finite element simulations. J Biomech 2013; 46:2710-21. [DOI: 10.1016/j.jbiomech.2013.06.036] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 06/06/2013] [Accepted: 06/09/2013] [Indexed: 12/11/2022]
|
13
|
Liao SH, Zou BJ, Geng JP, Wang JX, Ding X. Physical modeling with orthotropic material based on harmonic fields. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2012; 108:536-547. [PMID: 21570147 DOI: 10.1016/j.cmpb.2011.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 04/07/2011] [Accepted: 04/24/2011] [Indexed: 05/30/2023]
Abstract
Although it is well known that human bone tissues have obvious orthotropic material properties, most works in the physical modeling field adopted oversimplified isotropic or approximated transversely isotropic elasticity due to the simplicity. This paper presents a convenient methodology based on harmonic fields, to construct volumetric finite element mesh integrated with complete orthotropic material. The basic idea is taking advantage of the fact that the longitudinal axis direction indicated by the shape configuration of most bone tissues is compatible with the trajectory of the maximum material stiffness. First, surface harmonic fields of the longitudinal axis direction for individual bone models were generated, whose scalar distribution pattern tends to conform very well to the object shape. The scalar iso-contours were extracted and sampled adaptively to construct volumetric meshes of high quality. Following, the surface harmonic fields were expanded over the whole volumetric domain to create longitudinal and radial volumetric harmonic fields, from which the gradient vector fields were calculated and employed as the orthotropic principal axes vector fields. Contrastive finite element analyses demonstrated that elastic orthotropy has significant effect on simulating stresses and strains, including the value as well as distribution pattern, which underlines the relevance of our orthotropic modeling scheme.
Collapse
Affiliation(s)
- Sheng-Hui Liao
- School of Information Science and Engineering, Central South University, Changsha 410083, China.
| | | | | | | | | |
Collapse
|
14
|
Aggarwal S, Garg V. Finite element analysis of stress concentration in three popular brands of fiber posts systems used for maxillary central incisor teeth. J Conserv Dent 2011; 14:293-6. [PMID: 22025836 PMCID: PMC3198562 DOI: 10.4103/0972-0707.85819] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 01/20/2011] [Accepted: 03/09/2011] [Indexed: 11/04/2022] Open
Abstract
AIMS AND OBJECTIVES To study the stress concentrations in endodontically treated maxillary central incisor teeth restored with 3 different fiber post systems subjected to various oblique occlusal loads. MATERIALS AND METHODS FEM analysis was used to analyze stress concentrations generated in maxillary anterior teeth. Computer aided designing was used to create a 2-D model of an upper central incisor. Post systems analyzed were the DT Light Post (RDT, Bisco), Luscent Anchor (Dentatus) & RelyX (3M-ESPE). The entire design assembly was subjected to analysis by ANSYS for oblique loading forces of 25N, 80N & 125 N RESULTS: The resultant data showed that the RelyX generated the least amount of stress concentration. CONCLUSIONS Minimal stress buildups contribute to the longevity of the restorations. Thus RelyX by virtue of judicious stress distribution is the better option for restoration of grossly decayed teeth.
Collapse
Affiliation(s)
- Shalini Aggarwal
- Department of Conservative Dentistry, Endodontics and Aesthetic dentistry, D.Y. Patil Dental College, Pune, India
| | | |
Collapse
|
15
|
Ruffoni D, Müller R, van Lenthe GH. Mechanisms of reduced implant stability in osteoporotic bone. Biomech Model Mechanobiol 2011; 11:313-23. [DOI: 10.1007/s10237-011-0312-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 04/26/2011] [Indexed: 10/18/2022]
|
16
|
Passivity Versus Unilateral Angular Misfit: Evaluation of Stress Distribution on Implant-Supported Single Crowns. J Craniofac Surg 2010; 21:1683-7. [PMID: 21119400 DOI: 10.1097/scs.0b013e3181f3c64b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
17
|
Natali AN, Carniel EL, Pavan PG. Modelling of mandible bone properties in the numerical analysis of oral implant biomechanics. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2010; 100:158-165. [PMID: 20546967 DOI: 10.1016/j.cmpb.2010.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 02/20/2010] [Accepted: 03/09/2010] [Indexed: 05/29/2023]
Abstract
The biomechanical efficiency of oral implants is deeply influenced by mechanical properties of cortical and trabecular bone in the jaw and, in particular, in the peri-implant region. When the mechanical response of the implant-bone system is analysed by means of numerical models, the effective mechanical properties of bone and the possible change as a function of spatial position must be carefully considered. The procedure presented provides for the attribution of the mechanical properties of bone, considered as anisotropic elastic material, as a function of the spatial position making use of Fourier series and polynomial functions. The procedure is implemented in a general purpose finite element software, adopted to develop biomechanical analyses of prosthetic systems. This procedure allows for an accurate representation of bone tissue properties. Results pertaining to the analysis of commercial oral implants show the potential of the method adopted.
Collapse
Affiliation(s)
- Arturo N Natali
- University of Padova, Centre of Mechanics of Biological Materials, Via F. Marzolo 9, I-35131 Padova, Italy.
| | | | | |
Collapse
|
18
|
Sarot JR, Contar CMM, Cruz ACCD, de Souza Magini R. Evaluation of the stress distribution in CFR-PEEK dental implants by the three-dimensional finite element method. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2010; 21:2079-85. [PMID: 20464460 DOI: 10.1007/s10856-010-4084-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 04/15/2010] [Indexed: 05/22/2023]
Abstract
CFR-PEEK (carbon fiber reforced-poly ether ether ketone) has been demonstrated to be excellent substitute titanium in orthopedic applications and can be manufactured with many physical, mechanical, and surface properties, in several shapes. The aim of this study was to compare, using the three-dimensional finite element method, the stress distribution in the peri-implant support bone of distinct models composed of PEEK components and implants reinforced with 30% carbon fiber (30% CFR-PEEK) or titanium. In simulations with a perfect bonding between the bone and the implant, the 30% CFR-PEEK presented higher stress concentration in the implant neck and the adjacent bone, due to the decreased stiffness and higher deformation in relation to the titanium. However, 30% CFR-PEEK implants and components did not exhibit any advantages in relation to the stress distribution compared to the titanium implants and components.
Collapse
Affiliation(s)
- João Rodrigo Sarot
- Department of Pos-Graduation Course of Implantology, Universidade Federal do Paraná, Curitiba, Brazil.
| | | | | | | |
Collapse
|
19
|
Christen D, Webster DJ, Müller R. Multiscale modelling and nonlinear finite element analysis as clinical tools for the assessment of fracture risk. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2010; 368:2653-2668. [PMID: 20439267 DOI: 10.1098/rsta.2010.0041] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The risk of osteoporotic fractures is currently estimated based on an assessment of bone mass as measured by dual-energy X-ray absorptiometry. However, patient-specific finite element (FE) simulations that include information from multiple scales have the potential to allow more accurate prognosis. In the past, FE models of bone were limited either in resolution or to the linearization of the mechanical behaviour. Now, nonlinear, high-resolution simulations including the bone microstructure have been made possible by recent advances in simulation methods, computer infrastructure and imaging, allowing the implementation of multiscale modelling schemes. For example, the mechanical loads generated in the musculoskeletal system define the boundary conditions for organ-level, continuum-based FE models, whose nonlinear material properties are derived from microstructural information. Similarly microstructure models include tissue-level information such as the dynamic behaviour of collagen by modifying the model's constitutive law. This multiscale approach to modelling the mechanics of bone allows a more accurate characterization of bone fracture behaviour. Furthermore, such models could also include the effects of ageing, osteoporosis and drug treatment. Here we present the current state of the art for multiscale modelling and assess its potential to better predict an individual's risk of fracture in a clinical setting.
Collapse
Affiliation(s)
- David Christen
- Institute for Biomechanics, ETH Zürich, , Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| | | | | |
Collapse
|
20
|
Apicella D, Aversa R, Ferro F, Ianniello D, Perillo L, Apicella A. The importance of cortical bone orthotropicity, maximum stiffness direction and thickness on the reliability of mandible numerical models. J Biomed Mater Res B Appl Biomater 2010; 93:150-63. [PMID: 20119941 DOI: 10.1002/jbm.b.31569] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
AIM To identify mechanical and geometrical variables affecting the biofidelity of numerical models of human mandible. Computed results sensibility to cortical bone orthotropy and thicknesses is investigated. METHODS Two mandible numerical models of different bone complexities are setup. In the low-complexity model, cortical bone is coupled with isotropic materials properties; constant thickness for cortical bone is adopted along the mandible structure. In the higher complexity model, the cortical bone is considered as an orthotropic material according to an independent mechanical characterization performed on fresh human dentate mandibles. Cortical thickness distribution, the values of the principal elastic moduli and principal directions of orthotropy are considered as piecewise heterogeneous. Forces for masseter (10 N), medial pterigoid (6 N), anterior (4 N) and posterior (4 N) temporalis muscles are applied to the models. Computed strains fields are compared with those experimentally measured in an independent test performed on a real human mandible in the same loading conditions. RESULTS Under closure muscles forces both models shows similar strain distribution. On the contrary, strain fields values are significantly different between the presented models. CONCLUSIONS The mandible structure is sensible to compact bone orthotropy and thickness at the facial side of condylar neck, retro molar area and at the lingual side of middle portion of the corpus in molars area, anterior margin of the ramus. In these areas, it is advisable to use orthotropic properties for cortical bone to accurately describe the strain state.
Collapse
Affiliation(s)
- Davide Apicella
- Department of Odontostomatological, Orthodontic and Surgical Disciplines, Second University of Naples, Caserta, Italy
| | | | | | | | | | | |
Collapse
|
21
|
Charlebois M, Jirásek M, Zysset PK. A nonlocal constitutive model for trabecular bone softening in compression. Biomech Model Mechanobiol 2010; 9:597-611. [DOI: 10.1007/s10237-010-0200-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2009] [Accepted: 02/15/2010] [Indexed: 10/19/2022]
|
22
|
Natali AN, Carniel EL, Pavan PG. Dental implants press fit phenomena: Biomechanical analysis considering bone inelastic response. Dent Mater 2009; 25:573-81. [DOI: 10.1016/j.dental.2008.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 09/08/2008] [Accepted: 11/04/2008] [Indexed: 10/21/2022]
|
23
|
Aversa R, Apicella D, Perillo L, Sorrentino R, Zarone F, Ferrari M, Apicella A. Non-linear elastic three-dimensional finite element analysis on the effect of endocrown material rigidity on alveolar bone remodeling process. Dent Mater 2009; 25:678-90. [DOI: 10.1016/j.dental.2008.10.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2007] [Revised: 09/20/2008] [Accepted: 10/21/2008] [Indexed: 11/30/2022]
|