1
|
Ganokwalai N, Chotprasert N, Choonharuangdej S, Shrestha B, Srithavaj T. Mechanical properties of dental tissue conditioner containing lemongrass essential oil. J Prosthet Dent 2024; 132:1068.e1-1068.e8. [PMID: 39117492 DOI: 10.1016/j.prosdent.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024]
Abstract
STATEMENT OF PROBLEM Overcoming compromised oral hygiene and susceptibility to opportunistic oropharyngeal candidal infections in patients with a maxillectomy are critical challenges. Tissue conditioners incorporated with lemongrass essential oil has been shown to have promising antifungal properties, but the effects of this incorporation on the mechanical properties of tissue conditioners remain unexplored. PURPOSE The purpose of this in vitro study was to assess the effects of lemongrass essential oil incorporation at various concentrations on the tensile bond strength (TBS) and Shore A hardness (SAH) of tissue conditioners. The presence of lemongrass essential oil in the tissue conditioner was evaluated by using Raman spectroscopy. MATERIAL AND METHODS Unmodified tissue conditioner served as the control, whereas tissue conditioner incorporated with lemongrass essential oil (final concentrations of 1.77%, 3.56%, and 7.17% [w/w]) and tissue conditioner incorporated with Nystatin served as the experimental groups. The SAH of Coe-Comfort specimens was measured at 2 hours, 24 hours, 7 days, and 30 days for each testing group (n=3/group). The TBS of tissue conditioner to denture base acrylic resin was determined by using a universal testing machine at a crosshead speed of 10 mm/minute (n=10/group). Furthermore, Raman spectra for the control and experimental tissue conditioner groups were obtained at 24 hours and 14 days. The data were analyzed with 2-way repeated measures ANOVA followed by the post hoc Bonferroni multiple comparison test for SAH testing and the 1-way ANOVA followed by the post hoc Tukey HSD multiple comparison test for TBS testing (α=.05). RESULTS The unmodified tissue conditioner, 1.77% (w/w) lemongrass essential oil incorporated tissue conditioner, and Nystatin incorporated tissue conditioner showed no significant difference in SAH at ≤7 days (P>.05). However, at 30 days, the 1.77% (w/w) lemongrass essential oil and Nystatin groups showed no significant difference in SAH (P=.136), but both groups had significantly lower SAH compared with the control group (P=.016 and P<.001, respectively). The incorporation of 1.77% (w/w) lemongrass essential oil in tissue conditioners had no significant effect on TBS compared with the control group (P=.184), although both possessed significantly higher TBS than all remaining groups. In contrast, tissue conditioner incorporated with lemongrass essential oil concentrations ≥3.56% (w/w) and Nystatin showed a statistically significant decrease in TBS (P<.001). Raman spectrum analysis confirmed the presence of citral bands in the lemongrass essential oil incorporated specimens at 2 hours and 14 days, verifying its long-lasting presence. CONCLUSIONS Incorporation of lemongrass essential oil in tissue conditioners at 1.77% (w/w) concentration produced both long-lasting antifungal properties and acceptable mechanical properties (SAH and TBS).
Collapse
Affiliation(s)
- Naphisa Ganokwalai
- Assistant Lecturer, Maxillofacial Prosthetics Clinic, Department of Prosthodontics, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Natdhanai Chotprasert
- Assistant Professor, Maxillofacial Prosthetics Clinic, Department of Prosthodontics, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Suwan Choonharuangdej
- Associate Professor, Department of Oral Microbiology, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Binit Shrestha
- Lecturer, Maxillofacial Prosthetics Clinic, Department of Prosthodontics, Faculty of Dentistry, Mahidol University, Bangkok, Thailand.
| | - Theerathavaj Srithavaj
- Associate Professor, Maxillofacial Prosthetics Clinic, Department of Prosthodontics, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| |
Collapse
|
2
|
Sanchez Armengol E, Sánchez Soler LA, Valverde Offermann N, Laffleur F. Polymer powerhouse: Methyl methacrylate - A breakthrough blend for superior adhesion to gingiva. Dent Mater 2024:S0109-5641(24)00291-4. [PMID: 39424527 DOI: 10.1016/j.dental.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/01/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024]
Abstract
The goal of this study was to develop a new poly(methyl methacrylate) (PMMA)-based conjugate with enhanced mucoadhesive features for gingiva. Five MMA-based conjugates with varying amounts of hydroxyethyl maleimide (HEM) and poly(ethylene glycol) (PEG) were synthesized and characterized using infrared spectroscopy and proton nuclear magnetic resonance. Quantification of attached HEM and PEG was performed using assay kits and established protocols. Mucoadhesiveness was tested through rheological measurements, retention time, and tensile strength studies. Results showed successful unification of MMA with HEM and PEG, with varying degrees of modification and no toxic effects. Dynamic viscosity was enhanced up to 13-fold for MMA-100Mal, decreasing incrementally for MMA-75Mal, MMA-50Mal, MMA-25Mal, and MMA-0Mal. Retention time improved up to 120-fold for MMA-100Mal, decreasing to 37.5-fold for MMA-0Mal. Mucoadhesiveness followed the order: MMA-100Mal > MMA-75Mal > MMA-50Mal > MMA-25Mal > MMA-0Mal. In conclusion, the novel modification of MMA with increased mucoadhesive features to buccal gingiva suggests its potential as a long-term total denture base material, paving the way for more patient-friendly prostheses.
Collapse
Affiliation(s)
- Eva Sanchez Armengol
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Luis Alberto Sánchez Soler
- Faculty of Medicine and Health Sciences, Department of Odontostomatology, University of Barcelona, Barcelona, Spain
| | - Noah Valverde Offermann
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | - Flavia Laffleur
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
3
|
Ferreira MF, Botazzo Delbem AC, Ervolino E, de Abreu Costa L, Antoniali Silva C, Prando dos Santos JR, de Mendonça MR. Therapeutic dosage of isotretinoin in rats may influence orthodontic tooth movement. Bone Rep 2024; 21:101775. [PMID: 38812839 PMCID: PMC11133493 DOI: 10.1016/j.bonr.2024.101775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/31/2024] Open
Abstract
Objective Isotretinoin, also known as 13-cis-retinoic acid, is an isomer of tretinoin, the oxidized form of Vitamin A. Orthodontic tooth movement (OTM) is the result of a cascade of inflammatory responses stimulated by a physical element that is the force generated by orthodontic appliances. Isotretinoin is mainly used among adolescents and young adults, and coincidentally it is this age group that also undergoes orthodontic treatment. Materials and Methods Fifty-five animals were used, and they were randomly divided into 11 groups, containing 5 animals in each group. Group 1: Control; Group 2: OTM for 7 days; Group 3: OTM for 14 days; Group 4: Treated with isotretinoin for 14 days with a dosage of 7.5 mg/kg/day; Group 5: Treated with isotretinoin for 14 days with a dosage of 1.0 mg/kg/day; Group 6: Treated with isotretinoin for 21 days with a dosage of 7.5 mg/kg/day; Group 7: Treated with isotretinoin for 21 days with a dosage of 1.0 mg/kg/day; Group 8: Treated with isotretinoin for 14 days with a dosage of 7.5 mg/kg/day and undergoing OTM for 7 days; Group 9: Treated with isotretinoin for 14 days with a dosage of 1.0 mg/kg/day and undergoing OTM for 7 days; Group 10: Treated with isotretinoin for 21 days with a dosage of 7.5 mg/kg/day and undergoing OTM for 14 days; Group 11: Treated with isotretinoin for 21 days with a dosage of 1.0 mg/kg/day and undergoing OTM for 14 days. In Groups 8, 9, 10 and 11, the animals were treated with isotretinoin for 7 days before OTM and maintained during the movement period in the respective groups. Results There was a significant difference in microtomographic parameters, including Trabecular Volume (BV/TV), Trabecular Thickness (Tb.Th), Number of Trabeculae (Tb.N), and Trabecular Separation (Tb.Sp), between the groups. The group that received orthodontic force in conjunction with isotretinoin treatment at a dosage of 7.5 mg/kg/day exhibited lower tooth displacement over a period of 21 days and 14 days. Conclusion Isotretinoin caused a reduction in tooth displacement during OTM when administered at a dose of 7.5 mg/kg/day and isotretinoin did change the microtomographic parameters of treated animals.
Collapse
Affiliation(s)
| | | | - Edilson Ervolino
- São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil
| | - Luy de Abreu Costa
- São Paulo State University (UNESP), School of Dentistry, Araçatuba, São Paulo, Brazil
| | | | | | | |
Collapse
|
4
|
Ahn JY, Kim YJ, Lee JH, Singh RK, Lee HH. Mechanophysical and Anti-Adhesive Properties of a Nanoclay-Containing PMMA Denture Resin. ACS Biomater Sci Eng 2024; 10:2151-2164. [PMID: 38453640 DOI: 10.1021/acsbiomaterials.3c01817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Poly(methyl methacrylate) (PMMA) is commonly used for dental dentures, but it has the drawback of promoting oral health risks due to oral bacterial adhesion. Recently, various nanoparticles have been incorporated into PMMA to tackle these issues. This study aims to investigate the mechanophysical and antimicrobial adhesive properties of a denture resin by incorporating of nanoclay into PMMA. Specimens were prepared by adding 0, 1, 2, and 4 wt % surface-modified nanoclay (Sigma) to self-polymerizing PMMA denture resin. These specimens were then evaluated using FTIR, TGA/DTG, and FE-SEM with EDS. Various mechanical and surface physical properties, including nanoindentation, were measured and compared with those of pure PMMA. Antiadhesion experiments were conducted by applying a Candida albicans (ATCC 11006) suspension to the surface of the specimens. The antiadhesion activity of C. albicans was confirmed through a yeast-wall component (mannan) and mRNA-seq analysis. The bulk mechanical properties of nanoclay-PMMA composites were decreased compared to those of pure PMMA, while the flexural strength and modulus met the ISO 20795-1 requirement. However, there were no significant differences in the nanoindentation hardness and elastic modulus. The surface energy revealed a significant decrease at 4 wt % nanoclay-PMMA. The antiadhesion effect of Candida albicans was evident along with nanoclay content in the nanocomposites and confirmed by the reduced attachment of mannan on nanoclay-PMMA composites. mRNA-seq analysis supported overall transcriptome changes in altering attachment and metabolism behaviors on the surface. The nanoclay-PMMA materials showed a lower surface energy as the content increased, leading to an antiadhesion effect against Candida albicans. These findings indicate that incorporating nanoclay into PMMA surfaces could be a valuable strategy for preventing the fungal biofilm formation of denture base materials.
Collapse
Affiliation(s)
- Jun-Yong Ahn
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea
| | - Yu-Jin Kim
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea
| | - Jung-Hwan Lee
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea
| | - Rajendra K Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea
| | - Hae-Hyoung Lee
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, 119 Dandae-ro, Cheonan, Chungcheongnam-do 31116, Republic of Korea
| |
Collapse
|
5
|
Sundar VJ. Novel biocompatible denture material incorporating type I collagen with improved functional properties for oral health. Odontology 2024; 112:472-478. [PMID: 37914822 DOI: 10.1007/s10266-023-00866-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/08/2023] [Indexed: 11/03/2023]
Abstract
The use of collagen is the recent development in various medical fields. Huge quantities of hide and skin trimmings are generated during the leather processing are wasted or underutilized. Trimmings contain collagen which can be beneficially extracted and utilized for high value products. Poly methyl methacrylate based denture materials exhibit serious concerns such as high porosity, presence of residual monomer, shrinkage, distortion and high rate of deterioration of the materials. This study aims to incorporate extracted Type I collagen with polymer to obtain denture base and investigate its chemical and mechanical properties. The present research methodology also reduces the quantity of monomer and acrylic resin usage. The collagen was extracted from animal skin and hide trimmings which are otherwise disposed as wastes. This study investigated the effect of visco-elastic characteristics of resulted specimens and their transition temperature, mechanical properties, decomposition temperature and leachability. The collagen-based specimens have better tensile strength with high decomposition temperature compared to control specimens. Scanning Electron Microscopy analysis revealed that the experimental specimens was cohesive and homogeneous which explained the higher tensile and decomposition values. The study suggests that collagen cross-linked acrylic denture base exhibit better mechanical and thermal resistance properties when compared to control specimens. The study indicates that biomaterials are emerging as smart products of value in human health.
Collapse
|
6
|
Timbó ICG, Oliveira MSCS, Lima RA, Chaves AV, Pereira VDA, Fechine PBA, Regis RR. Microbiological, physicomechanical, and surface evaluation of an experimental self-curing acrylic resin containing halloysite nanotubes doped with chlorhexidine. Dent Mater 2024; 40:348-358. [PMID: 38142145 DOI: 10.1016/j.dental.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/25/2023]
Abstract
OBJECTIVE The objective was to synthesize halloysite nanotubes loaded with chlorhexidine (HNT/CHX) and evaluate the antimicrobial activity, microhardness, color change, and surface characteristics of an experimental self-curing acrylic resin containing varying concentrations of the synthesized nanomaterial. METHODS The characterization of HNT/CHX was carried out by calculating incorporation efficiency, morphological and compositional, chemical and thermal evaluations. SAR disks were made containing 0 %, 3 %, 5 %, and 10 % of HNT/CHX. Specimens (n = 3) were immersed in distilled water and spectral measurements were carried out using UV/Vis spectroscopy to evaluate the release of CHX for up to 50 days. The antimicrobial activity of the composite against Candida albicans and Streptococcus mutans was evaluated by disk-diffusion test. Microhardness, color analyses (ΔE), and surface roughness (Ra) (n = 9) were performed before and after 30 days of immersion. Data were analyzed using ANOVA/Bonferroni. {Results.} The incorporation efficiency of CHX into HNT was of 8.15 %. All test groups showed controlled and cumulative CHX release up to 30 or 50 days. Significant antimicrobial activity was verified against both microorganisms (p < 0.001). After the 30-day immersion period, the 10 % HNT/CHX group showed a significant increase in hardness (p < 0.05) and a progressive color change (p < 0.001). At T0, the 5 % and 10 % groups exhibited Ra values similar to the control group (p > 0.05), while at T30, all groups showed similar roughness values (p > 0.05). {Significance.} The modification of a SAR with HNT/CHX provides antimicrobial effect and controlled release of CHX, however, the immediate surface roughness in the 3 % group was compromised when compared to the control group.
Collapse
Affiliation(s)
- Isabelle C G Timbó
- Department of Restorative Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Federal University of Ceará (FFOE-UFC), Fortaleza, CE, Brazil
| | - Mayara S C S Oliveira
- Department of Restorative Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Federal University of Ceará (FFOE-UFC), Fortaleza, CE, Brazil
| | - Ramille A Lima
- Department of Dentistry, Unichristus, Fortaleza, CE, Brazil
| | - Anderson V Chaves
- Group of Chemistry of Advanced Materials (GQMat), Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceara (UFC), Fortaleza, CE, Brazil
| | - Vanessa de A Pereira
- Group of Chemistry of Advanced Materials (GQMat), Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceara (UFC), Fortaleza, CE, Brazil
| | - Pierre B A Fechine
- Group of Chemistry of Advanced Materials (GQMat), Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceara (UFC), Fortaleza, CE, Brazil
| | - Romulo R Regis
- Department of Restorative Dentistry, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Federal University of Ceará (FFOE-UFC), Fortaleza, CE, Brazil.
| |
Collapse
|
7
|
Alansari N, Abid M, Dziedzic A. Enhanced antimicrobial efficacy of chlorhexidine-encapsulated halloysite nanotubes incorporated in presurgical orthopedic appliances: an in vitro, controlled study. Clin Oral Investig 2024; 28:68. [PMID: 38165480 DOI: 10.1007/s00784-023-05464-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
AIMS AND OBJECTIVE Presurgical infant's orthopedic appliances (PSIOs) play an increasingly crucial role in the interdisciplinary management of neonatal CLP, aiming to improve and maintain adequate nasolabial aesthetics, followed by primary lip/nasal surgery in both unilateral and bilateral CLP cases. The use of PSIOs in cleft lip and palate patients can lead to contamination with oral microflora, acting as a potential reservoir for infectious microorganisms. Acrylic surfaces might provide retention niches for microorganisms to adhere, and inhabit, which is difficult to control in immunocompromised patients, thus predisposing them to increased infection risks. The objective of this multi-assay in vitro study was to investigate the effects of incorporating chlorhexidine-loaded halloysite nanotubes (CHX-HNTs) fillers on the morphological, cytotoxic, release, and antimicrobial characteristics of self-cured acrylic polymethyl methacrylate (PMMA) material used in pre-surgical orthopedic appliances. METHODS Disk-shaped PMMA specimens were prepared with varying proportions of CHX-HNTs. A control group without any addition served as a reference, and four experimental samples contained a range of different concentrations of CHX-HNTs (1.0, 1.5, 3, and 4.5 wt%). The antimicrobial efficacy was assessed using an agar diffusion test against common reference microorganisms: Candida albicans, Staphylococcus aureus, Streptococcus pneumoniae, and Streptococcus agalactiae. Cytotoxicity was examined using the L929 cell line (mouse fibroblasts) through a (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide, MTT) cell viability assay. The release kinetics of CHX were monitored using UV-spectral measurements. The statistical analysis used a one-way ANOVA followed by Tukey's post hoc test. RESULTS The integration of CHX-HNTs in PMMA exhibited a substantial dose-dependent antifungal and antibacterial effect against microorganisms at tested mass fractions (1.0 to 4.5 wt%). CHX release was sustained for up to 60 days, supporting prolonged antimicrobial activity. Furthermore, no significant cytotoxicity was determined in the L929 fibroblast cell line (control), indicating the biocompatibility of the CHX-HNTs-enhanced PMMA. CONCLUSION Incorporating CHX-HNTs in PMMA successfully enhanced its antimicrobial properties, providing sustained CHX release and superior antimicrobial efficacy. These findings demonstrate the potential of antimicrobial nanoparticles in dental therapies to improve therapeutic outcomes. However, rigorous further clinical trials and observational studies are warranted to validate the practical application, safety, and efficacy. CLINICAL RELEVANCE This study has the potential to make a major impact on the health of infants born with cleft lip and palate by helping to reduce the prevalence of infectious illnesses. The incorporation of CHX-HNTs into PMMA-based appliances is a novel promising preventive approach to reduce microbial infections.
Collapse
Affiliation(s)
- Nadia Alansari
- Department of Orthodontics, College of Dentistry, University of Baghdad, Baghdad, 01110, Iraq
- Department of Orthodontics, Al Rafidain University College, Baghdad, Iraq
| | - Mushriq Abid
- Department of Orthodontics, College of Dentistry, University of Baghdad, Baghdad, 01110, Iraq.
| | - Arkadiusz Dziedzic
- Department of Conservative Dentistry with Endodontics, Medical University of Sile, 40-055, Katowice, Poland
| |
Collapse
|
8
|
Portela MB, Barboza CM, da Silva EM, de Moraes DC, Simão RA, de Souza CR, Cardoso VDS, Ferreira-Pereira A, Vermelho AB, Supuran CT. Dentine biomodification by sulphonamides pre-treatment: bond strength, proteolytic inhibition, and antimicrobial activity. J Enzyme Inhib Med Chem 2023; 38:319-329. [PMID: 36440644 PMCID: PMC11392503 DOI: 10.1080/14756366.2022.2150184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022] Open
Abstract
We evaluated the effects of dentine biomodification after pre-treatment with two sulphonamide carbonic anhydrase inhibitors (CAIs) of the N-[4-sulphamoylphenethylcarbamoyl]benzenesulphonamide type, investigating matrix metalloproteases activity, resin-dentine micro tensile bond strength, dentine surface wettability, and antimicrobial activities. Ninety-five sound-extracted human molars were selected for the study. Inhibitory effects were evaluated by gelatinase and collagenase activity tests and collagen degradation FT-IR spectroscopic analysis. Pre-treatment with the two CAIs kept the micro tensile values after 12 months of storage (32.23 ± 5.95) and cariogenic challenge (34.13 ± 2.71) similar to the initial, pre-treatment values (33.56 ± 4.34). A decreased Streptococcus mutans biofilm formation on dentine surfaces and antibacterial activity against planktonic bacteria were observed after CAI treatment. Dentine pre-treatment with sulphonamide CAIs maintained adhesion strength stability, allowed better dentine wettability, maintained matrix collagen, and showed anti-S. mutans activity.
Collapse
Affiliation(s)
- Maristela Barbosa Portela
- Departamento de Odontotécnica, Laboratório Analítico de Biomateriais Restauradores (LABiom-R), Faculdade de Odontologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Caroliny Mello Barboza
- Departamento de Odontotécnica, Laboratório Analítico de Biomateriais Restauradores (LABiom-R), Faculdade de Odontologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Eduardo Moreira da Silva
- Departamento de Odontotécnica, Laboratório Analítico de Biomateriais Restauradores (LABiom-R), Faculdade de Odontologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Daniel Clemente de Moraes
- Laboratório de Bioquímica Microbiana, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renata Antoun Simão
- Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia (COPPE), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Clara Ribeiro de Souza
- Departamento de Odontotécnica, Laboratório Analítico de Biomateriais Restauradores (LABiom-R), Faculdade de Odontologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Verônica da Silva Cardoso
- Bioinovar-Biotecnologia: Unidade de Biocatálise, Bioprodutos e Bioenergia (BIOINOVAR), Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antônio Ferreira-Pereira
- Laboratório de Bioquímica Microbiana, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alane Beatriz Vermelho
- Bioinovar-Biotecnologia: Unidade de Biocatálise, Bioprodutos e Bioenergia (BIOINOVAR), Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche, Universita degli Studi di Firenze, Florence, Italy
| |
Collapse
|
9
|
Gradinaru I, Ciubotaru BI, Butnaru M, Cojocaru FD, Covașă CT, Bibire T, Dascalu M, Bargan A, Cazacu M, Zaltariov MF. The Impact of the Addition of Vitamins on a Silicone Lining Material to the Oral Mucosa Tissue-Evaluation of the Biocompatibility, Hydrolytic Stability and Histopathological Effect. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1936. [PMID: 38003985 PMCID: PMC10673301 DOI: 10.3390/medicina59111936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/20/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023]
Abstract
Background and Objectives: One's quality of life depends on overall health, and in particular, oral health, which has been and continues to become a public health issue through frequent manifestations in various forms, from simple oral stomatitis (inflammations of the oral cavity) to the complicated oral health pathologies requiring medical interventions and treatments (caries, pulp necrosis and periodontitis). The aim of this study focused on the preparation and evaluation of vitamins (vitamin A, B1 and B6) incorporated into several silicone-based lining materials as a new alternative to therapeutically loaded materials designed as oral cavity lining materials in prosthodontics. Materials and Methods: Silicone-based liners containing vitamins were prepared by mixing them in solution and becoming crosslinked, and then they were characterized using Fourier-transform infrared (FT-IR) spectroscopy to confirm the incorporation of the vitamins into the silicone network; scanning electron microscopy (SEM) to evidence the morphology of the liner materials; dynamic vapor sorption (DVS) to evaluate their internal hydrophobicity, swelling in environments similar to biological fluids and mechanical test to demonstrate tensile strength; MTT to confirm their biocompatibility on normal cell cultures (fibroblast) and mucoadhesivity; and histopathological tests on porcine oral mucosa to highlight their potential utility as soft lining materials with improved efficiency. Results: FT-IR analysis confirmed the structural peculiarities of the prepared lining materials and the successful incorporation of vitamins into the silicone matrix. The surface roughness of the materials was lower than 0.2 μm, while in cross-section, the lining materials showed a compact morphology. It was found that the presence of vitamins induced a decrease in the main mechanical parameters (strength and elongation at break, Young's modulus) and hydrophobicity, which varied from one vitamin to another. A swelling degree higher than 8% was found in PBS 6.8 (artificial saliva) and water. Hydrolytic stability studies in an artificial saliva medium showed the release of low concentrations of silicone and vitamin fragments in the first 24 h, which increased the swelling behavior of the materials, diffusion and solubility of the vitamins. The microscopic images of fibroblast cells incubated with vitamin liners revealed very good biocompatibility. Also, the silicone liners incorporating the vitamins showed good mucoadhesive properties. The appearance of some pathological disorders with autolysis processes was more pronounced in the case of vitamin A liners. Conclusions: The addition of the vitamins was shown to have a beneficial effect that was mainly manifested as increased biocompatibility, hydrolytic stability and mucoadhesiveness with the mucosa of the oral cavity and less of an effect on the mechanical strength. The obtained lining materials showed good resistance in simulated biological media but caused a pronounced autolysis phenomenon, as revealed by histopathological examination, showing that these materials may have broad implications in the treatment of oral diseases.
Collapse
Affiliation(s)
- Irina Gradinaru
- Department of Implantology, Removable Dentures, Technology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Bianca Iulia Ciubotaru
- Department of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41 A, 700487 Iasi, Romania; (B.I.C.); (M.D.); (A.B.); (M.C.)
| | - Maria Butnaru
- Biomedical Sciences Department, Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy, 9-13 Kogalniceanu Street, 700454 Iasi, Romania; (M.B.); (F.D.C.)
| | - Florina Daniela Cojocaru
- Biomedical Sciences Department, Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy, 9-13 Kogalniceanu Street, 700454 Iasi, Romania; (M.B.); (F.D.C.)
| | - Costică Toader Covașă
- Faculty of Veterinary Medicine, “Ion Ionescu de la Brad” University of Life Sciences—IULS, Aleea Mihail Sadoveanu nr. 3, 700490 Iasi, Romania;
| | - Teofana Bibire
- Faculty of General Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Mihaela Dascalu
- Department of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41 A, 700487 Iasi, Romania; (B.I.C.); (M.D.); (A.B.); (M.C.)
| | - Alexandra Bargan
- Department of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41 A, 700487 Iasi, Romania; (B.I.C.); (M.D.); (A.B.); (M.C.)
| | - Maria Cazacu
- Department of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41 A, 700487 Iasi, Romania; (B.I.C.); (M.D.); (A.B.); (M.C.)
| | - Mirela-Fernanda Zaltariov
- Department of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41 A, 700487 Iasi, Romania; (B.I.C.); (M.D.); (A.B.); (M.C.)
| |
Collapse
|
10
|
Bettencourt AF, Costa J, Ribeiro IAC, Gonçalves L, Arias-Moliz MT, Dias JR, Franco M, Alves NM, Portugal J, Neves CB. Development of a chlorhexidine delivery system based on dental reline acrylic resins. Int J Pharm 2023; 631:122470. [PMID: 36516927 DOI: 10.1016/j.ijpharm.2022.122470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/18/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022]
Abstract
The high recurrence rate of common denture stomatitis after antifungal treatment is still concerning. This condition is caused by low patient compliance and incomplete local elimination of the main etiological factor - Candida albicans, often associated with other microorganisms, such as Streptococcus species. Impregnating denture materials with antimicrobials for local delivery is a strategy that can overcome the side effects and improve the efficacy of conventional treatments (topical and/or systemic). In this work, we describe the development of three hard autopolymerizing reline acrylic resins (Kooliner, Ufi Gel Hard, and Probase Cold) loaded with different percentages of chlorhexidine (CHX). The novel formulations were characterized based on their antimicrobial activity, mechanical, morphological and surface properties, in-vitro drug release profiles, and cytotoxicity. The addition of CHX in all resins did not change their chemical and mechanical structure. Among all the tested formulations, Probase Cold loaded with 5 wt% CHX showed the most promising results in terms of antimicrobial activity and lack of serious detrimental mechanical, morphological, surface, and biological properties.
Collapse
Affiliation(s)
- Ana F Bettencourt
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal.
| | - Joana Costa
- Unidade de Investigação em Ciências Orais e Biomédicas (UICOB), Faculdade de Medicina Dentária, Universidade de Lisboa, 1600-277 Lisboa, Portugal
| | - Isabel A C Ribeiro
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Lídia Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | | | - Juliana R Dias
- Center for Rapid and Sustainable Product Development (CDRsp), Polytechnic Institute of Leiria, 2030-028 Marinha Grande, Portugal
| | - Margarida Franco
- Center for Rapid and Sustainable Product Development (CDRsp), Polytechnic Institute of Leiria, 2030-028 Marinha Grande, Portugal
| | - Nuno M Alves
- Center for Rapid and Sustainable Product Development (CDRsp), Polytechnic Institute of Leiria, 2030-028 Marinha Grande, Portugal
| | - Jaime Portugal
- Unidade de Investigação em Ciências Orais e Biomédicas (UICOB), Faculdade de Medicina Dentária, Universidade de Lisboa, 1600-277 Lisboa, Portugal
| | - Cristina B Neves
- Unidade de Investigação em Ciências Orais e Biomédicas (UICOB), Faculdade de Medicina Dentária, Universidade de Lisboa, 1600-277 Lisboa, Portugal.
| |
Collapse
|
11
|
Dzeikala O, Prochon M, Marzec A, Szczepanik S. Preparation and Characterization of Gelatin-Agarose and Gelatin-Starch Blends Using Alkaline Solvent. Int J Mol Sci 2023; 24:1473. [PMID: 36674988 PMCID: PMC9866747 DOI: 10.3390/ijms24021473] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/15/2023] Open
Abstract
Plastic waste is a serious problem in modern society. Every day, mankind produces tons of waste that must be disposed of or recycled. The most common types of plastic waste are disposable tableware, bags, packaging, bottles, and containers, and not all are recycled. Therefore, there is a great interest in producing environmentally friendly disposable materials. In this study, modified gelatin blends using polysaccharides (e.g., agarose, starch) were produced to obtain a stable coating. Various techniques were used to characterize the obtained bioplastics, including FTIR spectroscopy (Fourier-transform infrared spectroscopy), TGA (thermogravimetric analysis)/DSC (differential scanning calorimetry), contact angle measurements, and surface energy characterization. We also investigated the influence of thermal and microbiological degradation on the properties of the biocomposite. The addition of agarose increased the hardness of the blend by 27% compared to the control sample without added polysaccharides. Increases were also observed in the surface energy (24%), softening point (15%), and glass transition temperature (14%) compared to the control sample. The addition of starch to the biopolymer increased the softening point by 15% and the glass transition temperature by 6%. After aging, both blends showed an increase in hardness of 26% and a decrease in tensile strength of 60%.
Collapse
Affiliation(s)
- Oleksandra Dzeikala
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland
| | | | | | | |
Collapse
|
12
|
Zhou W, Zhao H, Li Z, Huang X. Autopolymerizing acrylic repair resin containing low concentration of dimethylaminohexadecyl methacrylate to combat saliva-derived bacteria. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:49. [PMID: 35639209 PMCID: PMC9156454 DOI: 10.1007/s10856-022-06670-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Biofilm accumulation on the polymethyl methacrylate (PMMA) restorations negatively affect the prognosis of the provisional restorations or the following treatment. This study developed a novel antibacterial PMMA resin containing low concentration of dimethylaminohexadecyl methacrylate (DMAHDM). Four resins were tested: (1) PMMA resin (Control), (2) 1.25% DMAHDM, (3) 2.5% DMAHDM, (4) 5% DMAHDM. Adding 1.25% DMAHDM into the PMMA resin did not influence the mechanical properties, degree of conversion, monomer releasing, and color stability of the specimens (p > 0.05). The incorporation of DMAHDM into PMMA resin could greatly prevent saliva-derived biofilms adhesion compared with the control group (p < 0.05). The metabolism level of saliva-derived biofilms on the 1.25%, 2.5%, and 5% DMAHDM resins were reduced by 20%, 54%, and 62%, respectively. And the mechanism of DMAHDM disturbing the integrity of bacterial cell walls was confirmed by flow cytometric analysis. Adding 1.25% and 2.5% DMAHDM did not compromise cytocompatibility of the modified resin (p > 0.05). Therefore, novel PMMA resin containing low concentration DMAHDM is promising as a future antimicrobial provisional restoration material for preventing microbial-induced complications in clinical settings. Graphical abstract.
Collapse
Affiliation(s)
- Wen Zhou
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Hongyan Zhao
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Zhen Li
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Xiaojing Huang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
13
|
Jeon S, Jo YH, Yoon HI, Han JS. Antifungal effect, surface roughness, and cytotoxicity of three-dimensionally printed denture base with phytoncide-filled microcapsules: an in-vitro study. J Dent 2022; 120:104098. [DOI: 10.1016/j.jdent.2022.104098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/16/2022] [Accepted: 03/19/2022] [Indexed: 12/20/2022] Open
|
14
|
Should local drug delivery systems be used in dentistry? Drug Deliv Transl Res 2021; 12:1395-1407. [PMID: 34545538 DOI: 10.1007/s13346-021-01053-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2021] [Indexed: 11/27/2022]
Abstract
In dentistry, the use of biomaterial-based drug delivery systems (DDS) aiming the release of the active compounds directly to the site of action is slowly getting more awareness among the scientific and medical community. Emerging technologies including nanotechnological platforms are offering novel approaches, but the majority are still in the proof-of-concept stage. This study critically reviews the potential use of DDS in anesthesiology, oral diseases, cariology, restorative dentistry, periodontics, endodontics, implantology, fixed and removable prosthodontics, and orthodontics with a special focus on infections. It also stresses the gaps and challenges faced. Despite numerous clinical and pharmacological advantages, some disadvantages of DDS pose an obstacle to their widespread use. The biomaterial's biofunctionality may be affected when the drug is incorporated and may cause an additional risk of toxicity. Also, the release of sub-therapeutic levels of drugs such as antibiotics may lead to microbial resistance. Multiple available techniques for the manufacture of DDS may affect drug release profiles and their bioavailability. If the benefits outweigh the costs, DDS may be potentially used to prevent or treat oral pathologies as an alternative to conventional strategies. A case-by-case approach must be followed.
Collapse
|
15
|
Assad-Loss TF, Vignoli JF, Garcia IM, Portela MB, Schneider LFJ, Collares FM, Cavalcante LMA, Tostes MDA. Physicochemical properties and biological effects of quaternary ammonium methacrylates in an experimental adhesive resin for bonding orthodontic brackets. J Appl Oral Sci 2021; 29:e20201031. [PMID: 33950080 PMCID: PMC8092807 DOI: 10.1590/1678-7757-2020-1031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/10/2021] [Indexed: 11/22/2022] Open
Abstract
METHODOLOGY Fixed orthodontic appliances may lead to biofilm accumulation around them that may increase caries risk. This study aimed to evaluate the influence of quaternary ammonium methacrylates (QAMs) on the physicochemical properties, cytotoxicity, and antibacterial activity of adhesive resins for orthodontic purposes. A base resin was prepared with a comonomer blend and photoinitiator/co-initiator system. Two different QAMs were added to the base adhesive: dimethylaminododecyl methacrylate at 5 wt.% (DMADDM) or dimethylaminohexadecyl methacrylate (DMAHDM) at 10 wt.%. The base adhesive, without QAMs, (GC) and the commercial Transbond™ XT Primer 3M (GT) were used as control. The resins were tested immediately and after six months of aging in the water regarding the antibacterial activity and shear bond strength (SBS). The antibacterial activity was tested against Streptococcus mutans via metabolic activity assay (MTT test). The groups were also tested for the degree of conversion (DC) and cytotoxicity against keratinocytes. RESULTS The resins containing QAM showed antibacterial activity compared to the commercial material by immediately reducing the metabolic activity by about 60%. However, the antibacterial activity decreased after aging (p<0.05). None of the groups presented any differences for SBS (p>0.05) and DC (p>0.05). The incorporation of DMADDM and DMAHDM significantly reduced the keratinocyte viability compared to the GT and GC groups (p<0.05). CONCLUSION Both adhesives with QAMs showed a significant reduction in bacterial metabolic activity, but this effect decreased after water aging. Lower cell viability was observed for the group with the longer alkyl chain-QAM, without significant differences for the bonding ability and degree of conversion. The addition of QAMs in adhesives may affect the keratinocytes viability, and the aging effects maybe decrease the bacterial activity of QAM-doped materials.
Collapse
Affiliation(s)
| | | | - Isadora Martini Garcia
- Universidade Federal do Rio Grande do Sul, Laboratório de Materiais Dentários, Porto Alegre, RS, Brasil
| | | | - Luis Felipe J Schneider
- Universidade Federal Fluminense, Programa de pós-graduação em Odontologia, Niterói, RJ, Brasil.,Universidade Veiga de Almeida, Pós-graduação em Odontologia, Rio de Janeiro, RJ, Brasil
| | - Fabrício Mezzomo Collares
- Universidade Federal do Rio Grande, Pós-Graduação em Odontologia da do Sul, Porto Alegre, RS, Brasil
| | - Larissa Maria Assad Cavalcante
- Universidade Federal Fluminense, Programa de pós-graduação em Odontologia, Niterói, RJ, Brasil.,Universidade Veiga de Almeida, Pós-graduação em Odontologia, Rio de Janeiro, RJ, Brasil
| | - Monica de Almeida Tostes
- Universidade Federal do Rio Grande, Pós-Graduação em Odontologia da do Sul, Porto Alegre, RS, Brasil
| |
Collapse
|
16
|
Ratanajanchai M, Kanchanavasita W, Suputtamongkol K, Wonglamsam A, Thamapipol S, Sae-Khow O. Heat-cured poly(methyl methacrylate) resin incorporated with different food preservatives as an anti-microbial denture base material. J Dent Sci 2021; 16:706-712. [PMID: 33854722 PMCID: PMC8025184 DOI: 10.1016/j.jds.2020.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/12/2020] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND/PURPOSE The colonization of microorganisms onto denture bases is one common problem that can contribute to oral diseases. Herein, three food preservatives, including zinc oxide, potassium sorbate, and sodium metabisulfite were introduced as anti-microbial additives into a heat-polymerized poly(methyl methacrylate) (PMMA). MATERIALS AND METHODS Relative microbial reductions of the modified PMMA resins against Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans were evaluated. The in vitro cytotoxicity of the materials was measured against mouse fibroblast L929 cells. A three-point flexural test was performed to determine a flexural strength and modulus properties of the materials. RESULTS The incorporation of all preservative agents into the material diminished the microbial growth of three microbial species. The PMMA resin combined with sodium metabisulfite exhibited the greatest anti-microbial activity that reduced almost all bacterial cells and about 40% of C. albicans. All modified resins showed no significant cytotoxicity against L929 cells. The addition of food preservatives did not significantly alter the flexural strength of the PMMA resin (∼84-92 MPa). However, the flexural modulus of the PMMA incorporated with food preservatives (∼2,024-2,144 MPa) was significantly lower than the unmodified PMMA. CONCLUSION Three food preservatives, especially sodium metabisulfite, could be applied as anti-microbial additives into the denture base resin. The PMMA incorporated with the additives did not show cytotoxicity. Although, the addition of the food preservatives altered the mechanical properties, the materials still provided acceptable flexural properties.
Collapse
Affiliation(s)
- Montri Ratanajanchai
- Department of Prosthodontics, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | | | - Kallaya Suputtamongkol
- Department of Prosthodontics, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Amonrat Wonglamsam
- Department of Prosthodontics, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | | | | |
Collapse
|
17
|
Freire AR, Freire DEWG, Sousa SAD, Serpa EM, Almeida LDFDD, Cavalcanti YW. Antibacterial and Solubility Analysis of Experimental Phytotherapeutic Paste for Endodontic Treatment of Primary Teeth. PESQUISA BRASILEIRA EM ODONTOPEDIATRIA E CLÍNICA INTEGRADA 2021. [DOI: 10.1590/pboci.2021.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
18
|
Photodynamic antimicrobial chemotherapy through photosensitizers loaded poly-l-glycolic acid on Candida albicans in denture lining material: Release, biological and hardness study. Photodiagnosis Photodyn Ther 2020; 33:102134. [PMID: 33307237 DOI: 10.1016/j.pdpdt.2020.102134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/04/2020] [Accepted: 11/30/2020] [Indexed: 11/21/2022]
Abstract
AIM The aim of this in-vitro study was to formulate poly-l-glycolic acid nanoparticles loaded with methylene blue (PLGA-MB) and to characterize their physicochemical features, photosensitizer-release kinetics and antimicrobial efficacy against Candida albicans (C. albicans) after incorporating in polymethyl methacrylate (PMMA) denture lining materials. MATERIAL AND METHODS MB-PLGA nanoparticles were synthesized according to the modified nanoprecipitation method. The morphological characterization of the nanoparticles was studied under scanning and transmission electron microscope. Particle size, surface charge, polydispersity index (PDI) and MB release were evaluated. The effect of 660 nm semiconductor AlGaInP diode laser on C. albicans was studied in vitro. The PMMA was weighed and PLGA free and PLGA-MB were added in the lining material according to the weight percentage as 2.0 wt.% and 5.0 wt.% and tested for the diameter of the inhibition zones of C. albicans growth and shore A hardness. RESULTS Homogenous spherical nanoparticles with round morphology with size ranging between 60-80 nm were observed while PLGA-MB were seen to have irregular structure within the nanoparticle under TEM. PLGA-Free was larger in size than the loaded PLGA (∼62 nm) that evidenced reduction in size by adding the MB photosensitizer. PDI recordings reduced from 0.198 for the PLGA-Free nanoparticles to 0.164 for the PLGA-MB nanoparticles. The entrapment efficiency of MB inside PLGA showed an average percentage of ∼75 % uptake that resulted in the overall loading of ∼15 %. An overall inhibition of 78 %, 41 % and 28 % of C. albicans growth was seen with a concentration of 0.1, 0.5 and 1.0 μg/mL, respectively. The application of PLGA nanoparticles loaded with MB evidenced >75 % of C. albicans. MB incorporation did not lead to a clinically relevant change on shore A hardness. CONCLUSION PLGA loaded with MB is believed to have promising target therapy against C. albicans in denture soft lining materials in terms of PACT in vitro. The synergistic association between PLGA and MB proved enhanced antifungal activity. PLGA-MB could be an important tool in nanobiotechnology and photodynamic therapy for novel formulations with higher antimicrobial efficacy and improved drug delivery from denture soft lining materials.
Collapse
|
19
|
Kumpanich J, Eiampongpaiboon T, Kanchanavasita W, Chitmongkolsuk S, Puripattanavong J. Effect of Piper betle extract on anti-candidal activity, gelation time, and surface hardness of a short-term soft lining material. Dent Mater J 2020; 39:1016-1021. [PMID: 32727964 DOI: 10.4012/dmj.2019-314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The purpose of this study was to evaluate anti-candidal activity, gelation time, and surface hardness of a short-term soft lining material incorporated with varying concentrations of Piper betle extract (0.25 to 20% w/w). Agar-diffusion assay was conducted to evaluate an inhibitory effect against Candida albicans. The gelation time was assessed and surface hardness was measured at 2 h and 7 days by Shore AO durometer. A soft liner containing at least 5% w/w of P. betle extract was observed the inhibitory effect against C. albicans. An increasing of P. betle concentrations provided larger inhibition zone. Incorporating 5% w/w of P. betle extract into the soft liner did not significantly alter its gelation time and surface hardness (ANOVA; p>0.05). The optimum composition at 5% w/w of P. betle extract can be used as an additive in the soft liner to provide the anti-candidal activity without significantly affect these two main properties.
Collapse
Affiliation(s)
| | | | | | | | - Jindaporn Puripattanavong
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University
| |
Collapse
|
20
|
Elboraey AN, Abo-Almaged HH, El-Ashmawy AAER, Abdou AR, Moussa AR, Emara LH, El-Masry HM, El Bassyouni GET, Ramzy MI. Biological and Mechanical Properties of Denture Base Material as a Vehicle for Novel Hydroxyapatite Nanoparticles Loaded with Drug. Adv Pharm Bull 2020; 11:86-95. [PMID: 33747855 PMCID: PMC7961227 DOI: 10.34172/apb.2021.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 03/22/2020] [Accepted: 04/16/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose: This study aimed to evaluate the biological and mechanical properties of the poly(methyl methacrylate) (PMMA) denture base material as a vehicle incorporating novel hydroxyapatite nanoparticles (HA-NP) loaded with metronidazole (MZ) drug. Methods: HA-NP was prepared via wet-chemical-method, characterized by XRD, SEM/EDX, TEM, Fourier-transform infrared spectroscopy (FTIR), as well as the measurement of surface area and pore-size distribution. Four drug delivery formulas were prepared in the form of discs (10 x 2 mm) as follows: F1 (MZ/ HA-NP/PMMA), F2 (HA-NP/ PMMA), F3 (control-PMMA) and F4 (MZ/PMMA). Characterization of all formulas was performed using differential scanning calorimetry (DSC) and FTIR. MZ release rate, antimicrobial properties against three oral pathogens, cytotoxicity (MTT assay) and surface micro-hardness were also assessed. Statistical analysis of data was performed using one-way ANOVA test (P < 0.05). Results: DSC thermograms showed compatibility among MZ, HA-NP and PMMA along with physical stability over 6 months storage period at room temperature. FTIR spectroscopy proved the absence of any possible chemical interaction with MZ. MZ-HA-NP/PMMA formula showed relatively better drug release compared to MZ-PMMA. Both formulas showed statistically significant antimicrobial potentials against two microbial strains. MTT demonstrated reduction in cell cytotoxicity after 96 hours with the least value for HA-NP. Surface micro-hardness revealed non-significant reduction compared with the control PMMA. Conclusion: A novel biocompatible drug nanocarrier (HA-NP) was developed and incorporated in PMMA denture base material as a vehicle to allow prolonged sustained drug release to manage oral infections.
Collapse
Affiliation(s)
- Asmaa Nabil Elboraey
- Fixed and Removable Prosthodontics Department, National Research Centre, 33 El Buhouth Street, Dokki, P.O.12622 Cairo, Egypt
| | - Hanan Hassan Abo-Almaged
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33 El Buhouth Street, Dokki, P.O.12622, Cairo, Egypt
| | - Ahmed Abd El-Rahman El-Ashmawy
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, 33 EL Bohouth st. (former EL Tahrir st.), Dokki, Giza, Egypt, P.O.12622, Affiliation ID: 10014618
| | - Aya Rashad Abdou
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, 33 EL Bohouth st. (former EL Tahrir st.), Dokki, Giza, Egypt, P.O.12622, Affiliation ID: 10014618
| | - Amani Ramadan Moussa
- Fixed and Removable Prosthodontics Department, National Research Centre, 33 El Buhouth Street, Dokki, P.O.12622 Cairo, Egypt
| | - Laila Hassanian Emara
- Medicinal and Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, 33 EL Bohouth st. (former EL Tahrir st.), Dokki, Giza, Egypt, P.O.12622, Affiliation ID: 10014618
| | - Hossam Mohammed El-Masry
- Chemistry of Natural Microbial Products Department, National Research Centre,33 El Buhouth Street, Dokki, P.O.12622, Cairo, Egypt
| | - Gehan El-Tabie El Bassyouni
- Refractories, Ceramics and Building Materials Department, National Research Centre, 33 El Buhouth Street, Dokki, P.O.12622, Cairo, Egypt
| | - Magda Ismail Ramzy
- Fixed and Removable Prosthodontics Department, National Research Centre, 33 El Buhouth Street, Dokki, P.O.12622 Cairo, Egypt
| |
Collapse
|
21
|
Elwakiel N, El-Sayed Y, Elkafrawy H. Synthesis, characterization of Ag+ and Sn2+ complexes and their applications to improve the biological and mechanical properties of denture base materials. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Gomes BS, Rossi AL, da Silva EM, Moreira KTT, Dos Santos JC, Ferreira-Pereira A, Portela MB. Effects of a biomimetic analog-based experimental bonding system on caries-affected and sound dentin. Microsc Res Tech 2020; 83:1610-1622. [PMID: 32920955 DOI: 10.1002/jemt.23557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 11/07/2022]
Abstract
This study compared the ultrastructure, chemical composition, and proteases activity (PA) of sound (SD) and caries-affected dentin (CAD) in the dentin hybrid layer after using an experimental bonding system containing pyromellitic dianhydride glycerol methacrylate and biomimetic analogs. The bonding system used a three step and a total-etch procedure. Polyacrylic acid (5%) and sodium trimetaphosphate (5%) were added to the primer and monocalcium phosphate monohydrate (9%), beta-tricalcium phosphate (10.5%), and calcium hydroxide (0.5%) were added to the adhesive. Transmission electron microscopy (TEM) was used to evaluate the resultant structure, particularly the adhesive-dentin and the demineralized-SD interfaces. The chemical composition was evaluated through energy-dispersive X-ray spectroscopy (EDS) and selected area electron diffraction (SAED). The PA was measured with the Coomassie Blue-G250 coloring test, and the PA data were analyzed by ANOVA. EDS identified the presence of isolated calcium phosphate nanoparticles in the demineralized region; however, the SAED analysis did not show any evidences of hydroxyapatite (HA) neoformation in SD and CAD. The biomimetic analog-based adhesive system inhibited the activities of dentin proteases immediately after treatment. Additionally, the proteolytic activity on the affected dentin resembled that of the SD. In conclusion, no HA formed in the demineralized SD and CAD although there were calcium and phosphate deposits. The experimental adhesive system inhibited dentin proteases. The present study uses a new approach to investigate the hybrid layer behavior in dentin. The experimental adhesive system was synthesized and used on sound and affected-caries dentin as the substrate to reproduce real clinical conditions.
Collapse
Affiliation(s)
- Bianca Silva Gomes
- Analytical Laboratory of Restorative Biomaterials, School of Dentistry, Universidade Federal Fluminense, Niterói, Brazil
| | | | - Eduardo Moreira da Silva
- Analytical Laboratory of Restorative Biomaterials, School of Dentistry, Universidade Federal Fluminense, Niterói, Brazil
| | - Karla Tatiana Toro Moreira
- Analytical Laboratory of Restorative Biomaterials, School of Dentistry, Universidade Federal Fluminense, Niterói, Brazil
| | - Juliane Cucinello Dos Santos
- Analytical Laboratory of Restorative Biomaterials, School of Dentistry, Universidade Federal Fluminense, Niterói, Brazil
| | - Antônio Ferreira-Pereira
- General Microbiology Department, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maristela Barbosa Portela
- Analytical Laboratory of Restorative Biomaterials, School of Dentistry, Universidade Federal Fluminense, Niterói, Brazil
- Laboratory of Oral Microbiology, School of Dentistry, Universidade Federal Fluminense, Niterói, Brazil
| |
Collapse
|
23
|
Maluf CV, Janott-Sarlo CA, Bertolini MDM, Menezes LR, Lourenço EJV, Telles DDM. In vitro evaluation of physicochemical properties of soft lining resins after incorporation of chlorhexidine. J Prosthet Dent 2020; 124:615.e1-615.e7. [PMID: 32540125 DOI: 10.1016/j.prosdent.2020.03.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 02/05/2023]
Abstract
STATEMENT OF PROBLEM Incorporating chlorhexidine into soft lining materials has been suggested to reduce biofilm development on the material surface and treat denture stomatitis. However, evaluation of the physicochemical properties of this material is necessary. PURPOSE The purpose of this in vitro study was to evaluate the physicochemical properties of resin-based denture soft lining materials modified with chlorhexidine diacetate (CDA). MATERIAL AND METHODS Two soft lining resins were tested, one based on polymethyl methacrylate (PMMA) and the other on polyethyl methacrylate (PEMA), into which 0.5%, 1.0%, or 2.0% of CDA was incorporated; the control group had no CDA. The specimens were stored for 2 hours, 48 hours, 7, 14, 21, and 28 days and then analyzed for polymer crystallinity, Shore A hardness, degree of monomer conversion, residual monomer leaching, and CDA release. Data were analyzed by using a 3-way ANOVA and the Tukey HSD test (α=.05). RESULTS The polymer crystallinity of PEMA and PMMA did not change after CDA incorporation. Shore A hardness increased over time, but not for any CDA concentrations tested after 28 days (P>.05). Considering the degree of conversion, PMMA-based resin showed no statistically significant difference (P>.05). However, PEMA-based resin showed a significant decrease (P<.05), which was reflected in a significant increase in residual monomer leaching from PEMA-based resin with the incorporation of 0.5% and 1.0% CDA (P<.05), mainly in the first 48 hours. PMMA-based resin showed no change in monomer leaching (P>.05). For both resins, the CDA release kinetics were related to monomer leaching; for PEMA-based resin, the values were significantly higher in the first 48 hours (P<.05), and for PMMA-based resin, the values were more sustained up to the last day of analysis. CONCLUSIONS The incorporation of CDA did not affect the physicochemical properties of soft resins. The properties of PMMA were better than those of PEMA.
Collapse
Affiliation(s)
- Caroline Vieira Maluf
- Postdoctoral student, Department of Prosthodontics, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | | | | | - Lívia Rodrigues Menezes
- Adjunct Professor, Institute of Macromolecules Eloisa Mano, Rio de Janeiro Federal University, Rio de Janeiro, Brazil
| | | | - Daniel de Moraes Telles
- Full Professor, Department of Prosthodontics, Rio de Janeiro State University, Rio de Janeiro, Brazil.
| |
Collapse
|
24
|
Ferreira-Filho JCC, Marre ATDO, de Sá Almeida JS, Lobo LDA, Farah A, Romanos MTV, Maia LC, Valença AMG, Fonseca-Gonçalves A. Therapeutic Potential of Bauhinia forficata Link in Dental Biofilm Treatment. J Med Food 2020; 23:998-1005. [PMID: 31999500 DOI: 10.1089/jmf.2019.0277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The oral cytotoxicity, antimicrobial and anti-demineralizing effects of a tincture from Bauhinia forficata Link tincture (BFLT) were evaluated in vitro and ex vivo. Susceptibility tests (minimum inhibitory and microbicidal concentrations-MIC and time-kill assay-MMC) were performed against planktonic oral microorganisms. The contents of phenolic compounds were investigated. Cytotoxic potential was evaluated on oral fibroblasts after 1-5 min exposure to BFLT. Blocks of sound bovine enamel (N = 60) were inoculated with a saliva pool and sustained in a multiple plaque growth system for 48 h to form a biofilm. Biofilm blocks were randomly divided into groups-G (n = 10): G1-Baseline (48 h maturation biofilm), G2-BFLT 23.2 mg/mL, G3-Ethanol 81.20 g/mL, G4-Chlorhexidine 0.12%, G5-Growth control, and G6-Blank control. Treatments (50 μL/1 min) were performed once a day for a week. Streptococcus spp. (S) and total microorganism (TM) counts were expressed as Log10 CFU/mL. Biofilm height was evaluated by confocal microscopy analyses (CMA). Final surface hardness was assessed and percentage of microhardness loss (% MHL) was calculated. Results were significant when P < .05. BFLT inhibited all tested microorganisms (MIC = 1.3-23.2 mg/mL) and promoted optical reduction (0.05-0.22 nm) of all microorganisms after 48-h treatment compared with controls. After 5-min treatment, BFLT showed low values of cell death (3.20%). G2-BFLT reduced S (6.61 ± 0.20) and TM (7.14 ± 0.38) compared with G1-Baseline (S = 7.82 ± 0.28; TM = 8.81 ± 0.67) and G5-Growth control (S = 7.48 ± 0.39; TM = 7.89 ± 0.68); but G4-chlororexidine (S = 6.11 ± 0.48; TM = 6.45 ± 0.16) showed the highest antibiofilm activity. CMA was not different among treatment groups. G2 showed lower % MHL compared with G5, although G4 presented the lowest. Results suggest BFLT is beneficial against dental caries, showing antimicrobial effects against a mature dental biofilm and no cytotoxicity.
Collapse
Affiliation(s)
- Julio Cesar C Ferreira-Filho
- Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | | | | | - Leandro de Araújo Lobo
- Department of Medical Microbiology, Institute of Microbiology, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Adriana Farah
- Institute of Nutrition, UFRJ, Rio de Janeiro, RJ, Brazil
| | | | - Lucianne Cople Maia
- Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Ana Maria Gondim Valença
- Department of Clinic and Social Dentistry, School of Dentistry, Federal University of Paraíba (UFPB), João Pessoa, PB, Brazil
| | - Andréa Fonseca-Gonçalves
- Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
25
|
Maluf CV, Peroni LV, Menezes LR, Coutinho W, Lourenço EJV, Telles DDM. Evaluation of the physical and antifungal effects of chlorhexidine diacetate incorporated into polymethyl methacrylate. J Appl Oral Sci 2020; 28:e20190039. [PMID: 31939520 PMCID: PMC6919199 DOI: 10.1590/1678-7757-2019-0039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 08/12/2019] [Indexed: 11/25/2022] Open
Abstract
This study aimed to evaluate the physical properties and antifungal activities of polymethyl methacrylate (PMMA) acrylic resins after the incorporation of chlorhexidine diacetate salt (CDA).
Collapse
Affiliation(s)
- Caroline Vieira Maluf
- Universidade do Estado do Rio de Janeiro, Departamento de Prótese Dentária, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Luciana Vieira Peroni
- Universidade do Estado do Rio de Janeiro, Departamento de Prótese Dentária, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Lívia Rodrigues Menezes
- Universidade Federal do Rio de Janeiro, Instituto de Macromoléculas Eloisa Mano, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Wagner Coutinho
- Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Eduardo José Veras Lourenço
- Universidade do Estado do Rio de Janeiro, Departamento de Prótese Dentária, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Daniel de Moraes Telles
- Universidade do Estado do Rio de Janeiro, Departamento de Prótese Dentária, Rio de Janeiro, Rio de Janeiro, Brasil
| |
Collapse
|
26
|
de Menezes LR, da Silva EO, Maurat da Rocha LV, Ferreira Barbosa I, Rodrigues Tavares M. The use of clays for chlorhexidine controlled release as a new perspective for longer durability of dentin adhesion. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:132. [PMID: 31786679 DOI: 10.1007/s10856-019-6344-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
The adhesive systems have the function to establish the connection between the restorative material and dental tissue, therefore it is of fundamental importance, because failures in the adhesive interface can reduce the life of a dental restoration. This study investigated the possibility of using the adhesive layer as a chlorhexidine modified release system evaluating their impact on the properties of these systems as well as evaluating the impact of these systems on immediate and post-aging dentin adhesion. Were used a matrix with BisGMA, UDMA, HEMA and TEGDMA copolymer and clay particles (Dellite 67G); associated with a chlorhexidine and a camphorquinone photoinitiator system. The properties of these systems were evaluated by the XRD, FTIR spectrophotometer, flexural strength, elasticity modulus, drug release, enzymatic inhibition and dentin adhesion resistance. The presence of the clay can raise the mechanical properties of the adhesive systems engendering a more resistant hybrid layer and led to a more sustained release of chlorhexidine in the systems, allowing a longer effective period of MMP-2 inhibition. The hypothesis that the addition of clays as release modulators could increase the effectiveness of these drugs in inhibiting the dentin's MPPs and consequently enhancing the adhesive durability was confirmed. These results indicate that the controlled release of chlorhexidine is able to reduce the process of loss of adhesion presenting itself as a promising system to increase the longevity of dental restorations.
Collapse
Affiliation(s)
- Lívia Rodrigues de Menezes
- Instituto de Macromoléculas Professora Eloisa Mano da Universidade Federal do Rio de Janeiro UFRJ, Rio de Janeiro, Brazil.
| | - Emerson Oliveira da Silva
- Instituto de Macromoléculas Professora Eloisa Mano da Universidade Federal do Rio de Janeiro UFRJ, Rio de Janeiro, Brazil
| | - Lizandra Viana Maurat da Rocha
- Instituto de Macromoléculas Professora Eloisa Mano da Universidade Federal do Rio de Janeiro UFRJ, Rio de Janeiro, Brazil
| | - Isabel Ferreira Barbosa
- Faculdade de Odontologia de Piracicaba/Universidade Estadual de Campinas UNICAMP, Campinas, Brazil
| | | |
Collapse
|
27
|
Self-cured resin modified by quaternary ammonium methacrylates and chlorhexidine: Cytotoxicity, antimicrobial, physical, and mechanical properties. Dent Mater 2019; 36:68-75. [PMID: 31735423 DOI: 10.1016/j.dental.2019.10.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/03/2019] [Accepted: 10/17/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To evaluate the addition of dimethylaminohexadecyl methacrylate (DMAHDM) and chlorhexidine diacetate on cytotoxicity, antimicrobial activity, physical, and mechanical properties of a self-cured resin. METHODS 132 disk-shaped and 48 rectangular specimens were divided into four experimental groups as described: Control Group (CG - no addition), dCHX (1%), DMAHDM (5%), and DMAHDM+dCHX (5%+1%). The biofilm viability, flexural strength (FS - ISO 20795-1:2013), surface roughness (SR), and color stability (ΔE) were analyzed after being stored for 4 weeks in distilled water and immersed for 72h in coffee. Cytotoxicity was measured after 24h, 3, and 7 days of elution using an MTT test on L929 cells (ISO 10993-5:2009). SR and ΔE were measured by a contact profilometer and a spectrophotometer using the CIELab parameter. Data were submitted to ANOVA and Bonferroni's/Tukey's tests (p≤0.05). RESULTS Significant antimicrobial activity against Streptococcus mutans and Candida albicans was detected in all groups when compared to the CG (p<0.05). Only the dCHX group, in 24h of elution, demonstrated no cytotoxicity effects. There was a statistical difference for FS on the tested groups (p<0.05). No differences were detected in the initial roughness' measurements among the groups (p>0.05). However, after storage and immersion in coffee, the groups containing DMAHDM presented with rougher surfaces and significantly lower color stability compared to the control (p<0.05). SIGNIFICANCE The addition of dCHX and DMAHDM in self-cured resin presented antimicrobial properties; however, cytotoxicity, physical, and mechanical properties were compromised.
Collapse
|
28
|
Herla M, Boening K, Meissner H, Walczak K. Mechanical and Surface Properties of Resilient Denture Liners Modified with Chitosan Salts. MATERIALS (BASEL, SWITZERLAND) 2019; 12:ma12213518. [PMID: 31717771 PMCID: PMC6862088 DOI: 10.3390/ma12213518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/14/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Chitosan (CS) and its derivatives show antibacterial and antifungal properties and could help treat and prevent denture stomatitis (DS). Mechanical and surface properties of resilient denture liners were evaluated when modified with CS salts. CS-hydrochloride (CS-HCl) and CS-glutamate (CS-G) were added to resilient denture liners Ufi Gel P and Coe-Soft at four different concentrations (0.1%, 0.2%, 0.4%, 1% w/w) from which specimens were produced, as well as a control group of each material with no added CS salt. Ten specimens per group (Ø 35 mm, height 6 mm) were manufactured. They were stored in distilled water at 37 °C for a total of 30 days (d). Shore A hardness (SHA) and surface roughness (Ra) were evaluated after 24 h (T1), 7 d (T2), 14 d (T3) and 30 d (T4). Kruskal-Wallis and U-test (Bonferroni-Holm adjusted) were used for statistical analysis (p ≤ 0.05). Ra increased significantly once CS salts were added. SHA increased significantly for some groups, but all specimens fulfilled requirements set by ISO 10139-2:2016. Modification with CS salts does not influence the mechanical properties of the modified resilient denture liners in a clinically relevant manner. Despite the increased roughness, the concept is suitable for further studies. Especially antimicrobial/antibiofilm studies are needed.
Collapse
|
29
|
de Fátima Souto Maior L, Maciel PP, Ferreira VYN, de Lima Gouveia Dantas C, de Lima JM, Castellano LRC, Batista AUD, Bonan PRF. Antifungal activity and Shore A hardness of a tissue conditioner incorporated with terpinen-4-ol and cinnamaldehyde. Clin Oral Investig 2019; 23:2837-2848. [PMID: 31111285 DOI: 10.1007/s00784-019-02925-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 04/30/2019] [Indexed: 11/29/2022]
Abstract
PURPOSE This study investigated the anti-Candida activity and the Shore A hardness of a tissue conditioner (Softone™) modified by incorporation of terpinen-4-ol and cinnamaldehyde. MATERIAL AND METHODS Agar diffusion, microdilution, and mechanism of action methods were performed to determine to evaluate the antifungal activity of phytoconstituents. Then, phytoconstituents in varying concentrations were incorporated into the tissue conditioner. The anti-Candida effect of the modified conditioner was evaluated through agar punch well and biofilm formation methods. Shore A hardness of the experimental liners was evaluated after baseline, 24 h, 48 h, 4 days, and 7 days immersion on artificial saliva. RESULTS The phytoconstituents incorporated into Softone showed completely inhibited fungal growth in concentrations of 20-40% and did not present significant antifungal activity until their concentrations where higher than 5%. There were differences between non-modified Softone and M5, M10, C10, and T10% (p < 0.05). The groups containing 10-40% of cinnamaldehyde incorporated into Softone were able to completely inhibit the biofilm. Concentrations below 40% of terpinen-4-ol showed unsatisfactory biofilm inhibition. The T40% and C40% groups presented the lowest Shore A hardness values. Hardness values from groups T40% at 7 days (p = 0.476); C40% at 4 days (p = 0.058); and T20% (p = 0.058), C20% (p = 0.205), T30% (p = 0.154), and C30% (p = 0.874) after 48 h did not differ from the control group. CONCLUSIONS Cinnamaldehyde incorporated into Softone inhibited Candida biofilm formation at concentrations of 10-40%, being more effective than terpinen-4-ol modification despite of halo inhibition observed by both products. CLINICAL RELEVANCE All modifications showed a very similar pattern of hardness being useful for clinical practice.
Collapse
Affiliation(s)
- Laura de Fátima Souto Maior
- School of Dentistry, Federal University of Paraiba, Castelo Branco, Joao Pessoa, Paraiba, Brazil. .,Dentistry Post-Graduation Program, Federal University of Paraiba, Campus I / Cidade Universitaria, Joao Pessoa, Paraiba, Brazil.
| | - Panmella Pereira Maciel
- School of Dentistry, Federal University of Paraiba, Castelo Branco, Joao Pessoa, Paraiba, Brazil.,Dentistry Post-Graduation Program, Federal University of Paraiba, Campus I / Cidade Universitaria, Joao Pessoa, Paraiba, Brazil
| | - Victor Yuri Nicolau Ferreira
- School of Dentistry, Federal University of Paraiba, Castelo Branco, Joao Pessoa, Paraiba, Brazil.,Dentistry Post-Graduation Program, Federal University of Paraiba, Campus I / Cidade Universitaria, Joao Pessoa, Paraiba, Brazil
| | - Cíntia de Lima Gouveia Dantas
- School of Dentistry, Federal University of Paraiba, Castelo Branco, Joao Pessoa, Paraiba, Brazil.,Dentistry Post-Graduation Program, Federal University of Paraiba, Campus I / Cidade Universitaria, Joao Pessoa, Paraiba, Brazil
| | - Jeferson Muniz de Lima
- School of Dentistry, Federal University of Paraiba, Castelo Branco, Joao Pessoa, Paraiba, Brazil.,Dentistry Post-Graduation Program, Federal University of Paraiba, Campus I / Cidade Universitaria, Joao Pessoa, Paraiba, Brazil
| | - Lúcio Roberto Cançado Castellano
- School of Dentistry, Federal University of Paraiba, Castelo Branco, Joao Pessoa, Paraiba, Brazil.,Dental Graduation Program and Health Technical School, Federal University of Paraiba, Joao Pessoa, Brazil
| | - André Ulisses Dantas Batista
- School of Dentistry, Federal University of Paraiba, Castelo Branco, Joao Pessoa, Paraiba, Brazil.,Dental Graduation Program and Department of Restorative Dentistry, Federal University of Paraiba, Joao Pessoa, Brazil
| | - Paulo Rogério Ferreti Bonan
- School of Dentistry, Federal University of Paraiba, Castelo Branco, Joao Pessoa, Paraiba, Brazil.,Dental Graduation Program and Department of Clinic and Social Dentistry, Federal University of Paraiba, Joao Pessoa, Brazil
| |
Collapse
|
30
|
Mousavi SA, Ghotaslou R, Akbarzadeh A, Azima N, Aeinfar A, Khorramdel A. Evaluation of antibacterial and antifungal properties of a tissue conditioner used in complete dentures after incorporation of ZnO‒Ag nanoparticles. J Dent Res Dent Clin Dent Prospects 2019; 13:11-18. [PMID: 31217913 PMCID: PMC6571514 DOI: 10.15171/joddd.2019.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 12/23/2018] [Indexed: 11/12/2022] Open
Abstract
Background. Incorporation of antifungal and antimicrobial agents into tissue conditioners might inhibit the formation of microbial plaque and prevent complications such as denture stomatitis. The present study was carried out to evaluate the antibacterial and antifungal properties of a tissue conditioner after incorporation of ZnO‒Ag nanoparticles into their structure.
Methods. In this in vitro study, 4 microorganisms were evaluated at 6 concentrations of ZnO‒Ag nanoparticles at 24- and 48-hour intervals, using 168 samples. The nanoparticles were mixed at a ratio of 50% Ag and 50% ZnO and were homogenized with the tissue conditioner at 0.625, 1.25, 2.5, 5, 10 and 20 wt% according to the MIC technique principles. After culturing the microorganisms, a spectrophotometer was used for determining proliferation of microorganisms with the use of turbidity after 24 and 48 hours of incubation at 37ºC.
Results. Complete inhibition of the proliferation of Candida albicans, Enterococcus faecalis and Pseudomonas aeruginosa was observed at 24- and 48-hour intervals at a concentration of 10%; such inhibition was observed at 20% concentration of nanoparticles with Streptococcus mutans. In addition, the most effective concentration of ZnO‒Ag nanoparticles at both 24- and 48-hour intervals was 5% with C. albicans and 2.5% with E. faecalis. In addition, the most effective concentration at 24- hour interval with S. mutans was 10% and with P. aeruginosa they were 5% at 24-hour and 2.5% at 48-hour intervals.
Conclusion. Incorporation of ZnO‒Ag nanoparticles into tissue conditioners resulted in the inhibition of bacterial proliferation
Collapse
Affiliation(s)
- Seyed Amin Mousavi
- Department of Prosthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Ghotaslou
- Department of Medical Microbiology, Faculty of Medical, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Akbarzadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloufar Azima
- Department of Pediatric, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Azin Khorramdel
- Department of Periodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
31
|
Denture Liners: A Systematic Review Relative to Adhesion and Mechanical Properties. ScientificWorldJournal 2019; 2019:6913080. [PMID: 30940994 PMCID: PMC6421019 DOI: 10.1155/2019/6913080] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/25/2019] [Accepted: 02/13/2019] [Indexed: 01/23/2023] Open
Abstract
Purpose The objective of this systematic review is to compare results concerning the properties of adhesion, roughness, and hardness of dental liners obtained in the last ten years. Methods Searches on the databases LILACS, PubMed/Medline, Web of Science, and Cochrane Database of Systematic Reviews were supplemented with manual searches conducted between February and April of 2018. The inclusion criteria included experimental in vitro and in vivo, clinical, and laboratory studies on resilient and/or hard liners, assessment of hardness, roughness, and/or adhesion to the denture base, and physical/mechanical changes resulting from the disinfection process and changes in liners' composition or application. Results A total of 406 articles were identified and, from those, 44 are discussed. Twenty-four studies examined the bond strength, 13 surface roughness, and 19 the hardness. Of these 44 studies, 12 evaluated more than one property. Different substances were used in the attempt to improve adhesion. Considering roughness and hardness, the benefits of sealants have been tested, and the changes resulting from antimicrobial agents' incorporation have been assessed. Conclusion Adhesion to the prosthesis base is improved with surface treatments. Rough surfaces and changes in hardness compromise the material's serviceability.
Collapse
|
32
|
Nadelman P, Monteiro A, Balthazar CF, Silva HL, Cruz AG, de Almeida Neves A, Fonseca-Gonçalves A, Maia LC. Probiotic fermented sheep’s milk containing Lactobacillus casei 01: Effects on enamel mineral loss and Streptococcus counts in a dental biofilm model. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.01.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
33
|
Saeed A, Haider A, Zahid S, Khan SA, Faryal R, Kaleem M. In-vitro antifungal efficacy of tissue conditioner-chitosan composites as potential treatment therapy for denture stomatitis. Int J Biol Macromol 2019; 125:761-766. [DOI: 10.1016/j.ijbiomac.2018.12.091] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/20/2018] [Accepted: 12/09/2018] [Indexed: 11/25/2022]
|
34
|
Albrecht N, DA Silva Fidalgo TK, DE Alencar MJS, Maia LC, Urban VM, Neppelenbroek KH, Reis KR. Peel bond strength and antifungal activity of two soft denture lining materials incorporated with 1% chlorhexidine diacetate. Dent Mater J 2018; 37:725-733. [PMID: 29925728 DOI: 10.4012/dmj.2017-005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Two soft denture lining materials (SC-Soft Confort and TS-Trusoft) were investigated with and without the addition of 1.0% of chlorhexidine diacetate (1.0% CHX). To assess peel bond strength, specimens (75×10×6 mm) were submitted to a peel test at 10 mm/min immediately and after 24 h. To evaluate Candida albicans growth inhibition, disc of specimens (10×3 mm) were immersed in a solution with 3×106 CFU/mL of C. albicans, and spectral measurements were made following immersion in MTT solution for 2, 4, and 6 days. The agar diffusion test was performed by investigating the diameters of inhibition zones around the disc of specimens (10×3 mm)after 48 h. Data were submitted to statistical analysis (α=0.05) and the failure modes were visually classified. The incorporation of 1.0% CHX significantly decreased the peel bond strength for TS (p=0.001) and SC (p=0.005) for immediate test and for TS after 24 h (p=0.010), but not for SC. C. albicans growth was decreased for both materials over time (p<0.05). SC presented inhibition zones approximately 2.0 times larger than TS. The incorporation of 1.0% CHX inhibited fungal growth without impairment to the peel bond strength for SC after 24 h.
Collapse
Affiliation(s)
- Nathalia Albrecht
- Department of Prosthodontics and Dental Materials, Federal University of Rio de Janeiro, School of Dentistry
| | | | | | - Lucianne Cople Maia
- Department of Pediatric Dentistry and Orthodontics, Federal University of Rio de Janeiro, School of Dentistry
| | | | | | - Kátia Rodrigues Reis
- Department of Prosthodontics and Dental Materials, Federal University of Rio de Janeiro, School of Dentistry
| |
Collapse
|
35
|
Reinhardt LC, Nascente PDS, Ribeiro JS, Etges A, Lund RG. A single-center 18-year experience with oral candidiasis in Brazil: a retrospective study of 1,534 cases. Braz Oral Res 2018; 32:e92. [PMID: 30231172 DOI: 10.1590/1807-3107bor-2018.vol32.0092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 07/25/2018] [Indexed: 11/22/2022] Open
Abstract
Despite the large number of published studies about oral candidiasis and associated risk factors, reports of large single-center retrospective studies on the prevalence of oral candidiasis, risk factors, and the oral candidiasis types diagnosed more frequently in oral diagnostic reference centers are scarce. The objective of the present study was to retrospectively survey the demographic and clinical profiles of 1,534 patients diagnosed with candidiasis and treated at the Center for Diagnosis of Oral Diseases (CDOD), Pelotas Dental School, Federal University of Pelotas between 1997 and 2014. Using a retrospective, cross-sectional, epidemiological design, data on race, gender, age, systemic diseases, oral candidiasis type and location, symptoms, and harmful habits such as smoking and alcohol consumption were collected. The statistical analysis was performed using STATA version 13.1. Risk factors for chronic atrophic candidiasis (CAC) were evaluated using Poisson regression with robust variance (p ≤ 0.05). The majority of patients with oral candidiasis seen at the CDOD over the 18-year period of analysis were Caucasian women, aged 51-60 years, nonsmokers, and nondrinkers, with no systemic disease, and who wore some form of dental prostheses. CAC was the single most common clinical type of candidiasis detected, and the most frequently affected oral site was the palate. These data from a large single-center in Brazil agree with previous evidence about the clinical and demographic profiles of patients with oral candidiasis.
Collapse
Affiliation(s)
- Leandro Calcagno Reinhardt
- Post-Graduate Program in Dentistry, School of Dentistry, Universidade Federal de Pelotas - UFPel, Pelotas, RS, Brazil
| | - Patricia da Silva Nascente
- Department of Microbiology and Parasitology, Institute of Biology, Universidade Federal de Pelotas - UFPel, Capão do Leão, RS, Brazil
| | - Juliana Silva Ribeiro
- Post-Graduate Program in Dentistry, School of Dentistry, Universidade Federal de Pelotas - UFPel, Pelotas, RS, Brazil
| | - Adriana Etges
- Post-Graduate Program in Dentistry, School of Dentistry, Universidade Federal de Pelotas - UFPel, Pelotas, RS, Brazil
| | - Rafael Guerra Lund
- Post-Graduate Program in Dentistry, School of Dentistry, Universidade Federal de Pelotas - UFPel, Pelotas, RS, Brazil
| |
Collapse
|
36
|
Martins ML, Leite KLDF, Pacheco-Filho EF, Pereira AFDM, Romanos MTV, Maia LC, Fonseca-Gonçalves A, Padilha WWN, Cavalcanti YW. Efficacy of red propolis hydro-alcoholic extract in controlling Streptococcus mutans biofilm build-up and dental enamel demineralization. Arch Oral Biol 2018; 93:56-65. [PMID: 29807235 DOI: 10.1016/j.archoralbio.2018.05.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/22/2018] [Accepted: 05/22/2018] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The efficacy of a red propolis hydro-alcoholic extract (RP) in controlling Streptococcus mutans biofilm colonization was evaluated. The effect of RP on dental demineralization was also investigated. METHODS Chemical composition was determined by High Performance Liquid Chromatography (HPLC). Minimum Inhibitory and Bactericidal Concentration (MIC and MBC, respectively) were investigated against Streptococcus mutans (ATCC 25175). The cytotoxic potential of 3% RP in oral fibroblasts was observed after 1 and 3 min. Bovine dental enamel blocks (N = 24) were used for S. mutans biofilm formation (48 h), simulating 'feast or famine' episodes. Blocks/biofilms were exposed 2×/day, for 3 days, to a cariogenic challenge with sucrose 10% (5 min) and treated (1 min) with: 0.85% saline solution (negative control), 0.12% Chlorhexidine (CHX, positive control for biofilm colonization), 0.05% Sodium Fluoride (NaF, positive control to avoid demineralization) and 3% RP. Biofilms were assessed for viability (CFU/mL), and to observe the concentration of soluble and insoluble extracellular polysaccharides (SEPS and IEPS). Dental demineralization was assessed by the percentage of surface hardness loss (%SHL) and through polarized light microscopy (PLM). RESULTS The RP presented 4.0 pH and ºBrix = 4.8. The p-coumaric acid (17.2 μg/mL) and luteolin (15.23 μg/mL) were the largest contents of phenolic acids and flavonoids, respectively. MIC and MBC of RP were 293 μg/mL and 1172 μg/mL, respectively. The 3% RP showed 43% of viably cells after 1 min. Lower number (p < 0.05) of viable bacteria (CFU/mL) was observed after CHX (1.8 × 105) followed by RP (1.8 × 107) treatments. The lowest concentration (μg/CFU) of SEPS (12.6) and IEPS (25.9) was observed in CHX (p < 0.05) followed by RP (17.1 and 54.3), and both differed from the negative control (34.4 and 63.9) (p < 0.05). Considering the %SHL, all groups differed statistically (p < 0.05) from the negative control (46.6%); but NaF (13.9%), CHX (20.1%) and RP (20.7%) did not differ among them (p > 0.05). After all treatments, suggestive areas of caries lesions were observed by PLM, which were lower for CHX and NaF. CONCLUSION The 3% RP reduced S. mutans colonization, decreased concentration of extracellular polysaccharides and reduced dental enamel demineralization.
Collapse
Affiliation(s)
- Mariana Leonel Martins
- Department of Pediatric Dentistry and Orthodontics, Dental School, Federal University of Rio de Janeiro, RJ, Brazil
| | - Karla Lorene de França Leite
- Department of Pediatric Dentistry and Orthodontics, Dental School, Federal University of Rio de Janeiro, RJ, Brazil
| | | | | | - Maria Teresa Villela Romanos
- Institute of Microbiology Prof. Paulo de Góes, Department of Virology, Federal University of Rio de Janeiro, RJ, Brazil
| | - Lucianne Cople Maia
- Department of Pediatric Dentistry and Orthodontics, Dental School, Federal University of Rio de Janeiro, RJ, Brazil
| | - Andréa Fonseca-Gonçalves
- Department of Pediatric Dentistry and Orthodontics, Dental School, Federal University of Rio de Janeiro, RJ, Brazil
| | | | - Yuri Wanderley Cavalcanti
- Department of Clinical and Social Dentistry, Federal University of Paraiba, João Pessoa, PB, Brazil.
| |
Collapse
|
37
|
A dual energy micro-CT methodology for visualization and quantification of biofilm formation and dentin demineralization. Arch Oral Biol 2017; 85:10-15. [PMID: 29028629 DOI: 10.1016/j.archoralbio.2017.09.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 09/30/2017] [Accepted: 09/30/2017] [Indexed: 11/23/2022]
Abstract
OBJECTIVE The aim of this study was to induce artificial caries in human sound dentin by means of a microcosm model using human saliva as source of bacteria and to apply a novel dual-energy micro-CT technique to quantify biofilm formation and evaluate its demineralization potential. DESIGN Eight sound third molars had the occlusal enamel removed by cutting with a diamond disk and five cylindrical cavities (±2mm diameter; ±1.5mm depth) were prepared over the dentin surface in each specimen (n=40 cavities). After sterilization, each specimen received the bacterial salivary inoculum obtained from individuals without any systemic diseases presenting dentin caries lesions and were incubated in BHI added of with 5% sucrose for 96h to allow biofilm formation. After that, two consecutive micro-CT scans were acquired from each specimen (40kv and 70kv). Reconstruction of the images was performed using standardized parameters. After alignment, registration, filtering and image calculations, a final stack of images containing the biofilm volume was obtained from each prepared cavity. Dentin demineralization degree was quantified by comparison with sound dentin areas. All data were analyzed using Shapiro-Wilk test and Spearman correlation using α=5%. RESULTS Dual-energy micro-CT technique disclosed biofilm formation in all cavities. Biofilm volume inside each cavity varied from 0.30 to 1.57mm3. A positive correlation between cavity volume and volume of formed biofilm was obtained (0.77, p<0.01). The mineral decrease obtained in dentin was high (±90%) for all cavities and all demineralized areas showed mineral density values lower than a defined threshold for dentin caries (1.2g/cm3). CONCLUSION Dual-energy micro-CT technique was successful in the quantification of a microcosm human bacterial biofilm formation and to quantify its demineralization potential in vitro.
Collapse
|
38
|
Jo JK, El-Fiqi A, Lee JH, Kim DA, Kim HW, Lee HH. Rechargeable microbial anti-adhesive polymethyl methacrylate incorporating silver sulfadiazine-loaded mesoporous silica nanocarriers. Dent Mater 2017; 33:e361-e372. [DOI: 10.1016/j.dental.2017.07.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 04/29/2017] [Accepted: 07/08/2017] [Indexed: 12/19/2022]
|
39
|
Luo D, Shahid S, Sukhorukov GB, Cattell MJ. Synthesis of novel chlorhexidine spheres with controlled release from a UDMA–HEMA resin using ultrasound. Dent Mater 2017; 33:713-722. [DOI: 10.1016/j.dental.2017.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/30/2017] [Accepted: 04/04/2017] [Indexed: 11/16/2022]
|
40
|
Mirizadeh A, Atai M, Ebrahimi S. Fabrication of denture base materials with antimicrobial properties. J Prosthet Dent 2017; 119:292-298. [PMID: 28552288 DOI: 10.1016/j.prosdent.2017.03.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 03/12/2017] [Accepted: 03/13/2017] [Indexed: 01/13/2023]
Abstract
STATEMENT OF PROBLEM Acrylic resin denture base resins are colonized by oral and nonoral bacteria and Candida species. This reservoir of microorganism causes denture stomatitis, which can be implicated in some life-threating infections in older denture wearers. PURPOSE The purpose of this in vitro study was to incorporate quaternized N,N-dimethylaminoethyl methacrylate (DMAEMA) monomer into a denture base resin and investigate its antimicrobial and mechanical properties. MATERIAL AND METHODS Quaternized ammonium monomer (QAM) was synthesized through the reaction of octyl bromide and DMAEMA. The synthesized QAM was incorporated into a denture base resin system (8 to 12 wt%). The resulting material was characterized by Fourier transform infrared spectroscopy. The in vitro antimicrobial property was determined by direct contact test against Escherichia coli, Staphylococcus aureus, and Candida albicans. Release of the QAM was also tested by means of an agar diffusion test. Mechanical properties were measured with a 3-point bend test, and results were analyzed and compared using ANOVA and the Tukey post hoc test (α=.05). RESULTS Spectroscopy confirmed the formation of quaternized ammonium modified denture base (QAMDB). The decrease in number of viable cells of E coli, S aureus, and C albicans was more than 99% for 12%-QAMDB in comparison with that of the control groups. An overall decline was observed in the flexural strength and flexural modulus of the fabricated resins (P<.05), but no differences were observed for strain at break or fracture work of the specimens (P>.05). CONCLUSIONS Denture base resins containing immobilized QAM provided high antibacterial activity, but the flexural strength and flexural modulus of the denture base resins decreased.
Collapse
Affiliation(s)
- Aysan Mirizadeh
- Doctoral student, Department of Chemical Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Atai
- Full Professor, Iran Polymer and Petrochemical Institute, Tehran, Iran.
| | - Sirous Ebrahimi
- Associate Professor, Faculty of Chemical Engineering, Biotechnology Research Center, Sahand University of Technology, Tabriz, Iran
| |
Collapse
|
41
|
Caroline de Abreu Brandi T, Portela MB, Lima PM, Castro GFBDA, Maia LC, Fonseca-Gonçalves A. Demineralizing potential of dental biofilm added with Candida albicans and Candida parapsilosis isolated from preschool children with and without caries. Microb Pathog 2016; 100:51-55. [DOI: 10.1016/j.micpath.2016.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 08/23/2016] [Accepted: 09/04/2016] [Indexed: 11/25/2022]
|
42
|
Sánchez-Aliaga A, Pellissari CVG, Arrais CAG, Michél MD, Neppelenbroek KH, Urban VM. Peel bond strength of soft lining materials with antifungal to a denture base acrylic resin. Dent Mater J 2016; 35:194-203. [PMID: 27041008 DOI: 10.4012/dmj.2014-269] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The effect of the addition of nystatin, miconazole, ketoconazole, chlorhexidine, and itraconazole into the soft lining materials Softone and Trusoft on their peel bond strength to a denture base acrylic resin was evaluated. Specimens of soft lining materials (n=7) were made without (control) or with the incorporation of antifungals at their minimum inhibitory concentrations to the biofilm of C. albicans and bonded to the acrylic resin. Peel testing was performed after immersion in distilled water at 37ºC for 24 h, 7 and 14 days. Data (MPa) were analyzed by 3-way ANOVA/Tukey-Kramer test (α=0.05) and the failure modes were classified. The addition of nystatin and ketoconazole did not affect the peel bond strength for up to 14 days. Most failures were predominantly cohesive within soft lining materials. With the exception of itraconazole, incorporating the antifungals into the soft lining materials did not result in values below those recommended for peel bond strength after 7 and 14 days of analysis.
Collapse
|
43
|
Fang J, Wang C, Li Y, Zhao Z, Mei L. Comparison of bacterial adhesion to dental materials of polyethylene terephthalate (PET) and polymethyl methacrylate (PMMA) using atomic force microscopy and scanning electron microscopy. SCANNING 2016; 38:665-670. [PMID: 26991988 DOI: 10.1002/sca.21314] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 02/19/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Jie Fang
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
| | - Chuanyong Wang
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
| | - Yifei Li
- Department of Pediatric Cardiovascular Disease; West China Second University Hospital; Sichuan University; Chengdu China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
| | - Li Mei
- State Key Laboratory of Oral Diseases; West China Hospital of Stomatology; Sichuan University; Chengdu China
- Department of Oral Sciences; Faculty of Dentistry; University of Otago; Dunedin New Zealand
| |
Collapse
|
44
|
Uygun-Can B, Kadir T, Gumru B. Effect of oral antiseptic agents on phospholipase and proteinase enzymes of Candida albicans. Arch Oral Biol 2016; 62:20-7. [DOI: 10.1016/j.archoralbio.2015.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 11/03/2015] [Accepted: 11/08/2015] [Indexed: 01/12/2023]
|
45
|
Tsutsumi C, Takakuda K, Wakabayashi N. Reduction of Candida biofilm adhesion by incorporation of prereacted glass ionomer filler in denture base resin. J Dent 2015; 44:37-43. [PMID: 26655872 DOI: 10.1016/j.jdent.2015.11.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 11/28/2015] [Accepted: 11/30/2015] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES This study investigated the influence of surface reaction-type prereacted glass ionomer (S-PRG) fillers on Candida albicans adhesion on denture base resin. METHODS Discs were prepared by incorporating the S-PRG filler into the polymer powder of a polymethyl methacrylate (PMMA)-based, heat-polymerizing resin at 0 (control), 5%, 10%, and 20% (w/w). The surface roughness of all disc surfaces was measured. Elemental analysis of released Na(+), Sr(2+), SiO3(2-), Al(3-), BO3(3-), and F(-) was performed after water immersion. Each disc was placed in a well with artificial saliva to form acquired pellicle, incubated, washed with phosphate-buffered saline, and immersed in a C. albicans (JCM2085) cell suspension standardized at 10(4) cells/ml. After aerobic incubation at 37 °C for 24 h, the metabolic mitochondrial activity, total biofilm biomass, and biofilm thickness were evaluated. The morphogenetic transition of C. albicans in the early culture stage (1 and 3 h) was observed. RESULTS There was a slight but significant increase in the surface roughness with an increase in the filler content. The metabolic activity and total biomass volume were significantly lower in all filler groups than in the control group, although there were no significant differences among the filler groups. Groups with at least 5% filler content exhibited a thinner biofilm compared with the control group. All filler groups showed hyphal forms at 3 h, with the length of the hyphae being lesser than those in the control group. CONCLUSIONS Although the incorporation of S-PRG filler slightly increases the surface roughness of denture base resin, it reduces the adhesion of C. albicans. CLINICAL SIGNIFICANCE The S-PRG filler has the potential to reduce Candida albicans adhesion on denture base resin and may lower the risk of denture stomatitis. However, filler incorporation can increase the surface roughness of heat-polymerizing denture base resin.
Collapse
Affiliation(s)
- Chiaki Tsutsumi
- Department of Removable Partial Prosthodontics, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kazuo Takakuda
- Medical and Dental Device Technology Incubation Center, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Noriyuki Wakabayashi
- Department of Removable Partial Prosthodontics, Graduate School, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| |
Collapse
|