1
|
Miranda SB, Lins RBE, Santi MR, Denucci GC, Silva CCS, da Silva SDFF, Marques DDAV, Montes MAJR. Effect of Rapid High-Intensity Light-Curing on Increasing Transdentinal Temperature and Cell Viability: An In Vitro Study. Polymers (Basel) 2024; 16:1466. [PMID: 38891413 PMCID: PMC11175155 DOI: 10.3390/polym16111466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/17/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND This study investigated effects of rapid high-intensity light-curing (3 s) on increasing transdentinal temperature and cell viability. METHODS A total of 40 dentin discs (0.5 mm) obtained from human molars were prepared, included in artificial pulp chambers (4.5 × 5 mm), and subjected to four light-curing protocols (n = 5), with a Valo Grand light curing unit: (i) 10 s protocol with a moderate intensity of 1000 mW/cm2 (Valo-10 s); (ii) 3 s protocol with a high intensity of 3200 mW/cm2 (Valo-3 s); (iii) adhesive system + Filtek Bulk-Fill Flow bulk-fill composite resin in 10 s (FBF-10 s); (iv) adhesive system + Tetric PowerFlow bulk-fill composite resin in 3 s (TPF-3 s). Transdentinal temperature changes were recorded with a type K thermocouple. Cell viability was assessed using the MTT assay. Data were analyzed using one-way ANOVA and Tukey tests for comparison between experimental groups (p < 0.05). RESULTS The 3 s high-intensity light-curing protocol generated a higher temperature than the 10 s moderate-intensity standard (p < 0.001). The Valo-10 s and Valo-3 s groups demonstrated greater cell viability than the FBF-10s and TPF-3 s groups and statistical differences were observed between the Valo-3 s and FBF-10 s groups (p = 0.023) and Valo-3 s and TPF-3 s (p = 0.025), with a potential cytotoxic effect for the FBF-10 s and TPF-3 s groups. CONCLUSIONS The 3 s rapid high-intensity light-curing protocol of bulk-fill composite resins caused a temperature increase greater than 10 s and showed cell viability similar to and comparable to the standard protocol.
Collapse
Affiliation(s)
| | | | - Marina Rodrigues Santi
- Piracicaba Dental School, University of Campinas, Piracicaba 13414-018, São Paulo, Brazil;
| | - Giovanna Corrêa Denucci
- Department of Cariology and Operative Dentistry, Indiana University School of Dentistry, Indianapolis, IN 46202, USA;
| | - Cleyton Cézar Souto Silva
- Department of Clinical Nurse, Federal University of Paraiba, João Pessoa 58058-600, Paraíba, Brazil;
| | | | | | | |
Collapse
|
2
|
Néma V, Kunsági-Máté S, Őri Z, Kiss T, Szabó P, Szalma J, Fráter M, Lempel E. Relation between internal adaptation and degree of conversion of short-fiber reinforced resin composites applied in bulk or layered technique in deep MOD cavities. Dent Mater 2024; 40:581-592. [PMID: 38368136 DOI: 10.1016/j.dental.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/08/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
OBJECTIVE The purpose was to evaluate the degree of conversion (DC), internal adaptation (IA) and closed porosity (CP) of short-fiber reinforced resin composites (SFRC) associated with layered or bulk restorative procedures in deep MOD cavities. METHODS Eighty third molars with standardized MOD cavities (5-mm-depth, 2.5-mm-width) were randomly divided into four groups and restored as follows: 1) bulk SFRC; 2) layered SFRC; 3) flowable bulk-fill resin-based composites (RBC); 4) layered conventional RBC. After one-month wet storage the samples were subjected to micro-computed tomography measurements and scanning electron microscopy to assess the IA and CP. Micro-Raman spectroscopy was used to determine the DC in different depths. Data were subjected to ANOVA and Tukey's post-hoc test, multivariate analysis and partial eta-squared statistics (p < 0.05). Pearson correlation coefficient was determined to assess the relationship among the parameters of interest. RESULTS Gap/total interface volume ratio ranged between 0.22-0.47%. RBCs applied in bulk revealed significantly lower gap volume (p < 0.001) and CP (p < 0.05). Each group showed complete detachment on the pulpal and partial on the lateral walls, except for group3. While the highest DC% was achieved by the conventional RBC (87.2%), followed by the flowable bulk-fill (81.2%), SFRC provided the best bottom to top DC ratio (bulk: 96.4%, layered: 98.7%). The effect of factors studied (RBC type, filling technique) on IA and DC was significant (p < 0.001). SIGNIFICANCE Bulk placement of RBCs exhibited lower interfacial gap volume and achieved satisfactory DC without significant correlation between these parameters. Incremental insertion of SFRC had no advantage over bulk placement in terms of IA and DC.
Collapse
Affiliation(s)
- Viktória Néma
- Department of Operative and Esthetic Dentistry, Faculty of Dentistry, University of Szeged, Tisza Lajos Blvd 64-66, 6720 Szeged, Hungary
| | - Sándor Kunsági-Máté
- Department of Organic and Pharmacological Chemistry, University of Pécs Medical School, Faculty of Pharmacy, Honvéd street 1, 7624 Pécs, Hungary; János Szentágothai Research Center, University of Pécs, Ifjúság Street 12, 7624 Pécs, Hungary
| | - Zsuzsanna Őri
- Department of Nutritional Sciences and Dietetics, University of Pécs, Faculty of Health Sciences, Vörösmarty Street 4, 7621 Pécs, Hungary; Department of Physical Chemistry and Materials Science, University of Pécs, Faculty of Sciences, Ifjúság Street 6, 7624 Pécs, Hungary
| | - Tamás Kiss
- Department of Pharmacology and Pharmacotherapy, University of Pécs Medical School, Szigeti Street 12, 7624 Pécs, Hungary
| | - Péter Szabó
- János Szentágothai Research Center, University of Pécs, Ifjúság Street 12, 7624 Pécs, Hungary
| | - József Szalma
- Department of Oral and Maxillofacial Surgery, University of Pécs Medical School, Tüzér Street 1, 7623 Pécs, Hungary
| | - Márk Fráter
- Department of Operative and Esthetic Dentistry, Faculty of Dentistry, University of Szeged, Tisza Lajos Blvd 64-66, 6720 Szeged, Hungary
| | - Edina Lempel
- Department of Restorative Dentistry and Periodontology, University of Pécs Medical School, Tüzér Street 1, 7623 Pécs, Hungary.
| |
Collapse
|
3
|
Staicu AN, Țuculină MJ, Cumpătă CN, Rîcă AM, Beznă MC, Popa DL, Popescu AD, Diaconu OA. A Finite Element Method Study on a Simulation of the Thermal Behaviour of Four Methods for the Restoration of Class II Cavities. J Funct Biomater 2024; 15:86. [PMID: 38667543 PMCID: PMC11050888 DOI: 10.3390/jfb15040086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
The possibility of dental pulp damage during dental procedures is well known. According to studies, during finishing and polishing without cooling, temperatures of up to 140 °C or more can be generated. There are many studies that have analysed the influence of the finishing and polishing of fillings on the mechanical parameters, but the analysis of thermal parameters has led to uncertain results due to the difficulty of performing this in vivo. Background: We set out to conduct a study, using the finite element method, to determine the extent to which the type of class II cavity and the volume of the composite filling influence the duration of heat transfer to the pulp during finishing and polishing without cooling. Materials and Methods: A virtual model of an upper primary molar was used, with a caries process located on the distal aspect, in which four types of cavities were digitally prepared: direct access, horizontal slot, vertical slot and occlusal-proximal. All four cavity types were filled using a Filtek Supreme XT nanocomposite. Results: The study showed that the filling volume almost inversely proportionally influences the time at which the dental pulp reaches the critical temperature of irreversible damage. The lowest duration occurred in occlusal-distal restorations and the highest in direct access restorations. Conclusions: based on the results of the study, a working protocol can be issued so that finishing and polishing restorations without cooling are safe for pulpal health.
Collapse
Affiliation(s)
- Adela Nicoleta Staicu
- Department of Endodontics, Faculty of Dentistry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.N.S.); (A.M.R.); (A.D.P.); (O.A.D.)
| | - Mihaela Jana Țuculină
- Department of Endodontics, Faculty of Dentistry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.N.S.); (A.M.R.); (A.D.P.); (O.A.D.)
| | - Cristian Niky Cumpătă
- Department of maxillofacial surgery, Faculty of Dental Medicine, University Titu Maiorescu of Bucharest, 67A Gheorghe Petrascu Str., 031593 Bucharest, Romania
| | - Ana Maria Rîcă
- Department of Endodontics, Faculty of Dentistry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.N.S.); (A.M.R.); (A.D.P.); (O.A.D.)
| | - Maria Cristina Beznă
- Department of Pathophysiology, Faculty of Dentistry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Dragoș Laurențiu Popa
- Department of Automotive, Transportation and Industrial Engineering, Faculty of Mechanics, University of Craiova, 200478 Craiova, Romania;
| | - Alexandru Dan Popescu
- Department of Endodontics, Faculty of Dentistry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.N.S.); (A.M.R.); (A.D.P.); (O.A.D.)
| | - Oana Andreea Diaconu
- Department of Endodontics, Faculty of Dentistry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (A.N.S.); (A.M.R.); (A.D.P.); (O.A.D.)
| |
Collapse
|
4
|
Atasoy S, Akarsu S. Effect of repeated preheating on monomer elution from a bulk-fill composite resin. J Dent Res Dent Clin Dent Prospects 2023; 17:265-270. [PMID: 38585001 PMCID: PMC10998168 DOI: 10.34172/joddd.2023.40780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/01/2023] [Indexed: 04/09/2024] Open
Abstract
Background Due to incomplete polymerization of composite resin restorations, residual monomers adversely affect their mechanical properties and biocompatibility. Preheating of composite resins is advised to increase the degree of conversion and reduce monomer elution. This study aimed to analyze the effect of preheating and repeated preheating on the amount of monomer released from a bulk-fill composite resin. Methods Forty samples were prepared using Filtek One Bulk Fill Restorative composite resin. Samples in one group were fabricated at room temperature, whereas the composite resins in the other groups were cured after 1, 10, or 20 repeated preheating cycles (55 °C), 10 in each group. Eluted urethane dimethacrylate (UDMA) and bisphenol-A-glycidylmethacrylate (BisGMA) monomers were measured with high-performance liquid chromatography (HPLC) 24 hours and 30 days after immersion. The data were evaluated using one-way ANOVA and post hoc Tukey tests. Paired-sample t tests were used to test the differences between time intervals. Results At both time intervals, the greatest amounts of released BisGMA, UDMA, and total monomers were obtained from the control group, whereas 10 preheating cycles resulted in the least monomer elution. The decrease in monomer elution was not statistically significant after 10 preheating cycles compared with that after one preheating cycle (P>0.05). The group with 20 preheating cycles showed a greater amount of monomer elution compared to that with 1 and 10 cycles, which was statistically significant (P < 0.05). The amount of released monomers on day 30 was significantly higher than on day 1 (P<0.01). Conclusion Preheating of the bulk-fill composite resin was shown to be effective in reducing monomer elution. However, monomer elution was adversely affected after repeated preheating cycles of 20.
Collapse
Affiliation(s)
- Samet Atasoy
- Department of Restorative Dentistry, Faculty of Dentistry, Ordu University, Ordu, Turkey
| | | |
Collapse
|
5
|
Lau XE, Liu X, Chua H, Wang WJ, Dias M, Choi JJE. Heat generated during dental treatments affecting intrapulpal temperature: a review. Clin Oral Investig 2023; 27:2277-2297. [PMID: 37022531 PMCID: PMC10159962 DOI: 10.1007/s00784-023-04951-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/14/2023] [Indexed: 04/07/2023]
Abstract
INTRODUCTION Heat is generated and transferred to the dentine-pulp complex during various dental procedures, such as from friction during cavity preparations, exothermic reactions during the polymerisation of restorative materials and when polishing restorations. For in vitro studies, detrimental effects are possible when intra-pulpal temperature increases by more than 5.5°C (that is, the intra-pulpal temperature exceeds 42.4°C). This excessive heat transfer results in inflammation and necrosis of the pulp. Despite numerous studies stating the importance of heat transfer and control during dental procedures, there are limited studies that have quantified the significance. Past studies incorporated an experimental setup where a thermocouple is placed inside the pulp of an extracted human tooth and connected to an electronic digital thermometer. METHODS This review identified the opportunity for future research and develop both the understanding of various influencing factors on heat generation and the different sensor systems to measure the intrapulpal temperature. CONCLUSION Various steps of dental restorative procedures have the potential to generate considerable amounts of heat which can permanently damage the pulp, leading to pulp necrosis, discoloration of the tooth and eventually tooth loss. Thus, measures should be undertaken to limit pulp irritation and injury during procedures. This review highlighted the gap for future research and a need for an experimental setup which can simulate pulp blood flow, temperature, intraoral temperature and intraoral humidity to accurately simulate the intraoral conditions and record temperature changes during various dental procedures.
Collapse
Affiliation(s)
- Xin Er Lau
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin, 9016, New Zealand
| | - Xiaoyun Liu
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin, 9016, New Zealand
| | - Helene Chua
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin, 9016, New Zealand
| | - Wendy Jingwen Wang
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin, 9016, New Zealand
| | - Maykon Dias
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin, 9016, New Zealand
| | - Joanne Jung Eun Choi
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin, 9016, New Zealand.
| |
Collapse
|
6
|
Maucoski C, Price RB, Arrais CAG. Temperature changes and hardness of resin-based composites light-cured with laser diode or light-emitting diode curing lights. Odontology 2023; 111:387-400. [PMID: 36184680 DOI: 10.1007/s10266-022-00745-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 09/13/2022] [Indexed: 11/25/2022]
Abstract
The temperature and Vickers Hardness (VH) at the top and bottom surfaces of three resin-based composites (RBCs) were measured when light-cured using five light-curing units (LCUs). The spectrum, power, and energy delivered to the top of the RBCs and transmitted through the RBCs were measured. Starting at 32℃, the temperature rise produced by the Monet Laser (ML-1 s and 3 s), Valo Grand (VG-3 s and 10 s), DeepCure (DC-10 s), PowerCure, (PC-3 s and 10 s) and PinkWave (PW-10 s) were measured at the bottom of specimens 2 mm deep × 6 mm wide made of Filtek Universal A2, Tetric Evoceram A2 and an experimental RBC codenamed Transcend UB. The VH values measured at the top and bottom of these RBCs were analyzed using ANOVA and Scheffe's post hoc test (p < 0.05) to determine the effects of the LCUs on the RBCs. The transmitted power from the ML was reduced by 77.4% through 2 mm of Filtek Universal, whereas light from PW decreased by only 36.8% through Transcend. The highest temperature increases from the LCU combined with the exothermic reaction occurred for Transcend, and overall, no significant differences were detected between Filtek Universal and Tetric Evoceram (p = 0.9756). Transcend achieved the highest VH values at the top and bottom surfaces. The PinkWave used for 10 s produced the largest temperature increase (20.2℃) in Transcend. The Monet used for 1 s produced the smallest increase (7.8℃) and the lowest bottom:top VH ratios.
Collapse
Affiliation(s)
- Cristiane Maucoski
- Department of Dental Clinical Sciences, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
- Department of Restorative Dentistry, The State University of Ponta Grossa, 4748 General Carlos Cavalcanti Av., Ponta Grossa, Parana, 84051-130, Brazil.
| | - Richard Bengt Price
- Department of Dental Clinical Sciences, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Cesar Augusto Galvão Arrais
- Department of Restorative Dentistry, The State University of Ponta Grossa, 4748 General Carlos Cavalcanti Av., Ponta Grossa, Parana, 84051-130, Brazil
| |
Collapse
|
7
|
Kincses D, Jordáki D, Szebeni D, Kunsági-Máté S, Szalma J, Lempel E. Effect of Ceramic and Dentin Thicknesses and Type of Resin-Based Luting Agents on Intrapulpal Temperature Changes during Luting of Ceramic Inlays. Int J Mol Sci 2023; 24:ijms24065466. [PMID: 36982546 PMCID: PMC10057599 DOI: 10.3390/ijms24065466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
The adhesive cementation of ceramic inlays may increase pulpal temperature (PT) and induce pulpal damage due to heat generated by the curing unit and the exothermic reaction of the luting agent (LA). The aim was to measure the PT rise during ceramic inlay cementation by testing different combinations of dentin and ceramic thicknesses and LAs. The PT changes were detected using a thermocouple sensor positioned in the pulp chamber of a mandibular molar. Gradual occlusal reduction obtained dentin thicknesses of 2.5, 2.0, 1.5, and 1.0 mm. Light-cured (LC) and dual-cured (DC) adhesive cements and preheated restorative resin-based composite (RBC) were applied to luting of 2.0, 2.5, 3.0, and 3.5 mm lithium disilicate ceramic blocks. Differential scanning calorimetry was used to compare the thermal conductivity of dentin and ceramic slices. Although ceramic reduced heat delivered by the curing unit, the exothermic reaction of the LAs significantly increased it in each investigated combination (5.4–7.9 °C). Temperature changes were predominantly influenced by dentin thickness followed by LA and ceramic thickness. Thermal conductivity of dentin was 24% lower than that of ceramic, and its thermal capacity was 86% higher. Regardless of the ceramic thickness, adhesive inlay cementation can significantly increase the PT, especially when the remaining dentin thickness is <2 mm.
Collapse
Affiliation(s)
- Dóra Kincses
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, University of Pécs Medical School, PTüzér Street 1, 7623 Pécs, Hungary
| | - Dóra Jordáki
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, University of Pécs Medical School, PTüzér Street 1, 7623 Pécs, Hungary
| | - Donát Szebeni
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, University of Pécs Medical School, PTüzér Street 1, 7623 Pécs, Hungary
| | - Sándor Kunsági-Máté
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Pécs, Honvéd Street 1, 7624 Pécs, Hungary
- János Szentágothai Research Center, Ifjúság Street 20, 7624 Pécs, Hungary
| | - József Szalma
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Pécs Medical School, Tüzér Street 1, 7623 Pécs, Hungary
| | - Edina Lempel
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, University of Pécs Medical School, PTüzér Street 1, 7623 Pécs, Hungary
- Correspondence: ; Tel.: +36-(72)-536402
| |
Collapse
|
8
|
Crack propensity of different direct restorative procedures in deep MOD cavities. Clin Oral Investig 2023; 27:2003-2011. [PMID: 36814029 DOI: 10.1007/s00784-023-04927-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/16/2023] [Indexed: 02/24/2023]
Abstract
OBJECTIVE The purpose was to evaluate the crack formation associated with different direct restorative procedures of the utilized resin composites (RC) right after and 1 week later of the restoration. MATERIALS AND METHODS Eighty intact, crack-free third molars with standard MOD cavities were included in this in vitro study and randomly divided into four groups of 20 each. After adhesive treatment, the cavities were restored either with bulk (group 1) or layered (group 2) short-fiber-reinforced resin composites (SFRC); bulk-fill RC (group 3); and layered conventional RC (control). Right after the polymerization and a week later, crack evaluation on the outer surface of the remaining cavity walls was performed with a transillumination method utilizing the D-Light Pro (GC Europe) with the "detection mode." Between- and within-groups comparisons Kruskal-Wallis and Wilcoxon tests were used, respectively. RESULTS Post-polymerization crack evaluation showed significantly lower crack formation in SFRC groups compared to the control (p<0.001). There was no significant difference within SFRC groups and non-SFRC groups (p=1.00 and p=0.11, respectively). Within group comparison revealed significantly higher number of cracks in all groups after 1 week (p≤0.001), however, only the control group differed significantly from all the other groups (p≤0.003). CONCLUSIONS Post-polymerization shrinkage induced further crack formation in the tooth 1 week after the restoration. SFRC was less prone to shrinkage-related crack formation during the restorative procedure; however, after 1 week, besides SFRC, bulk-fill RC also showed less prone to polymerization shrinkage-related crack formation than layered composite fillings. CLINICAL RELEVANCE SRFC can decrease the shrinkage stress-induced crack formation in MOD cavities.
Collapse
|
9
|
Maucoski C, Price RB, Sullivan B, Guarneri JAG, Gusso B, Arrais CAG. In-vitro pulpal temperature increases when photo-curing bulk-fill resin-based composites using laser or light-emitting diode light curing units. J ESTHET RESTOR DENT 2023; 35:705-716. [PMID: 36738181 DOI: 10.1111/jerd.13022] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/03/2023] [Accepted: 01/14/2023] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To evaluate the in vitro pulpal temperature rise (ΔT) within the pulp chamber when low- and high-viscosity bulk-fill resin composites are photo-cured using laser or contemporary light curing units (LCUs). MATERIALS AND METHODS The light output from five LCUs was measured. Non-retentive Class I and V cavities were prepared in one upper molar. Two T-type thermocouples were inserted into the pulp chamber. After the PT values reached 32°C under simulated pulp flow (0.026 mL/min), both cavities were restored with: Filtek One Bulk Fill (3 M), Filtek Bulk Fill Flow (3 M), Tetric PowerFill (Ivoclar Vivadent), or Tetric PowerFlow (Ivoclar Vivadent). The tooth was exposed as follows: Monet Laser (1 and 3 s), PowerCure (3 and 20 s), PinkWave (3 and 20 s), Valo X (5 and 20 s) and SmartLite Pro (20 s). The ΔT data were subjected to one-way ANOVA followed by Scheffe's post hoc test. RESULTS Monet 1 s (1.9 J) and PinkWave 20 s (30.1 J) delivered the least and the highest amount of energy, respectively. Valo X and PinkWave used for 20 s produced the highest ΔT values (3.4-4.1°C). Monet 1 s, PinkWave 3 s, PowerCure 3 s (except FB-Flow) and Monet 3 s for FB-One and TP-Fill produced the lowest ΔT values (0.9-1.7°C). No significant differences were found among composites. CONCLUSIONS Short 1- to 3-s exposures produced acceptable temperature rises, regardless of the composite. CLINICAL SIGNIFICANCE The energy delivered to the tooth by the LCUs affects the temperature rise inside the pulp. The short 1-3 s exposure times used in this study delivered the least amount of energy and produced a lower temperature rise. However, the RBC may not have received sufficient energy to be adequately photo-cured.
Collapse
Affiliation(s)
- Cristiane Maucoski
- Department of Restorative Dentistry, State University of Ponta Grossa, Ponta Grossa, Parana, Brazil.,Department of Dental Clinical Sciences, Faculty of Dentistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Richard Bengt Price
- Department of Dental Clinical Sciences, Faculty of Dentistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Braden Sullivan
- Department of Dental Clinical Sciences, Faculty of Dentistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Bruno Gusso
- Department of Restorative Dentistry, State University of Ponta Grossa, Ponta Grossa, Parana, Brazil
| | | |
Collapse
|
10
|
Maucoski C, Price RB, Arrais CAG, Sullivan B. In vitro temperature changes in the pulp chamber caused by laser and Quadwave LED-light curing units. Odontology 2022:10.1007/s10266-022-00780-y. [DOI: 10.1007/s10266-022-00780-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
|
11
|
Dunavári E, Berta G, Kiss T, Szalma J, Fráter M, Böddi K, Lempel E. Effect of Pre-Heating on the Monomer Elution and Porosity of Conventional and Bulk-Fill Resin-Based Dental Composites. Int J Mol Sci 2022; 23:ijms232416188. [PMID: 36555828 PMCID: PMC9782750 DOI: 10.3390/ijms232416188] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
The pre-heating of dental resin-based composites (RBCs) improves adaptability to cavity walls, reducing microleakages. However, the rapid cooling of the pre-heated RBC may change the polymerization kinetics, and thus the final network configuration of the RBC. It is well known that unreacted monomers remaining in the set RBC can leach into the oral cavity. However, it is still not clear how the pre-heating and cooling of RBCs alter monomer elution (ME). Thus, the purpose was to determine the ME from room-temperature and pre-heated RBCs, in addition to determining the closed porosity (CP) volume. Bulk-filled RBCs and layered conventional RBC samples were prepared. The pre-polymerization temperature was set at 24 °C and 55/65 °C. The ME from RBC samples was assessed with high-performance liquid chromatography using standard monomers. CP was measured with micro-computed tomography. ME decreased significantly from bulk fills and increased from layered samples as a result of pre-heating. Pre-heating was unfavorable in terms of CP in most RBCs. Based on the effect size analysis, ME and CP were greatly influenced by both material composition, pre-polymerization temperature, and their interaction. While the pre-heating of high-viscosity bulk-fill RBCs is advantageous from a clinical aspect regarding biocompatibility, it increases CP, which is undesirable from a mechanical point of view.
Collapse
Affiliation(s)
- Erika Dunavári
- Department of Restorative Dentistry and Periodontology, University of Pécs Medical School, Tüzér Street 1, 7624 Pécs, Hungary
| | - Gergely Berta
- Department of Medical Biology and Central Electron Microscope Laboratory, University of Pécs Medical School, Szigeti Street 12, 7624 Pécs, Hungary
- Szentágothai Research Centre, University of Pécs, Ifjúság Street 20, 7624 Pécs, Hungary
| | - Tamás Kiss
- Szentágothai Research Centre, University of Pécs, Ifjúság Street 20, 7624 Pécs, Hungary
| | - József Szalma
- Department of Oral and Maxillofacial Surgery, University of Pécs Medical School, Tüzér Street 1, 7624 Pécs, Hungary
| | - Márk Fráter
- Department of Operative and Esthetic Dentistry, Faculty of Dentistry, University of Szeged, Tisza Lajos Street 64, 6720 Szeged, Hungary
| | - Katalin Böddi
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, Szigeti Street 12, 7624 Pécs, Hungary
| | - Edina Lempel
- Department of Restorative Dentistry and Periodontology, University of Pécs Medical School, Tüzér Street 1, 7624 Pécs, Hungary
- Correspondence: ; Tel.: +36-7253-9402
| |
Collapse
|
12
|
Overviews on the Progress of Flowable Dental Polymeric Composites: Their Composition, Polymerization Process, Flowability and Radiopacity Aspects. Polymers (Basel) 2022; 14:polym14194182. [PMID: 36236127 PMCID: PMC9570751 DOI: 10.3390/polym14194182] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/06/2022] [Accepted: 10/01/2022] [Indexed: 11/17/2022] Open
Abstract
A review article has been conducted including the main research results and comments referring to flowable dental polymeric materials. To begin with, the synthesis and composition of this category of composites is discussed, revealing the major components of the commercial products in terms of chemistry and proportion. Later, the polymerization characteristics are unfolded regarding the reaction time and rate, volumetric shrinkage and depth of cure for both photocurable and self-curable composites. To continue, some perspectives of the pre-treatment or accompanying processes that a clinician may follow to enhance the materials' performance are described. Fluidity is certainly associated with the progress of polymerization and the in-depth conversion of monomers to a polymeric network. Last, the aspects of radiopacity and translucency are commented on, showing that all flowable polymeric composites satisfy the radiography rule, while the masking ability depends on the fillers' properties and specimen thickness. The reviewing article is addressed to all field scientists and practitioners dealing with flowable dental composites studies or applications.
Collapse
|
13
|
Fracture Resistance and Microleakage around Direct Restorations in High C-Factor Cavities. Polymers (Basel) 2022; 14:polym14173463. [PMID: 36080538 PMCID: PMC9460406 DOI: 10.3390/polym14173463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/20/2022] [Accepted: 08/21/2022] [Indexed: 11/29/2022] Open
Abstract
The aim of this research was to evaluate the mechanical impact of different direct restorations in terms of fracture resistance, and subsequent fracture pattern, in occlusal high C-factor cavities. Furthermore, the adaptation of different direct restorations in the form of gap formation was also evaluated. Seventy-two intact mandibular molars were collected and randomly distributed into three groups (n = 24). Class I occlusal cavities with standardized dimensions were prepared in all specimens. After adhesive treatment, the cavities were restored with direct restorations utilizing three different materials. Group 1: layered conventional packable resin composite (Filtek Ultimate), Group 2: bulk-fill resin composite (SDR), Group 3: bulk-fill short fibre-reinforced composite (SFRC; everX Posterior) covered with packable composite occlusally. Half of the restored specimens underwent static load-to fracture testing (n = 12/group), while the rest underwent sectioning and staining for microleakage evaluation and gap formation analysis. Fracture patterns were evaluated visually among the mechanically tested specimens. The layered composite restoration (Group 1) showed significantly lower fracture resistance compared to the bulk fill groups (Group 2, p = 0.005, Group 3, p = 0.008), while there was no difference in fracture resistance between the other groups. In terms of gap formation values, the layered composite restoration (Group 1) produced significantly higher gap formation compared to the bulk-fill groups (Group 2, p = 0.000, Group 3, p = 0.000). Regarding the fracture pattern, SFRC (Group 3) produced the highest number, while SDR (Group 2) produced the lowest number of repairable fractures. The use of bulk-fill resin composite (fibre or non-fibre-reinforced) for occlusal direct restorations in high C-factor cavities showed promising achievements regarding both fracture resistance and microleakage. Furthermore, the use of short fibre-reinforced bulk-fill composite can also improve the fracture pattern of the restoration-tooth unit. Bulk-fill materials provide a simple and effective solution for restoring and reinforcing high C-factor occlusal cavities.
Collapse
|
14
|
Gatin E, Iordache SM, Matei E, Luculescu CR, Iordache AM, Grigorescu CEA, Ilici RR. Raman Spectroscopy as Spectral Tool for Assessing the Degree of Conversion after Curing of Two Resin-Based Materials Used in Restorative Dentistry. Diagnostics (Basel) 2022; 12:diagnostics12081993. [PMID: 36010343 PMCID: PMC9407164 DOI: 10.3390/diagnostics12081993] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/12/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: The treatment of dental cavities and restoration of tooth shape requires specialized materials with specific clinical properties, including being easy to model, light-cured, having a natural color, reduced shrinkage, a hardness similar to hydroxyapatite, and no leakage. The dimensional stability of resin composite materials is affected by polymerization shrinkage, degree of conversion (number of π carbon bonds converted into σ ones), thermal contraction and expansion, and interactions with an aqueous environment. (2) Methods: The materials used in our investigation were two composite resins with similar polymer matrices, but different filler (micro/nano filler). To evaluate the properties of samples, we employed the pycnometer technique (pycnometer from Paul Marienfeld Gmbh, Lauda-Königshofen, Germany), RAMAN spectroscopy technique (MiniRam Equipment from B&W Tek Inc., Plainsboro Township, NJ, USA; 785 nm laser source), SEM and EDX (FEI Inspect S.). (3) Results: The size of the filler plays an important role in the polymerization: for the pycnometric results, the larger particle filler (Sample 1) seems to undergo a rapid polymerization during the 45 s curing, while the nanoparticle filer (Sample 2) needs additional curing time to fully polymerize. This is related to a much larger porosity, as proved by SEM images. The lower degree of conversion, as obtained by Raman spectroscopy, in the same geometry means that the same volume is probed for both samples, but Sample 1 is more porous, which means less amount of polymer is probed for Sample 1. (4) Conclusions: For the two composites, we obtained a degree of conversion of 59% for Sample 1 and 93% for Sample 2, after 45 s of curing.
Collapse
Affiliation(s)
- Eduard Gatin
- Faculty of Medicine, University of Medicine ‘‘Carol Davila’’, Blv. Eroii Sanitari 8, Sector 5, 020021 Bucharest, Romania
- Faculty of Physics, University of Bucharest, Atomistilor 405, 077125 Magurele, Romania
| | - Stefan-Marian Iordache
- Optospintronics Department, National Institute for Research and Development for Optoelectronics—INOE 2000, 077125 Magurele, Romania
- Correspondence: (S.-M.I.); (A.-M.I.)
| | - Elena Matei
- National Institute of Materials Physics, Atomistilor 405A, 077125 Magurele, Romania
| | | | - Ana-Maria Iordache
- Optospintronics Department, National Institute for Research and Development for Optoelectronics—INOE 2000, 077125 Magurele, Romania
- Correspondence: (S.-M.I.); (A.-M.I.)
| | - Cristiana Eugenia Ana Grigorescu
- Optospintronics Department, National Institute for Research and Development for Optoelectronics—INOE 2000, 077125 Magurele, Romania
| | - Roxana Romanita Ilici
- Faculty of Dental Medicine, University of Medicine “Carol Davila”, Plevnei Route No. 17-23, Sector 1, 020021 Bucharest, Romania
| |
Collapse
|
15
|
Intrapulpal temperature changes during the cementation of ceramic veneers. Sci Rep 2022; 12:12919. [PMID: 35902776 PMCID: PMC9334278 DOI: 10.1038/s41598-022-17285-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/22/2022] [Indexed: 12/03/2022] Open
Abstract
Adhesive cementation of ceramic veneers may increase pulpal temperature (PT) due to the combined effect of heat generated by the curing unit and the exothermic reaction of the luting agent (LA). PT increase may induce pulpal damage. The aim was to determine the PT rise during the luting of ceramic veneers (CV) of different thicknesses with light- or dual-curing (LC, DC) adhesive cements as well as pre-heated restorative resin-based composites (PH-RBC). For this a thermocouple sensor was positioned in the pulp chamber of a prepared maxillary central incisor. LC, DC adhesive cements and PH-RBCs heated to 55 °C were used for the luting of CVs of 0.3, 0.5, 0.7, and 1.0 mm thicknesses. The exothermic reaction of LAs added significantly to the thermal effect of the curing unit. PT change ranged between 8.12 and 14.4 °C with the investigated combinations of LAs and ceramic thicknesses (p ≤ 0.01). The increase was inversely proportional to the increasing CV thicknesses. The highest rise (p ≤ 0.01) was seen with the polymerization of PH-RBCs. Temperature changes were predominantly influenced by the composition of the LA, which was followed by CV thickness.
Collapse
|
16
|
Molnár J, Fráter M, Sáry T, Braunitzer G, Vallittu PK, Lassila L, Garoushi S. Fatigue performance of endodontically treated molars restored with different dentin replacement materials. Dent Mater 2022; 38:e83-e93. [DOI: 10.1016/j.dental.2022.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 01/06/2022] [Accepted: 02/19/2022] [Indexed: 01/08/2023]
|
17
|
Monomer Elution from Three Resin Composites at Two Different Time Interval Using High Performance Liquid Chromatography-An In-Vitro Study. Polymers (Basel) 2021; 13:polym13244395. [PMID: 34960944 PMCID: PMC8704455 DOI: 10.3390/polym13244395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 01/22/2023] Open
Abstract
Esthetics, improved colour stability and ease of contour have made photo-activated resin based restorative materials being widely used in routine dental clinical practice. Perhaps improper and inadequate polymerization of resin based composite material might lead to elution of monomer. Thus, the aim of the current study was to quantify the monomer elution from three resin composites. The intended analysis was made using high performance liquid chromatography (HPLC) at two different time periods. Three different materials that were investigated in the current study included Swiss Tech resin composite (Group A), Ceram X (Group B) and Beautifil Injectable composite (Group C). Ten cylindrical samples were fabricated in each study group. In 75% wt of ethanol, the samples were ingressed immediately and stored at room temperature. A 0.5 mL of the samples was assessed at pre-defined time intervals at 24 h and 7th day. Later, assessment of the samples was performed with HPLC and the data was analyzed using statistical test. Bisphenol A-glycidyl methacrylate (Bis-GMA), Triethylene glycol dimethacrylate (TEGDMA), 2-hydroxyethyl methacrylate (HEMA) and Urethane dimethacrylate (UDMA) were quantified in the samples. When analyzing the release monomer, it was found that at the end of 24 h Bis-GMA was eluted more in the injectable resin composite whereas, TEGDMA was eluted from Swiss Tech and Ceram X resin composites. At the end of the 7th day it was evident that Bis-GMA was eluted maximum in all the three resin composites. Thus, monomer release was found to be evident among all three resin composites and it is of utmost important to be assessed in routine clinical practice.
Collapse
|
18
|
Chanachai S, Chaichana W, Insee K, Benjakul S, Aupaphong V, Panpisut P. Physical/Mechanical and Antibacterial Properties of Orthodontic Adhesives Containing Calcium Phosphate and Nisin. J Funct Biomater 2021; 12:jfb12040073. [PMID: 34940552 PMCID: PMC8706961 DOI: 10.3390/jfb12040073] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 11/30/2022] Open
Abstract
Enamel demineralization around orthodontic adhesive is a common esthetic concern during orthodontic treatment. The aim of this study was to prepare orthodontic adhesives containing monocalcium phosphate monohydrate (MCPM) and nisin to enable mineralizing and antibacterial actions. The physicomechanical properties and the inhibition of S. mutans growth of the adhesives with added MCPM (5, 10 wt %) and nisin (5, 10 wt %) were examined. Transbond XT (Trans) was used as the commercial comparison. The adhesive containing a low level of MCPM showed significantly higher monomer conversion (42–62%) than Trans (38%) (p < 0.05). Materials with additives showed lower monomer conversion (p < 0.05), biaxial flexural strength (p < 0.05), and shear bond strength to enamel than those of a control. Additives increased water sorption and solubility of the experimental materials. The addition of MCPM encouraged Ca and P ion release, and the precipitation of calcium phosphate at the bonding interface. The growth of S. mutans in all the groups was comparable (p > 0.05). In conclusion, experimental orthodontic adhesives with additives showed comparable conversion but lesser mechanical properties than the commercial material. The materials showed no antibacterial action, but exhibited ion release and calcium phosphate precipitation. These properties may promote remineralization of the demineralized enamel.
Collapse
Affiliation(s)
- Supachai Chanachai
- Division of Orthodontics, Faculty of Dentistry, Thammasat University, Pathum Thani 12120, Thailand; (S.C.); (W.C.); (K.I.); (S.B.)
| | - Wirinrat Chaichana
- Division of Orthodontics, Faculty of Dentistry, Thammasat University, Pathum Thani 12120, Thailand; (S.C.); (W.C.); (K.I.); (S.B.)
| | - Kanlaya Insee
- Division of Orthodontics, Faculty of Dentistry, Thammasat University, Pathum Thani 12120, Thailand; (S.C.); (W.C.); (K.I.); (S.B.)
| | - Sutiwa Benjakul
- Division of Orthodontics, Faculty of Dentistry, Thammasat University, Pathum Thani 12120, Thailand; (S.C.); (W.C.); (K.I.); (S.B.)
| | - Visakha Aupaphong
- Division of Oral Biology, Faculty of Dentistry, Thammasat University, Pathum Thani 12120, Thailand;
| | - Piyaphong Panpisut
- Division of Restorative Dentistry, Thammasat University, Pathum Thani 12120, Thailand
- Thammasat University Research Unit in Dental and Bone Substitute Biomaterials, Thammasat University, Pathum Thani 12120, Thailand
- Correspondence:
| |
Collapse
|
19
|
Fatigue performance of endodontically treated premolars restored with direct and indirect cuspal coverage restorations utilizing fiber-reinforced cores. Clin Oral Investig 2021; 26:3501-3513. [PMID: 34846558 PMCID: PMC8979888 DOI: 10.1007/s00784-021-04319-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/23/2021] [Indexed: 01/11/2023]
Abstract
Objectives The aim of this in vitro study was to investigate the fatigue survival and fracture behavior of endodontically treated (ET) premolars restored with different types of post-core and cuspal coverage restorations. Materials and methods MOD cavities were prepared on 108 extracted maxillary premolars. During the endodontic treatment, all teeth were instrumented with rotary files (ProTaper Universal) to the same apical enlargement (F2) and were obturated with a matched single cone obturation. After the endodontic procedure, the cavities were restored with different post-core and overlay restorations (n = 12/group). Three groups (A1–A3) were restored with either conventional composite core (PFC; control) or flowable short-fiber-reinforced composite (SFRC) core with/without custom-made fiber posts and without overlays. Six groups had similar post-core foundations as described above but with either direct PFC (B1–B3) or indirect CAD/CAM (C1–C3) overlays. Fatigue survival was tested for all restorations using a cyclic loading machine until fracture occurred or 50,000 cycles were completed. Kaplan-Meyer survival analysis was conducted, followed by pairwise post hoc comparisons. Results None of the restored teeth survived all 50,000. Application of flowable SFRC as luting-core material with fiber post and CAD/CAD overlays (Group C3) showed superior performance regarding fatigue survival (p < 0.05) to all the other groups. Flowable SFRC with fiber post and direct overlay (Group B3) showed superior survival compared to all other direct techniques (p < 0.05), except for the same post-core foundation but without cuspal coverage (Group A3). Conclusions Custom-made fiber post and SFRC as post luting core material with or without cuspal coverage performed well in terms of fatigue resistance and survival when used for the restoration of ET premolars. Clinical relevance The fatigue survival of direct and indirect cuspal coverage restorations in ET MOD premolars is highly dependent on whether the core build-up is fiber-reinforced or not. The combination of short and long fibers in the form of individualized post-cores seems to offer a favorable solution in this situation.
Collapse
|
20
|
Kincses D, Böddi K, Őri Z, Lovász BV, Jeges S, Szalma J, Kunsági-Máté S, Lempel E. Pre-Heating Effect on Monomer Elution and Degree of Conversion of Contemporary and Thermoviscous Bulk-Fill Resin-Based Dental Composites. Polymers (Basel) 2021; 13:polym13203599. [PMID: 34685358 PMCID: PMC8538921 DOI: 10.3390/polym13203599] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
Detection of unreacted monomers from pre-heated resin-based dental composites (RBC) is not a well-investigated topic so far. The objectives were to determine the temperature changes during the application and polymerization, the degree of conversion (DC) and unreacted monomer elution of room temperature (RT), and pre-heated thermoviscous [VisCalor Bulk(VCB)] and high-viscosity full-body contemporary [Filtek One Bulk(FOB)] bulk-fill RBCs. The RBCs' temperatures during the sample preparation were recorded with a K-type thermocouple. The DC at the top and bottom was measured with micro-Raman spectroscopy and the amounts of eluted BisGMA, UDMA, DDMA, and TEGDMA were assessed with High-Performance Liquid Chromatography. The temperatures of the pre-heated RBCs decreased rapidly during the manipulation phase. The temperature rise during photopolymerization reflects the bottom DCs. The differences in DC% between the top and the bottom were significant. RT VCB had a lower DC% compared to FOB. Pre-heating did not influence the DC, except on the bottom surface of FOB where a significant decrease was measured. Pre-heating significantly decreased the elution of BisGMA, UDMA, DDMA in the case of FOB, meanwhile, it had no effect on monomer release from VCB, except TEGDMA, which elution was decreased. In comparison, RBC composition had a stronger influence on DC and monomer elution, than pre-cure temperature.
Collapse
Affiliation(s)
- Dóra Kincses
- Department of Restorative Dentistry and Periodontology, University of Pécs Medical School, Dischka Gy. Street 5, 7621 Pécs, Hungary;
| | - Katalin Böddi
- Department of Biochemistry and Medical Chemistry, University of Pécs Medical School, Szigeti Street 12, 7624 Pécs, Hungary;
| | - Zsuzsanna Őri
- Department of Physical Chemistry and Materials Science, University of Pécs, Ifjúság Street 6, 7624 Pécs, Hungary;
- János Szentágothai Research Center, Ifjúság Street 20, 7624 Pécs, Hungary;
| | - Bálint Viktor Lovász
- Department of Oral and Maxillofacial Surgery, University of Pécs Medical School, Dischka Gy. Street 5, 7621 Pécs, Hungary; (B.V.L.); (J.S.)
| | - Sára Jeges
- Faculty of Sciences, University of Pécs, Ifjúság Street 12, 7624 Pécs, Hungary;
| | - József Szalma
- Department of Oral and Maxillofacial Surgery, University of Pécs Medical School, Dischka Gy. Street 5, 7621 Pécs, Hungary; (B.V.L.); (J.S.)
| | - Sándor Kunsági-Máté
- János Szentágothai Research Center, Ifjúság Street 20, 7624 Pécs, Hungary;
- Institute of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Pécs Medical School, Szigeti Street 12, 7624 Pécs, Hungary
| | - Edina Lempel
- Department of Restorative Dentistry and Periodontology, University of Pécs Medical School, Dischka Gy. Street 5, 7621 Pécs, Hungary;
- Correspondence: ; Tel.: +36-72-535-926
| |
Collapse
|
21
|
Comparison of temperature rise within pulp chamber during light curing of composite restoration. J Appl Polym Sci 2021. [DOI: 10.1002/app.50946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
22
|
Lempel E, Szalma J. Effect of spray air settings of speed-increasing contra-angle handpieces on intrapulpal temperatures, drilling times, and coolant spray pattern. Clin Oral Investig 2021; 26:523-533. [PMID: 34145477 PMCID: PMC8212794 DOI: 10.1007/s00784-021-04030-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/07/2021] [Indexed: 11/07/2022]
Abstract
Objectives Decreasing aerosol leaks are of great interest, especially in the recent era of COVID-19. The aim was to investigate intrapulpal heat development, coolant spray patterns, and the preparation efficiency of speed-increasing contra-angle handpieces with the spray air on (mist) or off (water jet) settings during restorative cavity preparations. Methods Standard-sized cavities were prepared in 80 extracted intact human molar teeth using diamond cylindrical drills with a 1:5 speed-increasing contra-angle handpiece. A custom-made device maintained the standardized lateral drilling force (3 N) and predetermined depth. Temperatures were measured using intrapulpal thermocouple probes. The four experimental groups were as follows: mist cooling mode at 15 mL/min (AIR15), water jet cooling mode at 15 mL/min (JET15), mist cooling mode at 30 mL/min (AIR30), and water jet cooling mode at 30 mL/min (JET30). The coolant spray pattern was captured using macro-photo imaging. Results The JET15 group had the highest increase in temperature (ΔT = 6.02 °C), while JET30 (ΔT = 2.24 °C; p < 0.001), AIR15 (ΔT = 3.34 °C; p = 0.042), and AIR30 (ΔT = 2.95 °C; p = 0.003) had significantly lower increases in temperature. Fine mist aerosol was formed in the AIR15 and AIR30 preparations but not in the JET15 and JET30 preparations (p < 0.001). The irrigation mode had no influence on the preparation time (p = 0.672). Conclusions Water jet irrigation using coolant at 30 mL/min appeared to be the optimal mode. Considering the safe intrapulpal temperatures and the absence of fine mist aerosols, this mode can be recommended for restorative cavity preparations. Clinical significance To increase infection control in dental practices, the water jet irrigation mode of speed-increasing handpieces with coolant flow rates of 30 mL/min should be considered for restorative cavity preparations. Supplementary Information The online version contains supplementary material available at 10.1007/s00784-021-04030-3.
Collapse
Affiliation(s)
- Edina Lempel
- Department of Conservative Dentistry and Periodontology, Medical School, University of Pécs, 5. Dischka St, 7621, Pécs, Hungary
| | - József Szalma
- Department of Oral and Maxillofacial Surgery, Medical School, University of Pécs, 5. Dischka Gy St, Pécs, 7621, Hungary.
| |
Collapse
|
23
|
Yang J, Algamaiah H, Watts DC. Spatio-temporal temperature fields generated coronally with bulk-fill resin composites: A thermography study. Dent Mater 2021; 37:1237-1247. [PMID: 34144795 DOI: 10.1016/j.dental.2021.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVE This study aimed to investigate the effects of (i) a high-irradiance (3s) light-curing protocol versus (ii) two standard-irradiance (10s) protocols on 2D temperature maps during intra-dental photo-irradiation within a molar cavity restored with either Ultra-Rapid Photo-Polymerized Bulk Fill (URPBF) composites or a pre-heated thermo-viscous bulk-fill composite, compared to a standard bulk-fill resin-based-composite (RBC). The specific objectives included visual assessment of the temperature maps and quantitative assessment of several temperature/time plots at four different locations. METHODS A caries-free lower first molar cavity served as a natural tooth mold. Resin composites were placed without intermediary adhesive. Two URPBF composites (PFill; PFlow) and one pre-heated thermo-viscous bulk-fill composite (Viscalor: VC) were compared to a contemporary bulk-fill composite (One Bulk Fill: OBF). Two LED-LCU devices were used: Bluephase PowerCure (PC) and Elipar S10 (S10), with three light-irradiation protocols (PC-3s, PC-10s and S10-10s). 2D temperature maps over the entire coronal area were recorded for 120 s during and after irradiation using a thermal imaging camera. Changes at four different levels were selected from the data sets: (0, 2 and 4 mm from the cavity top and at 1 mm below the dentin cavity floor). The maximum temperature attained (Tmax), the mean temperature rise (ΔT), the time (s) to reach maximum temperature and the integrated areas (°C s) under the temperature/time (T/t) plots were identified. Data were analysed via three-way ANOVA, One-way ANOVA, independent t-tests and Tukey post-hoc tests (p < 0.05). RESULTS All RBCs showed qualitatively similar temperature-time profiles. PFlow reached Tmax in the shortest time. PC-3s (3000 mW/cm2) generated comparable ΔT to S10-10s, except with PFill, where ΔT was greater. Despite the same irradiance (1200 mW/cm2), Elipar S10 led to higher Tmax and ΔT compared to PC-10s. The highest Tmax and ΔT were observed at the 2 mm level, and the lowest were at 1 mm depth into the underlying dentin. SIGNIFICANCE Coronal 2D temperature maps showed rises largely confined within the bulk-fill RBC materials, with maxima at 2 mm rather than 4 mm depth indicating some extent of thermal insulation for the underlying dentin and pulp. RBCs polymerized via different irradiation protocols showed similar temperature changes. With the PC-3s protocol - also with pre-heated VC - minimal temperature rises at 1 mm within dentin suggest their clinical safety when sufficient remaining dentin thickness is present.
Collapse
Affiliation(s)
- Jiawei Yang
- Dentistry, School of Medical Sciences, University of Manchester, Manchester, UK
| | - Hamad Algamaiah
- Dentistry, School of Medical Sciences, University of Manchester, Manchester, UK; Department of Restorative Dental Science, College of Dentistry, King Saud University, Riyadh, Saudi Arabia.
| | - David C Watts
- Dentistry, School of Medical Sciences, University of Manchester, Manchester, UK; Photon Science Institute, University of Manchester, Manchester, UK.
| |
Collapse
|