1
|
Eraslan IM, Egberts-Brugman M, Read JL, Voglsanger LM, Samarasinghe RM, Hamilton L, Dhar P, Williams RJ, Walker LC, Ch'ng S, Lawrence AJ, Walker AJ, Dean OM, Gundlach AL, Smith CM. Neuroanatomical distribution of fluorophores within adult RXFP3 Cre-tdTomato/YFP mouse brain. Biochem Pharmacol 2024; 225:116265. [PMID: 38714277 DOI: 10.1016/j.bcp.2024.116265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/09/2024]
Abstract
Relaxin-family peptide 3 receptor (RXFP3) is activated by relaxin-3 in the brain to influence arousal and related functions, such as feeding and stress responses. Two transgenic mouse lines have recently been developed that co-express different fluorophores within RXFP3-expressing neurons: either yellow fluorescent protein (YFP; RXFP3-Cre/YFP mice) or tdTomato (RXFP3-Cre/tdTomato mice). To date, the characteristics of neurons that express RXFP3-associated fluorophores in these mice have only been investigated in the bed nucleus of the stria terminalis and the hypothalamic arcuate nucleus. To better determine the utility of these fluorophore-expressing mice for further research, we characterised the neuroanatomical distribution of fluorophores throughout the brain of these mice and compared this to the published distribution of Rxfp3 mRNA (detected by in situ hybridisation) in wildtype mice. Coronal sections of RXFP3-Cre/YFP (n = 8) and RXFP3-Cre/tdTomato (n = 8) mouse brains were imaged, and the density of fluorophore-expressing cells within various brain regions/nuclei was qualitatively assessed. Comparisons with our previously reported RXFP3 mRNA distribution revealed that of 212 brain regions that contained either fluorophore or RXFP3 mRNA, approximately half recorded densities that were within two qualitative measurements of each other (on a 9-point scale), including hippocampal dentate gyrus and amygdala subregions. However, many brain areas with likely non-authentic, false-positive, or false-negative fluorophore expression were also detected, including the cerebellum. Therefore, this study provides a guide to which brain regions should be prioritized for future study of RXFP3 in these mice, to better understand the neuroanatomy and function of this intriguing, neuronal peptide receptor.
Collapse
Affiliation(s)
- Izel M Eraslan
- Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Monique Egberts-Brugman
- Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Justin L Read
- Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Lara M Voglsanger
- Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Rasika M Samarasinghe
- Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Lee Hamilton
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Poshmaal Dhar
- Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Richard J Williams
- Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Leigh C Walker
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Sarah Ch'ng
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Andrew J Lawrence
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Adam J Walker
- Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Olivia M Dean
- Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, Victoria 3216, Australia; The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Victoria 3010, Australia
| | - Craig M Smith
- Faculty of Health, School of Medicine, Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, Victoria 3216, Australia.
| |
Collapse
|
2
|
Jayakody T, Marwari S, Lakshminarayanan R, Tan FCK, Johannes CW, Dymock BW, Poulsen A, Herr DR, Dawe GS. Hydrocarbon stapled B chain analogues of relaxin-3 retain biological activity. Peptides 2016; 84:44-57. [PMID: 27498038 DOI: 10.1016/j.peptides.2016.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 07/29/2016] [Accepted: 08/02/2016] [Indexed: 11/30/2022]
Abstract
Relaxin-3 or insulin-like peptide 7 (INSL7) is the most recently discovered relaxin/insulin-like family peptide. Mature relaxin-3 consists of an A chain and a B chain held by disulphide bonds. According to structure activity relationship studies, the relaxin-3 B chain is more important in binding and activating the receptor. RXFP3 (also known as Relaxin-3 receptor 1, GPCR 135, somatostatin- and angiotensin- like peptide receptor or SALPR) was identified as the cognate receptor for relaxin-3 by expression profiles and binding studies. Recent studies imply roles of this system in mediating stress and anxiety, feeding, metabolism and cognition. Stapling of peptides is a technique used to develop peptide drugs for otherwise undruggable targets. The main advantages of stapling include, increased activity due to reduced proteolysis, increased affinity to receptors and increased cell permeability. Stable agonists and antagonists of RXFP3 are crucial for understanding the physiological significance of this system. So far, agonists and antagonists of RXFP3 are peptides. In this study, for the first time, we have introduced stapling of the relaxin-3 B chain at 14th and 18th positions (14s18) and 18th and 22nd position (18s22). These stapled peptides showed greater helicity than the unstapled relaxin-3 B chain in circular dichroism analysis. Both stapled peptides bound RXFP3 and activated RXFP3 as observed in an inhibition of forskolin-induced cAMP assay and a ERK1/2 activation assay, although with different potencies. Therefore, we conclude that stapling of the relaxin3 B chain does not compromise its ability to activate RXFP3 and is a promising method for developing stable peptide agonists and antagonists of RXFP3 to aid relaxin-3/RXFP3 research.
Collapse
Affiliation(s)
- Tharindunee Jayakody
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore; Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore
| | - Subhi Marwari
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| | - Rajamani Lakshminarayanan
- Singapore Eye Research Institute, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - Francis Chee Kuan Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Charles William Johannes
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Brian William Dymock
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| | - Anders Poulsen
- Department of Medicinal Chemistry, Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Deron Raymond Herr
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gavin Stewart Dawe
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore; Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore.
| |
Collapse
|
3
|
Santos FN, Pereira CW, Sánchez-Pérez AM, Otero-García M, Ma S, Gundlach AL, Olucha-Bordonau FE. Comparative Distribution of Relaxin-3 Inputs and Calcium-Binding Protein-Positive Neurons in Rat Amygdala. Front Neuroanat 2016; 10:36. [PMID: 27092060 PMCID: PMC4823275 DOI: 10.3389/fnana.2016.00036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/17/2016] [Indexed: 01/16/2023] Open
Abstract
The neural circuits involved in mediating complex behaviors are being rapidly elucidated using various newly developed and powerful anatomical and molecular techniques, providing insights into the neural basis for anxiety disorders, depression, addiction, and dysfunctional social behaviors. Many of these behaviors and associated physiological processes involve the activation of the amygdala in conjunction with cortical and hippocampal circuits. Ascending subcortical projections provide modulatory inputs to the extended amygdala and its related nodes (or "hubs") within these key circuits. One such input arises from the nucleus incertus (NI) in the tegmentum, which sends amino acid- and peptide-containing projections throughout the forebrain. Notably, a distinct population of GABAergic NI neurons expresses the highly-conserved neuropeptide, relaxin-3, and relaxin-3 signaling has been implicated in the modulation of reward/motivation and anxiety- and depressive-like behaviors in rodents via actions within the extended amygdala. Thus, a detailed description of the relaxin-3 innervation of the extended amygdala would provide an anatomical framework for an improved understanding of NI and relaxin-3 modulation of these and other specific amygdala-related functions. Therefore, in this study, we examined the distribution of NI projections and relaxin-3-positive elements (axons/fibers/terminals) within the amygdala, relative to the distribution of neurons expressing the calcium-binding proteins, parvalbumin (PV), calretinin (CR) and/or calbindin. Anterograde tracer injections into the NI revealed a topographic distribution of NI efferents within the amygdala that was near identical to the distribution of relaxin-3-immunoreactive fibers. Highest densities of anterogradely-labeled elements and relaxin-3-immunoreactive fibers were observed in the medial nucleus of the amygdala, medial divisions of the bed nucleus of the stria terminalis (BST) and in the endopiriform nucleus. In contrast, sparse anterogradely-labeled and relaxin-3-immunoreactive fibers were observed in other amygdala nuclei, including the lateral, central and basal nuclei, while the nucleus accumbens lacked any innervation. Using synaptophysin as a synaptic marker, we identified relaxin-3 positive synaptic terminals in the medial amygdala, BST and endopiriform nucleus of amygdala. Our findings demonstrate the existence of topographic NI and relaxin-3-containing projections to specific nuclei of the extended amygdala, consistent with a likely role for this putative integrative arousal system in the regulation of amygdala-dependent social and emotional behaviors.
Collapse
Affiliation(s)
- Fabio N Santos
- Departamento de Anatomía y Embriología Humana, Facultad de Medicina, Universitat ValenciaValencia, Spain; Centro de Ciências Biológicas e da Saúde, Universidade TiradentesAracaju, Brazil
| | - Celia W Pereira
- Departamento de Anatomía y Embriología Humana, Facultad de Medicina, Universitat ValenciaValencia, Spain; Centro de Ciências Biológicas e da Saúde, Universidade TiradentesAracaju, Brazil
| | | | - Marcos Otero-García
- Departamento de Anatomía y Embriología Humana, Facultad de Medicina, Universitat Valencia Valencia, Spain
| | - Sherie Ma
- The Florey Institute of Neuroscience and Mental Health Parkville, VIC, Australia
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia; Florey Department of Neuroscience and Mental Health and Department of Anatomy and Neuroscience, The University of MelbourneMelbourne, VIC, Australia
| | - Francisco E Olucha-Bordonau
- Departamento de Anatomía y Embriología Humana, Facultad de Medicina, Universitat ValenciaValencia, Spain; Unitat Predepartamental de Medicina, Universitat Jaume ICastellón, Spain
| |
Collapse
|
4
|
Donizetti A, Fiengo M, Iazzetti G, del Gaudio R, Di Giaimo R, Pariante P, Minucci S, Aniello F. Expression analysis of five zebrafish RXFP3 homologues reveals evolutionary conservation of gene expression pattern. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2014; 324:22-9. [PMID: 25384467 DOI: 10.1002/jez.b.22591] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 07/19/2014] [Indexed: 12/19/2022]
Abstract
Relaxin peptides exert different functions in reproduction and neuroendocrine processes via interaction with two evolutionarily unrelated groups of receptors: RXFP1 and RXFP2 on one hand, RXFP3 and RXFP4 on the other hand. Evolution of receptor genes after splitting of tetrapods and teleost lineage led to a different retention rate between mammals and fish, with the latter having more gene copies compared to the former. In order to improve our knowledge on the evolution of the relaxin ligands/receptors system and have insights on their function in early stages of life, in the present paper we analyzed the expression pattern of five zebrafish RXFP3 homologue genes during embryonic development. In our analysis, we show that only two of the five genes are expressed during embryogenesis and that their transcripts are present in all the developmental stages. Spatial localization analysis of these transcripts revealed that the gene expression is restricted in specific territories starting from early pharyngula stage. Both genes are expressed in the brain but in different cell clusters and in extra-neural territories, one gene in the interrenal gland and the other in the pancreas. These two genes share expression territories with the homologue mammalian counterpart, highlighting a general conservation of gene expression regulatory processes and their putative function during evolution that are established early in vertebrate embryogenesis.
Collapse
Affiliation(s)
- Aldo Donizetti
- Department of Biology, University of Naples Federico II, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Smith CM, Walker AW, Hosken IT, Chua BE, Zhang C, Haidar M, Gundlach AL. Relaxin-3/RXFP3 networks: an emerging target for the treatment of depression and other neuropsychiatric diseases? Front Pharmacol 2014; 5:46. [PMID: 24711793 PMCID: PMC3968750 DOI: 10.3389/fphar.2014.00046] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 02/28/2014] [Indexed: 12/17/2022] Open
Abstract
Animal and clinical studies of gene-environment interactions have helped elucidate the mechanisms involved in the pathophysiology of several mental illnesses including anxiety, depression, and schizophrenia; and have led to the discovery of improved treatments. The study of neuropeptides and their receptors is a parallel frontier of neuropsychopharmacology research and has revealed the involvement of several peptide systems in mental illnesses and identified novel targets for their treatment. Relaxin-3 is a newly discovered neuropeptide that binds, and activates the G-protein coupled receptor, RXFP3. Existing anatomical and functional evidence suggests relaxin-3 is an arousal transmitter which is highly responsive to environmental stimuli, particularly neurogenic stressors, and in turn modulates behavioral responses to these stressors and alters key neural processes, including hippocampal theta rhythm and associated learning and memory. Here, we review published experimental data on relaxin-3/RXFP3 systems in rodents, and attempt to highlight aspects that are relevant and/or potentially translatable to the etiology and treatment of major depression and anxiety. Evidence pertinent to autism spectrum and metabolism/eating disorders, or related psychiatric conditions, is also discussed. We also nominate some key experimental studies required to better establish the therapeutic potential of this intriguing neuromodulatory signaling system, including an examination of the impact of RXFP3 agonists and antagonists on the overall activity of distinct or common neural substrates and circuitry that are identified as dysfunctional in these debilitating brain diseases.
Collapse
Affiliation(s)
- Craig M Smith
- Peptide Neurobiology Laboratory, Neuropeptides Division, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne VIC, Australia ; Florey Department of Neuroscience and Mental Health, The University of Melbourne VIC, Australia
| | - Andrew W Walker
- Peptide Neurobiology Laboratory, Neuropeptides Division, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne VIC, Australia ; Florey Department of Neuroscience and Mental Health, The University of Melbourne VIC, Australia
| | - Ihaia T Hosken
- Peptide Neurobiology Laboratory, Neuropeptides Division, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne VIC, Australia ; Florey Department of Neuroscience and Mental Health, The University of Melbourne VIC, Australia
| | - Berenice E Chua
- Peptide Neurobiology Laboratory, Neuropeptides Division, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne VIC, Australia
| | - Cary Zhang
- Peptide Neurobiology Laboratory, Neuropeptides Division, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne VIC, Australia ; Florey Department of Neuroscience and Mental Health, The University of Melbourne VIC, Australia
| | - Mouna Haidar
- Peptide Neurobiology Laboratory, Neuropeptides Division, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne VIC, Australia ; Florey Department of Neuroscience and Mental Health, The University of Melbourne VIC, Australia
| | - Andrew L Gundlach
- Peptide Neurobiology Laboratory, Neuropeptides Division, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne VIC, Australia ; Florey Department of Neuroscience and Mental Health, The University of Melbourne VIC, Australia ; Department of Anatomy and Neuroscience, The University of Melbourne VIC, Australia
| |
Collapse
|
6
|
Fiengo M, del Gaudio R, Iazzetti G, Di Giaimo R, Minucci S, Aniello F, Donizetti A. Developmental expression pattern of two zebrafish rxfp3 paralogue genes. Dev Growth Differ 2013; 55:766-75. [PMID: 24147554 DOI: 10.1111/dgd.12093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 09/09/2013] [Accepted: 09/09/2013] [Indexed: 12/15/2022]
Abstract
In mammals, the RXFP3 is the cognate receptor of the relaxin-3 peptide (RLN3). In teleosts, many different orthologue genes for RXFP3 are present. In particular, two paralogue genes, rxfp3-2a and rxfp3-2b, likely encode the receptors for the Rln3a peptide. The transcription of these two rxfp3 genes is differentially regulated early during zebrafish embryogenesis. Indeed, reverse transcription-polymerase chain reaction analyses show that the rxfp3-2b transcript is always present during embryo development, while the rxfp3-2a transcript is detectable only at larval stage. By in situ hybridization experiments on embryos and larvae, the rxfp3-2b transcript was revealed in the brain and in the retinal ganglion cell layer and thymus. Particularly in the brain, many territories are involved in the rxfp3-2b expression, among them the optic tectum, thalamus, preoptic area, different nerve nuclei, habenula and pineal gland. The RXFP3 spatiotemporal expression pattern appears to be conserved between Danio rerio and mammals, as also previously showed for the corresponding ligand, the RLN3. Interestingly, the brain areas expressing the rxfp3-2b receptor gene are involved in the visual system, emotional behaviors and circadian rhythm and could be functionally related to the neurotransmitter Rln3a-expressing territories.
Collapse
Affiliation(s)
- Marcella Fiengo
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126, Italy
| | - Rosanna del Gaudio
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126, Italy
| | - Giovanni Iazzetti
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126, Italy
| | - Rossella Di Giaimo
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126, Italy
| | - Sergio Minucci
- Department of Experimental Medicine, Second University of Naples, Via Costantinopoli 16, Naples, 80138, Italy
| | - Francesco Aniello
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126, Italy
| | - Aldo Donizetti
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126, Italy
| |
Collapse
|
7
|
Ganella DE, Ma S, Gundlach AL. Relaxin-3/RXFP3 Signaling and Neuroendocrine Function - A Perspective on Extrinsic Hypothalamic Control. Front Endocrinol (Lausanne) 2013; 4:128. [PMID: 24065955 PMCID: PMC3776160 DOI: 10.3389/fendo.2013.00128] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 09/02/2013] [Indexed: 01/08/2023] Open
Abstract
Complex neural circuits within the hypothalamus that govern essential autonomic processes and associated behaviors signal using amino acid and monoamine transmitters and a variety of neuropeptide (hormone) modulators, often via G-protein coupled receptors (GPCRs) and associated cellular pathways. Relaxin-3 is a recently identified neuropeptide that is highly conserved throughout evolution. Neurons expressing relaxin-3 are located in the brainstem, but broadly innervate the entire limbic system including the hypothalamus. Extensive anatomical data in rodents and non-human primate, and recent regulatory and functional data, suggest relaxin-3 signaling via its cognate GPCR, RXFP3, has a broad range of effects on neuroendocrine function associated with stress responses, feeding and metabolism, motivation and reward, and possibly sexual behavior and reproduction. Therefore, this article aims to highlight the growing appreciation of the relaxin-3/RXFP3 system as an important "extrinsic" regulator of the neuroendocrine axis by reviewing its neuroanatomy and its putative roles in arousal-, stress-, and feeding-related behaviors and links to associated neural substrates and signaling networks. Current evidence identifies RXFP3 as a potential therapeutic target for treatment of neuroendocrine disorders and related behavioral dysfunction.
Collapse
Affiliation(s)
- Despina E. Ganella
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Sherie Ma
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Andrew L. Gundlach
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Bathgate RAD, Halls ML, van der Westhuizen ET, Callander GE, Kocan M, Summers RJ. Relaxin family peptides and their receptors. Physiol Rev 2013; 93:405-80. [PMID: 23303914 DOI: 10.1152/physrev.00001.2012] [Citation(s) in RCA: 379] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
There are seven relaxin family peptides that are all structurally related to insulin. Relaxin has many roles in female and male reproduction, as a neuropeptide in the central nervous system, as a vasodilator and cardiac stimulant in the cardiovascular system, and as an antifibrotic agent. Insulin-like peptide-3 (INSL3) has clearly defined specialist roles in male and female reproduction, relaxin-3 is primarily a neuropeptide involved in stress and metabolic control, and INSL5 is widely distributed particularly in the gastrointestinal tract. Although they are structurally related to insulin, the relaxin family peptides produce their physiological effects by activating a group of four G protein-coupled receptors (GPCRs), relaxin family peptide receptors 1-4 (RXFP1-4). Relaxin and INSL3 are the cognate ligands for RXFP1 and RXFP2, respectively, that are leucine-rich repeat containing GPCRs. RXFP1 activates a wide spectrum of signaling pathways to generate second messengers that include cAMP and nitric oxide, whereas RXFP2 activates a subset of these pathways. Relaxin-3 and INSL5 are the cognate ligands for RXFP3 and RXFP4 that are closely related to small peptide receptors that when activated inhibit cAMP production and activate MAP kinases. Although there are still many unanswered questions regarding the mode of action of relaxin family peptides, it is clear that they have important physiological roles that could be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- R A D Bathgate
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology, Monash University, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
9
|
Alvarez-Jaimes L, Sutton SW, Nepomuceno D, Motley ST, Cik M, Stocking E, Shoblock J, Bonaventure P. In vitro pharmacological characterization of RXFP3 allosterism: an example of probe dependency. PLoS One 2012; 7:e30792. [PMID: 22347403 PMCID: PMC3274524 DOI: 10.1371/journal.pone.0030792] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 12/29/2011] [Indexed: 11/18/2022] Open
Abstract
Recent findings suggest that the relaxin-3 neural network may represent a new ascending arousal pathway able to modulate a range of neural circuits including those affecting circadian rhythm and sleep/wake states, spatial and emotional memory, motivation and reward, the response to stress, and feeding and metabolism. Therefore, the relaxin-3 receptor (RXFP3) is a potential therapeutic target for the treatment of various CNS diseases. Here we describe a novel selective RXFP3 receptor positive allosteric modulator (PAM), 3-[3,5-Bis(trifluoromethyl)phenyl]-1-(3,4-dichlorobenzyl)-1-[2-(5-methoxy-1H-indol-3-yl)ethyl]urea (135PAM1). Calcium mobilization and cAMP accumulation assays in cell lines expressing the cloned human RXFP3 receptor show the compound does not directly activate RXFP3 receptor but increases functional responses to amidated relaxin-3 or R3/I5, a chimera of the INSL5 A chain and the Relaxin-3 B chain. 135PAM1 increases calcium mobilization in the presence of relaxin-3(NH2) and R3/I5(NH2) with pEC50 values of 6.54 (6.46 to 6.64) and 6.07 (5.94 to 6.20), respectively. In the cAMP accumulation assay, 135PAM1 inhibits the CRE response to forskolin with a pIC50 of 6.12 (5.98 to 6.27) in the presence of a probe (10 nM) concentration of relaxin-3(NH2). 135PAM1 does not compete for binding with the orthosteric radioligand, [(125)I] R3I5 (amide), in membranes prepared from cells expressing the cloned human RXFP3 receptor. 135PAM1 is selective for RXFP3 over RXFP4, which also responds to relaxin-3. However, when using the free acid (native) form of relaxin-3 or R3/I5, 135PAM1 doesn't activate RXFP3 indicating that the compound's effect is probe dependent. Thus one can exchange the entire A-chain of the probe peptide while retaining PAM activity, but the state of the probe's c-terminus is crucial to allosteric activity of the PAM. These data demonstrate the existence of an allosteric site for modulation of this GPCR as well as the subtlety of changes in probe molecules that can affect allosteric modulation of RXFP3.
Collapse
Affiliation(s)
- Lily Alvarez-Jaimes
- Janssen Pharmaceutical Companies of Johnson & Johnson, San Diego, California, United States of America
| | - Steven W. Sutton
- Janssen Pharmaceutical Companies of Johnson & Johnson, San Diego, California, United States of America
| | - Diane Nepomuceno
- Janssen Pharmaceutical Companies of Johnson & Johnson, San Diego, California, United States of America
| | - S. Timothy Motley
- Janssen Pharmaceutical Companies of Johnson & Johnson, San Diego, California, United States of America
| | - Miroslav Cik
- Janssen Pharmaceutical Companies of Johnson & Johnson, San Diego, California, United States of America
| | - Emily Stocking
- Janssen Pharmaceutical Companies of Johnson & Johnson, San Diego, California, United States of America
| | - James Shoblock
- Janssen Pharmaceutical Companies of Johnson & Johnson, San Diego, California, United States of America
| | - Pascal Bonaventure
- Janssen Pharmaceutical Companies of Johnson & Johnson, San Diego, California, United States of America
| |
Collapse
|
10
|
Smith CM, Ryan PJ, Hosken IT, Ma S, Gundlach AL. Relaxin-3 systems in the brain—The first 10 years. J Chem Neuroanat 2011; 42:262-75. [DOI: 10.1016/j.jchemneu.2011.05.013] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 05/24/2011] [Accepted: 05/29/2011] [Indexed: 12/25/2022]
|
11
|
Smith CM, Shen PJ, Banerjee A, Bonaventure P, Ma S, Bathgate RAD, Sutton SW, Gundlach AL. Distribution of relaxin-3 and RXFP3 within arousal, stress, affective, and cognitive circuits of mouse brain. J Comp Neurol 2010; 518:4016-45. [PMID: 20737598 DOI: 10.1002/cne.22442] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Relaxin-3 (RLN3) and its native receptor, relaxin family peptide 3 receptor (RXFP3), constitute a newly identified neuropeptide system enriched in mammalian brain. The distribution of RLN3/RXFP3 networks in rat brain and recent experimental studies suggest a role for this system in modulation of arousal, stress, metabolism, and cognition. In order to facilitate exploration of the biology of RLN3/RXFP3 in complementary murine models, this study mapped the neuroanatomical distribution of the RLN3/RXFP3 system in mouse brain. Adult, male wildtype and RLN3 knock-out (KO)/LacZ knock-in (KI) mice were used to map the central distribution of RLN3 gene expression and RLN3-like immunoreactivity (-LI). The distribution of RXFP3 mRNA and protein was determined using [(35)S]-oligonucleotide probes and a radiolabeled RXFP3-selective agonist ([(125)I]-R3/I5), respectively. High densities of neurons expressing RLN3 mRNA, RLN3-associated beta-galactosidase activity and RLN3-LI were detected in the nucleus incertus (or nucleus O), while smaller populations of positive neurons were observed in the pontine raphé, the periaqueductal gray and a region adjacent to the lateral substantia nigra. RLN3-LI was observed in nerve fibers/terminals in nucleus incertus and broadly throughout the pons, midbrain, hypothalamus, thalamus, septum, hippocampus, and neocortex, but was absent in RLN3 KO/LacZ KI mice. This RLN3 neural network overlapped the regional distribution of RXFP3 mRNA and [(125)I]-R3/I5 binding sites in wildtype and RLN3 KO/LacZ KI mice. These findings provide further evidence for the conserved nature of RLN3/RXFP3 systems in mammalian brain and the ability of RLN3/RXFP3 signaling to modulate "behavioral state" and an array of circuits involved in arousal, stress responses, affective state, and cognition.
Collapse
Affiliation(s)
- Craig M Smith
- Florey Neuroscience Institutes, The University of Melbourne, Victoria 3010, Australia
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Relaxin-3/INSL7 Regulates the Stress-response System in the Rat Hypothalamus. J Mol Neurosci 2010; 43:169-74. [DOI: 10.1007/s12031-010-9468-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 10/27/2010] [Indexed: 11/25/2022]
|
13
|
Sutton SW, Shelton J, Smith C, Williams J, Yun S, Motley T, Kuei C, Bonaventure P, Gundlach A, Liu C, Lovenberg T. Metabolic and Neuroendocrine Responses to RXFP3 Modulation in the Central Nervous System. Ann N Y Acad Sci 2009; 1160:242-9. [DOI: 10.1111/j.1749-6632.2008.03812.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Miyamoto Y, Watanabe Y, Tanaka M. Developmental expression and serotonergic regulation of relaxin 3/INSL7 in the nucleus incertus of rat brain. ACTA ACUST UNITED AC 2008; 145:54-9. [PMID: 17870193 DOI: 10.1016/j.regpep.2007.08.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Relaxin 3 or insulin like peptide 7 has been identified as a new member of the insulin/relaxin superfamily. We recently reported that relaxin 3 was dominantly expressed in the brain, particularly in neurons of the nucleus incertus (NI) of the median dorsal tegmental pons and that it might act as a neurotransmitter. In the present study we investigated the developmental expression and serotonergic regulation of relaxin 3 gene in the rat brain. Relaxin 3 mRNA appeared at embryonic day 18 in the near region of the fourth ventricle, and was shown to have increased its density and the number of expressing neurons by in situ hybridization and RT-PCR examination. Relaxin 3 peptide was detected after birth by immunocytochemistry. Since the NI is located just caudal to the dorsal raphe nucleus where abundant serotonin (5-HT) neurons are present, we examined if 5-HT effects on the expression of relaxin 3. Relaxin 3 gene expression in the NI significantly increased after 5-HT depletion by p-chlorophenylalanine (PCPA) administration. We also observed the 5-HT1A receptor localization in relaxin 3 positive neurons of the NI. This result suggests that 5-HT negatively regulates the expression of relaxin 3 gene in the NI. The function of relaxin 3 neurons in the brain is influenced by the serotonergic activity.
Collapse
Affiliation(s)
- Yasumasa Miyamoto
- Department of Anatomy and Developmental Biology, Kyoto Prefectural University of Medicine, Kawaramachi-Hirokoji, Kamikyo-ku, Kyoto 602-0841, Japan
| | | | | |
Collapse
|
15
|
Kuei C, Sutton S, Bonaventure P, Pudiak C, Shelton J, Zhu J, Nepomuceno D, Wu J, Chen J, Kamme F, Seierstad M, Hack MD, Bathgate RAD, Hossain MA, Wade JD, Atack J, Lovenberg TW, Liu C. R3(BDelta23 27)R/I5 chimeric peptide, a selective antagonist for GPCR135 and GPCR142 over relaxin receptor LGR7: in vitro and in vivo characterization. J Biol Chem 2007; 282:25425-35. [PMID: 17606621 DOI: 10.1074/jbc.m701416200] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Both relaxin-3 and its receptor (GPCR135) are expressed predominantly in brain regions known to play important roles in processing sensory signals. Recent studies have shown that relaxin-3 is involved in the regulation of stress and feeding behaviors. The mechanisms underlying the involvement of relaxin-3/GPCR135 in the regulation of stress, feeding, and other potential functions remain to be studied. Because relaxin-3 also activates the relaxin receptor (LGR7), which is also expressed in the brain, selective GPCR135 agonists and antagonists are crucial to the study of the physiological functions of relaxin-3 and GPCR135 in vivo. Previously, we reported the creation of a selective GPCR135 agonist (a chimeric relaxin-3/INSL5 peptide designated R3/I5). In this report, we describe the creation of a high affinity antagonist for GPCR135 and GPCR142 over LGR7. This GPCR135 antagonist, R3(BDelta23-27)R/I5, consists of the relaxin-3 B-chain with a replacement of Gly23 to Arg, a truncation at the C terminus (Gly24-Trp27 deleted), and the A-chain of INSL5. In vitro pharmacological studies showed that R3(BDelta23-27)R/I5 binds to human GPCR135 (IC50=0.67 nM) and GPCR142 (IC50=2.29 nM) with high affinity and is a potent functional GPCR135 antagonist (pA2=9.15) but is not a human LGR7 ligand. Furthermore, R3(BDelta23-27)R/I5 had a similar binding profile at the rat GPCR135 receptor (IC50=0.25 nM, pA2=9.6) and lacked affinity for the rat LGR7 receptor. When administered to rats intracerebroventricularly, R3(BDelta23-27)R/I5 blocked food intake induced by the GPCR135 selective agonist R3/I5. Thus, R3(BDelta23-27)R/I5 should prove a useful tool for the further delineation of the functions of the relaxin-3/GPCR135 system.
Collapse
Affiliation(s)
- Chester Kuei
- Johnson & Johnson Pharmaceutical Research and Development, LLC, San Diego, California 92121, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Süsens U, Hermans-Borgmeyer I, Urny J, Schaller HC. Characterisation and differential expression of two very closely related G-protein-coupled receptors, GPR139 and GPR142, in mouse tissue and during mouse development. Neuropharmacology 2006; 50:512-20. [PMID: 16378626 DOI: 10.1016/j.neuropharm.2005.11.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Revised: 10/31/2005] [Accepted: 11/02/2005] [Indexed: 11/17/2022]
Abstract
By searching the human and mouse genomic databases we found two G-protein-coupled receptors, GPR139 and GPR142, with characteristic motifs of the rhodopsin family of receptors. The gene for GPR139 maps to chromosome 7F1 of mouse and 16p12.3 of human and that for GPR142 to 11E2 of mouse and 17q25.1 of human. We isolated GPR139 from a cDNA library of adult mouse brain and GPR142 from a cDNA library of brains from 15-day-old mouse embryos. GPR139 mRNA was predominantly expressed in specific areas of human and mouse brains, whereas GPR142 mRNA showed a more ubiquitous expression both in the brain and in various peripheral glands and organs. A 50% identity and a 67% homology at the amino-acid level between the two receptors and only 20-25% identity with other G-protein-coupled receptors established them as a new subbranch within the phylogenetic tree and hints at a common or similar ligand(s). Preliminary results suggest that the cognate ligand is present in brain extracts and is, most likely, a small peptide. GPR139 signal transduction in Chinese hamster ovary cells requires coupling to an inhibitory G-protein and is mediated by phospholipase C. Dimer formation may be necessary for proper function.
Collapse
Affiliation(s)
- Ute Süsens
- Zentrum für Molekulare Neurobiologie, Universität Hamburg, Germany
| | | | | | | |
Collapse
|
17
|
Sutton SW, Bonaventure P, Kuei C, Nepomuceno D, Wu J, Zhu J, Lovenberg TW, Liu C. G-protein-coupled receptor (GPCR)-142 does not contribute to relaxin-3 binding in the mouse brain: further support that relaxin-3 is the physiological ligand for GPCR135. Neuroendocrinology 2005; 82:139-50. [PMID: 16679775 DOI: 10.1159/000091267] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Accepted: 12/13/2005] [Indexed: 11/19/2022]
Abstract
Relaxin-3 is a recently discovered member of the insulin/relaxin superfamily that has been shown to be the endogenous ligand for G-protein-coupled receptor (GPCR)135 (SALPR). In addition, relaxin-3 has demonstrated affinity and functional agonism for GPCR142 (GPR100) and LGR7 receptors in vitro. Recent evidence suggests GPCR142 is the insulin-like peptide 5 (INSL5) receptor and LGR7 is the actual relaxin receptor. We have recently described a chimeric R3/I5 peptide that selectively activates GPCR135 and GPCR142, but lacks affinity for LGR7. GPCR142 is a pseudogene in the rat, which allowed the use of [(125)I]-R3/I5 to show GPCR135-like binding sites in the rat central nervous system by autoradiography. However, mouse GPCR142 is a viable gene. In the present study we explore whether GPCR142 is expressed in the mouse brain and whether it is likely to contribute to or interfere with the pharmacological evaluation of relaxin-3 ligands. Competition binding studies confirmed mINSL5 and [(125)I]-mINSL5 bind to mGPCR142 with high affinity. However, no detectable specific [(125)I]-mINSL5 binding sites were detected throughout the mouse brain and unlabelled INSL5 did not displace [(125)I]-R3/I5 binding sites, indicating an absence of detectable GPCR142 binding sites. Consistent with these findings, neither GPCR142 nor INSL5 mRNA were detectable in mouse brain by in situ hybridization. Overall, the distribution of GPCR135 mRNA overlapped with the distribution of GPCR135 binding sites shown by autoradiography using [(125)I]-R3/I5. GPCR135 mRNA and GPCR135 receptor binding sites are most prominent in the mouse amygdala and hypothalamus. These data suggest that relaxin-3/GPCR135 is the receptor ligand pair with physiological relevance in mouse brain.
Collapse
Affiliation(s)
- Steven W Sutton
- Johnson & Johnson Pharmaceutical Research & Development, LLC, San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Sutton SW, Bonaventure P, Kuei C, Roland B, Chen J, Nepomuceno D, Lovenberg TW, Liu C. Distribution of G-protein-coupled receptor (GPCR)135 binding sites and receptor mRNA in the rat brain suggests a role for relaxin-3 in neuroendocrine and sensory processing. Neuroendocrinology 2004; 80:298-307. [PMID: 15677880 DOI: 10.1159/000083656] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Accepted: 11/23/2004] [Indexed: 11/19/2022]
Abstract
G-protein-coupled receptor 135 (GPCR135), a former orphan GPCR also known as SALPR, has recently been shown to be modulated by relaxin-3 (R3). In addition to GPCR135, R3 has been shown to be an agonist for GPCR142 (which is a pseudogene in the rat) and to activate LGR7, which is primarily the receptor for relaxin-1/2. The interaction of R3 with LGR7 has confounded the autoradiographic study of the GPCR135 distribution in the rat CNS due to significant expression of LGR7 in the brain. R3/I5, a chimera of the B-chain of R3 bonded to the A-chain of INSL-5, is a specific GPCR135 agonist which is highly selective for GPCR135 over LGR7. [(125)I]R3/I5 specifically binds to sites on rat brain sections with a pharmacology matching results from membrane preparations of recombinant GPCR135 receptors. Autoradiographic studies show the GPCR135 receptor density is most prominent in areas such as the olfactory bulb, sensory cortex, amygdala, thalamus, paraventricular nucleus, supraoptic nucleus, inferior and superior colliculus. The GPCR135 mRNA distribution generally overlaps the pattern of GPCR135 binding sites shown by autoradiography using [(125)I]R3/I5. The nucleus incertus, which has been implicated in the extrapituitary actions of corticotropin-releasing hormone, is the primary source of R3 in the rat central nervous system and expresses GPCR135 receptors. These binding autoradiography and in situ hybridization data suggest that GPCR135 plays an important role in the central processing of sensory signals in rats, are consistent with a putative role for R3/GPCR135 as modulators of stress responses, and confirm the identity of R3 as the central nervous system ligand for GPCR135.
Collapse
Affiliation(s)
- Steven W Sutton
- Neuroscience Group, Johnson & Johnson Pharmaceutical Research and Development, LLC, 3210 Merryfield Row, San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | |
Collapse
|