1
|
Najera P, Dratler OA, Mai AB, Elizarraras M, Vanchinathan R, Gonzales CA, Meisel RP. Testis- and ovary-expressed polo-like kinase transcripts and gene duplications affect male fertility when expressed in the Drosophila melanogaster germline. G3 (BETHESDA, MD.) 2025; 15:jkae273. [PMID: 39566185 PMCID: PMC11708218 DOI: 10.1093/g3journal/jkae273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/22/2024] [Indexed: 11/22/2024]
Abstract
Polo-like kinases (Plks) are essential for spindle attachment to the kinetochore during prophase and the subsequent dissociation after anaphase in both mitosis and meiosis. There are structural differences in the spindle apparatus among mitosis, male meiosis, and female meiosis. It is therefore possible that alleles of Plk genes could improve kinetochore attachment or dissociation in spermatogenesis or oogenesis, but not both. These opposing effects could result in sexually antagonistic selection at Plk loci. In addition, Plk genes have been independently duplicated in many different evolutionary lineages within animals. This raises the possibility that Plk gene duplication may resolve sexual conflicts over mitotic and meiotic functions. We investigated this hypothesis by comparing the evolution, gene expression, and functional effects of the single Plk gene in Drosophila melanogaster (polo) and the duplicated Plks in D. pseudoobscura (Dpse-polo and Dpse-polo-dup1). Dpse-polo-dup1 is expressed primarily in testis, while other Drosophila Plk genes have broader expression profiles. We found that the protein-coding sequence of Dpse-polo-dup1 is evolving significantly faster than a canonical polo gene across all functional domains, yet the essential structure of the encoded protein has been retained. We present additional evidence that the faster evolution of Dpse-polo-dup1 is driven by the adaptive fixation of amino acid substitutions. We also found that over or ectopic expression of polo or Dpse-polo in the D. melanogaster male germline resulted in greater male infertility than expression of Dpse-polo-dup1. Last, expression of Dpse-polo or an ovary-derived transcript of polo in the male germline caused males to sire female-biased broods, suggesting that some Plk transcripts can affect the meiotic transmission of the sex chromosomes in the male germline. However, there was no sex bias in the progeny when Dpse-polo-dup1 was ectopically expressed, or a testis-derived transcript of polo was overexpressed in the D. melanogaster male germline. Our results therefore suggest that Dpse-polo-dup1 may have experienced positive selection to improve its regulation of the male meiotic spindle, resolving sexual conflict over meiotic Plk functions. Alternatively, Dpse-polo-dup1 may encode a hypomorphic Plk that has reduced deleterious effects when overexpressed in the male germline. Similarly, testis transcripts of D. melanogaster polo may be optimized for regulating the male meiotic spindle, and we provide evidence that the untranslated regions of the polo transcript may be involved in sex-specific germline functions.
Collapse
Affiliation(s)
- Paola Najera
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Olivia A Dratler
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Alexander B Mai
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Miguel Elizarraras
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Rahul Vanchinathan
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | | | - Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
2
|
Galander S, Marston AL. Meiosis I Kinase Regulators: Conserved Orchestrators of Reductional Chromosome Segregation. Bioessays 2020; 42:e2000018. [PMID: 32761854 PMCID: PMC7116124 DOI: 10.1002/bies.202000018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 06/15/2020] [Indexed: 12/19/2022]
Abstract
Research over the last two decades has identified a group of meiosis-specific proteins, consisting of budding yeast Spo13, fission yeast Moa1, mouse MEIKIN, and Drosophila Mtrm, with essential functions in meiotic chromosome segregation. These proteins, which we call meiosis I kinase regulators (MOKIRs), mediate two major adaptations to the meiotic cell cycle to allow the generation of haploid gametes from diploid mother cells. Firstly, they promote the segregation of homologous chromosomes in meiosis I (reductional division) by ensuring that sister kinetochores face towards the same pole (mono-orientation). Secondly, they safeguard the timely separation of sister chromatids in meiosis II (equational division) by counteracting the premature removal of pericentromeric cohesin, and thus prevent the formation of aneuploid gametes. Although MOKIRs bear no obvious sequence similarity, they appear to play functionally conserved roles in regulating meiotic kinases. Here, the known functions of MOKIRs are reviewed and their possible mechanisms of action are discussed. Also see the video abstract here https://youtu.be/tLE9KL89bwk.
Collapse
Affiliation(s)
- Stefan Galander
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, Michael Swann Building, Max Born Crescent, Edinburgh, EH9 3BF UK
| | - Adèle L Marston
- The Wellcome Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, Michael Swann Building, Max Born Crescent, Edinburgh, EH9 3BF UK
| |
Collapse
|
3
|
Bonner AM, Hughes SE, Hawley RS. Regulation of Polo Kinase by Matrimony Is Required for Cohesin Maintenance during Drosophila melanogaster Female Meiosis. Curr Biol 2020; 30:715-722.e3. [PMID: 32008903 DOI: 10.1016/j.cub.2019.12.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/08/2019] [Accepted: 12/09/2019] [Indexed: 02/06/2023]
Abstract
Polo-like kinases (PLKs) have numerous roles in both mitosis and meiosis, including functions related to chromosome segregation, cohesin removal, and kinetochore orientation [1-7]. PLKs require specific regulation during meiosis to control those processes. Genetic studies demonstrate that the Drosophila PLK Polo kinase (Polo) is inhibited by the female meiosis-specific protein Matrimony (Mtrm) in a stoichiometric manner [8]. Drosophila Polo localizes strongly to kinetochores and to central spindle microtubules during prometaphase and metaphase I of female meiosis [9, 10]. Mtrm protein levels increase dramatically after nuclear envelope breakdown [11]. We show that Mtrm is enriched along the meiotic spindle and that loss of mtrm results in mislocalization of the catalytically active form of Polo. The mtrm gene is haploinsufficient, and heterozygosity for mtrm (mtrm/+) results in high levels of achiasmate chromosome missegregation [8, 12]. In mtrm/+ heterozygotes, there is a low level of sister centromere separation, as well as precocious loss of cohesion along the arms of achiasmate chromosomes. However, mtrm-null females are sterile [13], and sister chromatid cohesion is abolished on all chromosomes, leading to a failure to properly congress or orient chromosomes in metaphase I. These data demonstrate a requirement for the inhibition of Polo, perhaps by sequestering Polo to the microtubules during Drosophila melanogaster female meiosis and suggest that catalytically active Polo is a distinct subset of the total Polo population within the oocyte that requires its own regulation.
Collapse
Affiliation(s)
- Amanda M Bonner
- Stowers Institute for Medical Research, 1000 E. 50(th) Street, Kansas City, MO 64110, USA
| | - Stacie E Hughes
- Stowers Institute for Medical Research, 1000 E. 50(th) Street, Kansas City, MO 64110, USA
| | - R Scott Hawley
- Stowers Institute for Medical Research, 1000 E. 50(th) Street, Kansas City, MO 64110, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA.
| |
Collapse
|
4
|
de Cárcer G, Venkateswaran SV, Salgueiro L, El Bakkali A, Somogyi K, Rowald K, Montañés P, Sanclemente M, Escobar B, de Martino A, McGranahan N, Malumbres M, Sotillo R. Plk1 overexpression induces chromosomal instability and suppresses tumor development. Nat Commun 2018; 9:3012. [PMID: 30069007 PMCID: PMC6070485 DOI: 10.1038/s41467-018-05429-5] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 07/06/2018] [Indexed: 02/06/2023] Open
Abstract
Polo-like kinase 1 (Plk1) is overexpressed in a wide spectrum of human tumors, being frequently considered as an oncogene and an attractive cancer target. However, its contribution to tumor development is unclear. Using a new inducible knock-in mouse model we report here that Plk1 overexpression results in abnormal chromosome segregation and cytokinesis, generating polyploid cells with reduced proliferative potential. Mechanistically, these cytokinesis defects correlate with defective loading of Cep55 and ESCRT complexes to the abscission bridge, in a Plk1 kinase-dependent manner. In vivo, Plk1 overexpression prevents the development of Kras-induced and Her2-induced mammary gland tumors, in the presence of increased rates of chromosome instability. In patients, Plk1 overexpression correlates with improved survival in specific breast cancer subtypes. Therefore, despite the therapeutic benefits of inhibiting Plk1 due to its essential role in tumor cell cycles, Plk1 overexpression has tumor-suppressive properties by perturbing mitotic progression and cytokinesis.
Collapse
Affiliation(s)
- Guillermo de Cárcer
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain.
| | - Sharavan Vishaan Venkateswaran
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, 69117, Heidelberg, Germany
| | - Lorena Salgueiro
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Aicha El Bakkali
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain
| | - Kalman Somogyi
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Konstantina Rowald
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Pablo Montañés
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain
| | - Manuel Sanclemente
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain
| | - Beatriz Escobar
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain
| | - Alba de Martino
- Histopathology Unit, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Center of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
| | - Marcos Malumbres
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain.
| | - Rocío Sotillo
- Division of Molecular Thoracic Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
- Translational Lung Research Center Heidelberg (TRLC), German Center for Lung Research (DZL), Heidelberg, Germany.
| |
Collapse
|
5
|
Drosophila protein phosphatases 2A B' Wdb and Wrd regulate meiotic centromere localization and function of the MEI-S332 Shugoshin. Proc Natl Acad Sci U S A 2017; 114:12988-12993. [PMID: 29158400 PMCID: PMC5724294 DOI: 10.1073/pnas.1718450114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Proper segregation of chromosomes in meiosis is essential to prevent miscarriages and birth defects. This requires that sister chromatids maintain cohesion at the centromere as cohesion is released on the chromatid arms when the homologs segregate at anaphase I. The Shugoshin proteins preserve centromere cohesion by protecting the cohesin complex from cleavage, and this has been shown in yeasts to be mediated by recruitment of the protein phosphatase 2A B' (PP2A B'). In metazoans, delineation of the role of PP2A B' in meiosis has been hindered by its myriad of other essential roles. The Drosophila Shugoshin MEI-S332 can bind directly to both of the B' regulatory subunits of PP2A, Wdb and Wrd, in yeast two-hybrid experiments. Exploiting experimental advantages of Drosophila spermatogenesis, we found that the Wdb subunit localizes first along chromosomes in meiosis I, becoming restricted to the centromere region as MEI-S332 binds. Wdb and MEI-S332 show colocalization at the centromere region until release of sister-chromatid cohesion at the metaphase II/anaphase II transition. MEI-S332 is necessary for Wdb localization, but, additionally, both Wdb and Wrd are required for MEI-S332 localization. Thus, rather than MEI-S332 being hierarchical to PP2A B', these proteins reciprocally ensure centromere localization of the complex. We analyzed functional relationships between MEI-S332 and the two forms of PP2A by quantifying meiotic chromosome segregation defects in double or triple mutants. These studies revealed that both Wdb and Wrd contribute to MEI-S332's ability to ensure accurate segregation of sister chromatids, but, as in centromere localization, they do not act solely downstream of MEI-S332.
Collapse
|
6
|
Krishnan S, Smits AH, Vermeulen M, Reinberg D. Phospho-H1 Decorates the Inter-chromatid Axis and Is Evicted along with Shugoshin by SET during Mitosis. Mol Cell 2017; 67:579-593.e6. [PMID: 28781233 PMCID: PMC5562512 DOI: 10.1016/j.molcel.2017.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 04/26/2017] [Accepted: 07/06/2017] [Indexed: 12/22/2022]
Abstract
Precise control of sister chromatid separation during mitosis is pivotal to maintaining genomic integrity. Yet, the regulatory mechanisms involved are not well understood. Remarkably, we discovered that linker histone H1 phosphorylated at S/T18 decorated the inter-chromatid axial DNA on mitotic chromosomes. Sister chromatid resolution during mitosis required the eviction of such H1S/T18ph by the chaperone SET, with this process being independent of and most likely downstream of arm-cohesin dissociation. SET also directed the disassembly of Shugoshins in a polo-like kinase 1-augmented manner, aiding centromere resolution. SET ablation compromised mitotic fidelity as evidenced by unresolved sister chromatids with marked accumulation of H1S/T18ph and centromeric Shugoshin. Thus, chaperone-assisted eviction of linker histones and Shugoshins is a fundamental step in mammalian mitotic progression. Our findings also elucidate the functional implications of the decades-old observation of mitotic linker histone phosphorylation, serving as a paradigm to explore the role of linker histones in bio-signaling processes.
Collapse
Affiliation(s)
- Swathi Krishnan
- Howard Hughes Medical Institute, New York University Langone School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY 10016, USA
| | - Arne H Smits
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands
| | - Danny Reinberg
- Howard Hughes Medical Institute, New York University Langone School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, New York University Langone School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
7
|
Abstract
The shugoshin/Mei-S332 family are proteins that associate with the chromosomal region surrounding the centromere (the pericentromere) and that play multiple and distinct roles in ensuring the accuracy of chromosome segregation during both mitosis and meiosis. The underlying role of shugoshins appears to be to serve as pericentromeric adaptor proteins that recruit several different effectors to this region of the chromosome to regulate processes critical for chromosome segregation. Crucially, shugoshins undergo changes in their localization in response to the tension that is exerted on sister chromosomes by the forces of the spindle that will pull them apart. This has led to the idea that shugoshins provide a platform for activities required at the pericentromere only when sister chromosomes lack tension. Conversely, disassembly of the shugoshin pericentromeric platform may provide a signal that sister chromosomes are under tension. Here the functions and regulation of these important tension-sensitive pericentromeric proteins are discussed.
Collapse
|
8
|
Abstract
Meiosis entails sorting and separating both homologous and sister chromatids. The mechanisms for connecting sister chromatids and homologs during meiosis are highly conserved and include specialized forms of the cohesin complex and a tightly regulated homolog synapsis/recombination pathway designed to yield regular crossovers between homologous chromatids. Drosophila male meiosis is of special interest because it dispenses with large segments of the standard meiotic script, particularly recombination, synapsis and the associated structures. Instead, Drosophila relies on a unique protein complex composed of at least two novel proteins, SNM and MNM, to provide stable connections between homologs during meiosis I. Sister chromatid cohesion in Drosophila is mediated by cohesins, ring-shaped complexes that entrap sister chromatids. However, unlike other eukaryotes Drosophila does not rely on the highly conserved Rec8 cohesin in meiosis, but instead utilizes two novel cohesion proteins, ORD and SOLO, which interact with the SMC1/3 cohesin components in providing meiotic cohesion.
Collapse
Affiliation(s)
- Bruce D McKee
- Department of Biochemistry, Cellular & Molecular Biology; University of Tennessee; Knoxville TN USA ; Genome Science and Technology Program; University of Tennessee; Knoxville TN USA
| | | | | |
Collapse
|
9
|
Nogueira C, Kashevsky H, Pinto B, Clarke A, Orr-Weaver TL. Regulation of centromere localization of the Drosophila Shugoshin MEI-S332 and sister-chromatid cohesion in meiosis. G3 (BETHESDA, MD.) 2014; 4:1849-58. [PMID: 25081981 PMCID: PMC4199692 DOI: 10.1534/g3.114.012823] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 07/24/2014] [Indexed: 11/18/2022]
Abstract
The Shugoshin (Sgo) protein family helps to ensure proper chromosome segregation by protecting cohesion at the centromere by preventing cleavage of the cohesin complex. Some Sgo proteins also influence other aspects of kinetochore-microtubule attachments. Although many Sgo members require Aurora B kinase to localize to the centromere, factors controlling delocalization are poorly understood and diverse. Moreover, it is not clear how Sgo function is inactivated and whether this is distinct from delocalization. We investigated these questions in Drosophila melanogaster, an organism with superb chromosome cytology to monitor Sgo localization and quantitative assays to test its function in sister-chromatid segregation in meiosis. Previous research showed that in mitosis in cell culture, phosphorylation of the Drosophila Sgo, MEI-S332, by Aurora B promotes centromere localization, whereas Polo phosphorylation promotes delocalization. These studies also suggested that MEI-S332 can be inactivated independently of delocalization, a conclusion supported here by localization and function studies in meiosis. Phosphoresistant and phosphomimetic mutants for the Aurora B and Polo phosphorylation sites were examined for effects on MEI-S332 localization and chromosome segregation in meiosis. Strikingly, MEI-S332 with a phosphomimetic mutation in the Aurora B phosphorylation site prematurely dissociates from the centromeres in meiosis I. Despite the absence of MEI-S332 on meiosis II centromeres in male meiosis, sister chromatids segregate normally, demonstrating that detectable levels of this Sgo are not essential for chromosome congression, kinetochore biorientation, or spindle assembly.
Collapse
Affiliation(s)
- Cristina Nogueira
- Whitehead Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142
| | - Helena Kashevsky
- Whitehead Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142
| | - Belinda Pinto
- Whitehead Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142
| | - Astrid Clarke
- Whitehead Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142
| | - Terry L Orr-Weaver
- Whitehead Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142 Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142
| |
Collapse
|
10
|
Riparbelli MG, Gottardo M, Glover DM, Callaini G. Inhibition of Polo kinase by BI2536 affects centriole separation during Drosophila male meiosis. Cell Cycle 2014; 13:2064-72. [PMID: 24802643 PMCID: PMC4111698 DOI: 10.4161/cc.29083] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 04/30/2014] [Accepted: 04/30/2014] [Indexed: 12/25/2022] Open
Abstract
Pharmacological inhibition of Drosophila Polo kinase with BI2536 has allowed us to re-examine the requirements for Polo during Drosophila male gametogenesis. BI2536-treated spermatocytes persisted in a pro-metaphase state without dividing and had condensed chromosomes that did not separate. Centrosomes failed to recruit γ-tubulin and centrosomin (Cnn) and were not associated with microtubule arrays that were abnormal and did not form proper bipolar spindles. Centrioles, which usually separate during the anaphase of the first meiosis, remained held together in a V-shaped configuration suggesting that Polo kinase regulates the proteolysis that breaks centriole linkage to ensure their disengagement. Despite these defects spermatid differentiation proceeds, leading to axoneme formation.
Collapse
Affiliation(s)
| | - Marco Gottardo
- Department of Life Sciences; University of Siena; Siena, Italy
| | - David M Glover
- Department of Genetics; University of Cambridge; Cambridge, UK
| | | |
Collapse
|
11
|
Mailhes JB, Marchetti F. Advances in understanding the genetic causes and mechanisms of female germ cell aneuploidy. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/eog.10.62] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Abstract
Genomic instability is a characteristic of most cancer cells. It is an increased tendency of genome alteration during cell division. Cancer frequently results from damage to multiple genes controlling cell division and tumor suppressors. It is known that genomic integrity is closely monitored by several surveillance mechanisms, DNA damage checkpoint, DNA repair machinery and mitotic checkpoint. A defect in the regulation of any of these mechanisms often results in genomic instability, which predisposes the cell to malignant transformation. Posttranslational modifications of the histone tails are closely associated with regulation of the cell cycle as well as chromatin structure. Nevertheless, DNA methylation status is also related to genomic integrity. We attempt to summarize recent developments in this field and discuss the debate of driving force of tumor initiation and progression.
Collapse
Affiliation(s)
- Yixin Yao
- Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, New York, 10987, USA
| | - Wei Dai
- Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, New York, 10987, USA. ; Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, Tuxedo, New York, 10987, USA
| |
Collapse
|
13
|
Moshkin YM, Doyen CM, Kan TW, Chalkley GE, Sap K, Bezstarosti K, Demmers JA, Ozgur Z, van Ijcken WFJ, Verrijzer CP. Histone chaperone NAP1 mediates sister chromatid resolution by counteracting protein phosphatase 2A. PLoS Genet 2013; 9:e1003719. [PMID: 24086141 PMCID: PMC3784504 DOI: 10.1371/journal.pgen.1003719] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 06/26/2013] [Indexed: 12/27/2022] Open
Abstract
Chromosome duplication and transmission into daughter cells requires the precisely orchestrated binding and release of cohesin. We found that the Drosophila histone chaperone NAP1 is required for cohesin release and sister chromatid resolution during mitosis. Genome-wide surveys revealed that NAP1 and cohesin co-localize at multiple genomic loci. Proteomic and biochemical analysis established that NAP1 associates with the full cohesin complex, but it also forms a separate complex with the cohesin subunit stromalin (SA). NAP1 binding to cohesin is cell-cycle regulated and increases during G2/M phase. This causes the dissociation of protein phosphatase 2A (PP2A) from cohesin, increased phosphorylation of SA and cohesin removal in early mitosis. PP2A depletion led to a loss of centromeric cohesion. The distinct mitotic phenotypes caused by the loss of either PP2A or NAP1, were both rescued by their concomitant depletion. We conclude that the balanced antagonism between NAP1 and PP2A controls cohesin dissociation during mitosis.
Collapse
Affiliation(s)
- Yuri M. Moshkin
- Department of Biochemistry and Centre for Biomedical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Cecile M. Doyen
- Department of Biochemistry and Centre for Biomedical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Tsung-Wai Kan
- Department of Biochemistry and Centre for Biomedical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Gillian E. Chalkley
- Department of Biochemistry and Centre for Biomedical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Karen Sap
- Proteomics Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Karel Bezstarosti
- Proteomics Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jeroen A. Demmers
- Proteomics Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Zeliha Ozgur
- Genomics Centre, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - C. Peter Verrijzer
- Department of Biochemistry and Centre for Biomedical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
14
|
Abstract
One of the key features of meiosis is that shugoshin in complex with protein phosphatase 2A (PP2A) protects centromeric cohesin during meiosis I, but not during meiosis II. A new model suggests that a PP2A inhibitor mediates deprotection of centromeric cohesin during meiosis II.
Collapse
|
15
|
Binding of Drosophila Polo kinase to its regulator Matrimony is noncanonical and involves two separate functional domains. Proc Natl Acad Sci U S A 2013; 110:E1222-31. [PMID: 23479640 DOI: 10.1073/pnas.1301690110] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Drosophila melanogaster Polo kinase physically interacts with, and is repressed by, the Matrimony (Mtrm) protein during oogenesis. Females heterozygous for a deletion of the mtrm gene display defects in chromosome segregation at meiosis I. However, a complete absence of Mtrm results in both meiotic catastrophe and female sterility. We show that three phosphorylated residues in an N-terminal region in Mtrm are required for Mtrm::Polo binding. However, this binding is noncanonical; it does not require either a complete S-pS/pT-P motif in Mtrm or key residues in the Polo-box domain of Polo that allow Polo to bind phosphorylated substrates. By using fluorescence cross-correlation spectroscopy to characterize the Mtrm::Polo interaction in vivo, we show that a sterile α-motif (SAM) domain located at the C terminus of Mtrm increases the stability of Mtrm::Polo binding. Although Mtrm's C-terminal SAM domain is not required to rescue the chromosome segregation defects observed in mtrm/+ females, it is essential to prevent both meiotic catastrophe and the female sterility observed in mtrm/mtrm females. We propose that Polo's interaction with the cluster of phosphorylated residues alone is sufficient to rescue the meiosis I defect. However, the strengthening of Mtrm::Polo binding mediated by the SAM domain is necessary to prevent meiotic catastrophe and ensure female fertility. Characterization of the Mtrm::Polo interaction, as well as that of other Polo regulators, may assist in the design of a new class of Polo inhibitors to be used as targeted anticancer therapeutic agents.
Collapse
|
16
|
Abstract
Sister chromatid cohesion depends on cohesin, a tripartite complex that forms ring structures to hold sister chromatids together in mitosis and meiosis. Meiocytes feature a multiplicity of distinct cohesin proteins and complexes, some meiosis specific, which serve additional functions such as supporting synapsis of two pairs of sister chromatids and determining the loop-axis architecture of prophase I chromosomes. Despite considerable new insights gained in the past few years into the localization and function of some cohesin proteins, and the recent identification of yet another meiosis-specific cohesin subunit, a plethora of open questions remains, which concern not only fundamental germ cell biology but also the consequences of cohesin impairment for human reproductive health.
Collapse
Affiliation(s)
- François McNicoll
- Institute of Physiological Chemistry, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | | | | |
Collapse
|
17
|
Pek JW, Ng BF, Kai T. Polo-mediated phosphorylation of Maelstrom regulates oocyte determination during oogenesis in Drosophila. Development 2012; 139:4505-13. [DOI: 10.1242/dev.082867] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In Drosophila, Maelstrom is a conserved component of the perinuclear nuage, a germline-unique structure that appears to serve as a site for Piwi-interacting RNA (piRNA) production to repress deleterious transposons. Maelstrom also functions in the nucleus as a transcriptional regulator to repress the expression of microRNA-7, a process that is essential for the proper differentiation of germline stem cells. In this paper, we report another function of Maelstrom in regulating oocyte determination independently of its transposon silencing and germline stem cell differentiation activities. In Drosophila, the conserved serine 138 residue in Maelstrom is required for its phosphorylation, an event that promotes oocyte determination. Phosphorylation of Maelstrom is required for the repression of the pachytene checkpoint protein Sir2, but not for transposon silencing or for germline stem cell differentiation. We identify Polo as a kinase that mediates the phosphorylation of Maelstrom. Our results suggest that the Polo-mediated phosphorylation of Maelstrom may be a mechanism that controls oocyte determination by inactivating the pachytene checkpoint via the repression of Sir2 in Drosophila ovaries.
Collapse
Affiliation(s)
- Jun Wei Pek
- Temasek Life Sciences Laboratory, 1 Research Link National University of Singapore, Singapore 117604
| | - Bing Fu Ng
- Department of Biological Sciences, National University of Singapore, Singapore 117604
| | - Toshie Kai
- Temasek Life Sciences Laboratory, 1 Research Link National University of Singapore, Singapore 117604
- Department of Biological Sciences, National University of Singapore, Singapore 117604
| |
Collapse
|
18
|
Mehta GD, Rizvi SMA, Ghosh SK. Cohesin: a guardian of genome integrity. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1823:1324-42. [PMID: 22677545 DOI: 10.1016/j.bbamcr.2012.05.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 05/16/2012] [Accepted: 05/25/2012] [Indexed: 01/05/2023]
Abstract
Ability to reproduce is one of the hallmark features of all life forms by which new organisms are produced from their progenitors. During this process each cell duplicates its genome and passes a copy of its genome to the daughter cells along with the cellular matrix. Unlike bacteria, in eukaryotes there is a definite time gap between when the genome is duplicated and when it is physically separated. Therefore, for precise halving of the duplicated genome into two, it is required that each pair of duplicated chromosomes, termed sister chromatids, should be paired together in a binary fashion from the moment they are generated. This pairing function between the duplicated genome is primarily provided by a multimeric protein complex, called cohesin. Thus, genome integrity largely depends on cohesin as it ensures faithful chromosome segregation by holding the sister chromatids glued together from S phase to anaphase. In this review, we have discussed the life cycle of cohesin during both mitotic and meiotic cell divisions including the structure and architecture of cohesin complex, relevance of cohesin associated proteins, mechanism of cohesin loading onto the chromatin, cohesion establishment and the mechanism of cohesin disassembly during anaphase to separate the sister chromatids. We have also focused on the role of posttranslational modifications in cohesin biology. For better understanding of the complexity of the cohesin regulatory network to the readers, we have presented an interactome profiling of cohesin core subunits in budding yeast during mitosis and meiosis.
Collapse
Affiliation(s)
- Gunjan D Mehta
- Department of Biosciences and Bioengineering, Wadhwani Research Centre for Biosciences and Bioengineering, Indian Institute of Technology, Bombay, India
| | | | | |
Collapse
|
19
|
Yao Y, Dai W. Shugoshins function as a guardian for chromosomal stability in nuclear division. Cell Cycle 2012; 11:2631-42. [PMID: 22732496 PMCID: PMC3850027 DOI: 10.4161/cc.20633] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 05/04/2012] [Indexed: 11/19/2022] Open
Abstract
Accurate chromosome segregation during mitosis and meiosis is regulated and secured by several distinctly different yet intricately connected regulatory mechanisms. As chromosomal instability is a hallmark of a majority of tumors as well as a cause of infertility for germ cells, extensive research in the past has focused on the identification and characterization of molecular components that are crucial for faithful chromosome segregation during cell division. Shugoshins, including Sgo1 and Sgo2, are evolutionarily conserved proteins that function to protect sister chromatid cohesion, thus ensuring chromosomal stability during mitosis and meiosis in eukaryotes. Recent studies reveal that Shugoshins in higher animals play an essential role not only in protecting centromeric cohesion of sister chromatids and assisting bi-orientation attachment at the kinetochores, but also in safeguarding centriole cohesion/engagement during early mitosis. Many molecular components have been identified that play essential roles in modulating/mediating Sgo functions. This review primarily summarizes recent advances on the mechanisms of action of Shugoshins in suppressing chromosomal instability during nuclear division in eukaryotic organisms.
Collapse
Affiliation(s)
- Yixin Yao
- Departments of Environmental Medicine and Pharmacology; New York University School of Medicine; Tuxedo, NY USA
| | - Wei Dai
- Departments of Environmental Medicine and Pharmacology; New York University School of Medicine; Tuxedo, NY USA
| |
Collapse
|
20
|
Wang M, Tang D, Wang K, Shen Y, Qin B, Miao C, Li M, Cheng Z. OsSGO1 maintains synaptonemal complex stabilization in addition to protecting centromeric cohesion during rice meiosis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:583-594. [PMID: 21615569 DOI: 10.1111/j.1365-313x.2011.04615.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Shugoshin is a conserved protein in eukaryotes that protects the centromeric cohesin of sister chromatids from cleavage by separase during meiosis. In this study, we identify the rice (Oryza sativa, 2n=2x=24) homolog of ZmSGO1 in maize (Zea mays), named OsSGO1. During both mitosis and meiosis, OsSGO1 is recruited from nucleoli onto centromeres at the onset of prophase. In the Tos17-insertional Ossgo1-1 mutant, centromeres of sister chromatids separate precociously from each other from metaphase I, which causes unequal chromosome segregation during meiosis II. Moreover, the release of OsSGO1 from nucleoli is completely blocked in Ossgo1-1, which leads to the absence of OsSGO1 in centromeric regions after the onset of mitosis and meiosis. Furthermore, the timely assembly and maintenance of synaptonemal complexes during early prophase I are affected in Ossgo1 mutants. Finally, we found that the centromeric localization of OsSGO1 depends on OsAM1, not other meiotic proteins such as OsREC8, PAIR2, OsMER3, or ZEP1.
Collapse
Affiliation(s)
- Mo Wang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
polo Is Identified as a Suppressor of bubR1 Nondisjunction in a Deficiency Screen of the Third Chromosome in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2011; 1:161-9. [PMID: 22384328 PMCID: PMC3276128 DOI: 10.1534/g3.111.000265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Accepted: 05/17/2011] [Indexed: 12/15/2022]
Abstract
We have previously characterized an EMS-induced allele of the bubR1 gene (bubR1D1326N) that separates the two functions of BubR1, causing meiotic nondisjunction but retaining spindle assembly checkpoint activity during somatic cell division in Drosophila melanogaster. Using this allele, we demonstrate that bubR1 meiotic nondisjunction is dosage sensitive, occurs for both exchange and nonexchange homologous chromosomes, and is associated with decreased maintenance of sister chromatid cohesion and of the synaptonemal complex during prophase I progression. We took advantage of these features to perform a genetic screen designed to identify third chromosome deficiencies having a dominant effect on bubR1D1326N/bubR1rev1 meiotic phenotypes. We tested 65 deficiencies covering 60% of the third chromosome euchromatin. Among them, we characterized 24 deficiencies having a dominant effect on bubR1D1326N/bubR1rev1 meiotic phenotypes that we classified in two groups: (1) suppressor of nondisjunction and (2) enhancer of nondisjunction. Among these 24 deficiencies, our results show that deficiencies uncovering the polo locus act as suppressor of bubR1 nondisjunction by delaying meiotic prophase I progression and restoring chiasmata formation as observed by the loading of the condensin subunit SMC2. Furthermore, we identified two deficiencies inducing a lethal phenotype during embryonic development and thus affecting BubR1 kinase activity in somatic cells and one deficiency causing female sterility. Overall, our genetic screening strategy proved to be highly sensitive for the identification of modifiers of BubR1 kinase activity in both meiosis and mitosis.
Collapse
|
22
|
Reis M, Sousa-Guimarães S, Vieira CP, Sunkel CE, Vieira J. Drosophila genes that affect meiosis duration are among the meiosis related genes that are more often found duplicated. PLoS One 2011; 6:e17512. [PMID: 21423746 PMCID: PMC3053365 DOI: 10.1371/journal.pone.0017512] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 02/04/2011] [Indexed: 01/06/2023] Open
Abstract
Using a phylogenetic approach, the examination of 33 meiosis/meiosis-related genes in 12 Drosophila species, revealed nine independent gene duplications, involving the genes cav, mre11, meiS332, polo and mtrm. Evidence is provided that at least eight out of the nine gene duplicates are functional. Therefore, the rate at which Drosophila meiosis/meiosis-related genes are duplicated and retained is estimated to be 0.0012 per gene per million years, a value that is similar to the average for all Drosophila genes. It should be noted that by using a phylogenetic approach the confounding effect of concerted evolution, that is known to lead to overestimation of the duplication and retention rate, is avoided. This is an important issue, since even in our moderate size sample, evidence for long-term concerted evolution (lasting for more than 30 million years) was found for the meiS332 gene pair in species of the Drosophila subgenus. Most striking, in contrast to theoretical expectations, is the finding that genes that encode proteins that must follow a close stoichiometric balance, such as polo, mtrm and meiS332 have been found duplicated. The duplicated genes may be examples of gene neofunctionalization. It is speculated that meiosis duration may be a trait that is under selection in Drosophila and that it has different optimal values in different species.
Collapse
Affiliation(s)
- Micael Reis
- Instituto de Biologia Celular e Molecular (IBMC), University of Porto, Porto, Portugal
| | - Sofia Sousa-Guimarães
- Instituto de Biologia Celular e Molecular (IBMC), University of Porto, Porto, Portugal
| | - Cristina P. Vieira
- Instituto de Biologia Celular e Molecular (IBMC), University of Porto, Porto, Portugal
| | - Cláudio E. Sunkel
- Instituto de Biologia Celular e Molecular (IBMC), University of Porto, Porto, Portugal
| | - Jorge Vieira
- Instituto de Biologia Celular e Molecular (IBMC), University of Porto, Porto, Portugal
- * E-mail:
| |
Collapse
|
23
|
Abstract
During meiosis, DNA replication is followed by 2 successive chromosome segregation events, resulting in the production of gametes with a haploid number of chromosomes from a diploid precursor cell. Faithful chromosome segregation in meiosis requires that sister chromatid cohesion is lost from chromosome arms during meiosis I, but retained at centromeric regions until meiosis II. Recent studies have begun to uncover the mechanisms underlying this stepwise loss of cohesion in meiosis and the role of a conserved protein, shugoshin, in regulating this process.
Collapse
Affiliation(s)
| | - A.L. Marston
- The Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
24
|
Yuan K, Huang Y, Yao X. Illumination of mitotic orchestra during cell division: a Polo view. Cell Signal 2011; 23:1-5. [PMID: 20633640 PMCID: PMC3118837 DOI: 10.1016/j.cellsig.2010.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 07/06/2010] [Indexed: 11/27/2022]
Abstract
Protein kinase and phosphatase signaling cascade, coupled with other post-translational modifications, orchestrates temporal order of various events during cell division. Among the many mitotic kinases, Polo-like kinase 1 (PLK1) as a key regulator, participates in regulating mitosis from mitotic entry to cytokinesis. The advancement in optical reporter engineering and the recent development of specific chemical probes enable us to visualize spatiotemporal gradient of kinase activity at nano-scale. One of such tools is FRET-based optic sensor that allows us to delineate the PLK1 activity in space and time. In this review, we address the inter-relationships between PLK1 and other protein kinases/phosphatases, as well as the crosstalk between PLK1 phosphorylation and ubiquitination during cell division. In particular, we discuss the molecular mechanisms and steps underlying PLK1 kinase priming, activation and turn-off during cell division.
Collapse
Affiliation(s)
- Kai Yuan
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, and University of Science and Technology of China, Hefei 230027, China
- Department of Physiology, Morehouse School of Medicine, Atlanta, Georgia 30310, USA
| | - Yuejia Huang
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, and University of Science and Technology of China, Hefei 230027, China
- Department of Physiology, Morehouse School of Medicine, Atlanta, Georgia 30310, USA
| | - Xuebiao Yao
- Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, and University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
25
|
Dai W. Suppression of genomic instabilities caused by chromosome mis-segregation: a perspective from studying BubR1 and Sgo1. J Formos Med Assoc 2010; 108:904-11. [PMID: 20040454 DOI: 10.1016/s0929-6646(10)60002-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Aneuploidy is a major manifestation of chromosomal instability, which is defined as a numerical abnormality of chromosomes in diploid cells. It is highly prevalent in a variety of human malignancies. Increased chromosomal instability is the major driving force for tumor development and progression. To suppress genomic stability during cell division, eukaryotic cells have evolved important molecular mechanisms, commonly referred to as checkpoints. The spindle checkpoint ensures that cells with defective mitotic spindles or a defective interaction between the spindles and kinetochores do not initiate chromosomal segregation during mitosis. Extensive studies have identified and characterized more than a dozen genes that play important roles in the regulation of the spindle checkpoint in mammalian cells. During the past decade, we have carried out extensive investigation of the role of BubR1 (Bub1-related kinase) and Sgo1 (shugoshin 1), two important gene products that safeguard accurate chromosome segregation during mitosis. This mini-review summarizes our studies, as well as those by other researchers in the field, on the functions of these two checkpoint proteins and their molecular regulation during mitosis. Further elucidation of the molecular mechanisms of the spindle checkpoint regulation has the potential to identify important mitotic targets for rational anticancer drug design.
Collapse
Affiliation(s)
- Wei Dai
- Department of Environmental Medicine and Pharmacology, New York University Langone Medical Center, Tuxedo, New York, USA.
| |
Collapse
|
26
|
Schurko AM, Mazur DJ, Logsdon JM. Inventory and phylogenomic distribution of meiotic genes in Nasonia vitripennis and among diverse arthropods. INSECT MOLECULAR BIOLOGY 2010; 19 Suppl 1:165-180. [PMID: 20167026 DOI: 10.1111/j.1365-2583.2009.00948.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The parasitoid jewel wasp Nasonia vitripennis reproduces by haplodiploidy (arrhenotokous parthenogenesis). In diploid females, meiosis occurs during oogenesis, but in haploid males spermatogenesis is ameiotic and involves a single equational division. Here we describe the phylogenomic distribution of meiotic genes in N. vitripennis and in 10 additional arthropods. Homologues for 39 meiosis-related genes (including seven meiosis-specific genes) were identified in N. vitripennis. The meiotic genes missing from N. vitripennis are also sporadically absent in other arthropods, suggesting that certain meiotic genes are dispensable for meiosis. Among an additional set of 15 genes thought to be specific for male meiosis in Drosophila, two genes (bol and crl) were identified in N. vitripennis and Apis mellifera (both for which canonical meiosis is absent in males) and in other arthropods. The distribution of meiotic genes across arthropods and the impact of gene duplications and reproductive modes on meiotic gene evolution are discussed.
Collapse
Affiliation(s)
- A M Schurko
- Roy J. Carver Center for Comparative Genomics and Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
27
|
Xu Z, Cetin B, Anger M, Cho US, Helmhart W, Nasmyth K, Xu W. Structure and function of the PP2A-shugoshin interaction. Mol Cell 2009; 35:426-41. [PMID: 19716788 PMCID: PMC2749713 DOI: 10.1016/j.molcel.2009.06.031] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 04/21/2009] [Accepted: 06/30/2009] [Indexed: 01/07/2023]
Abstract
Accurate chromosome segregation during mitosis and meiosis depends on shugoshin proteins that prevent precocious dissociation of cohesin from centromeres. Shugoshins associate with PP2A, which is thought to dephosphorylate cohesin and thereby prevent cleavage by separase during meiosis I. A crystal structure of a complex between a fragment of human Sgo1 and an AB'C PP2A holoenzyme reveals that Sgo1 forms a homodimeric parallel coiled coil that docks simultaneously onto PP2A's C and B' subunits. Sgo1 homodimerization is a prerequisite for PP2A binding. While hSgo1 interacts only with the AB'C holoenzymes, its relative, Sgo2, interacts with all PP2A forms and may thus lead to dephosphorylation of distinct substrates. Mutant shugoshin proteins defective in the binding of PP2A cannot protect centromeric cohesin from separase during meiosis I or support the spindle assembly checkpoint in yeast. Finally, we provide evidence that PP2A's recruitment to chromosomes may be sufficient to protect cohesin from separase in mammalian oocytes.
Collapse
Affiliation(s)
- Zheng Xu
- Department of Biological Structure, University of Washington, WA 98105, USA
| | - Bulent Cetin
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Martin Anger
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Uhn Soo Cho
- Department of Biological Structure, University of Washington, WA 98105, USA
| | - Wolfgang Helmhart
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Kim Nasmyth
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Wenqing Xu
- Department of Biological Structure, University of Washington, WA 98105, USA
| |
Collapse
|
28
|
Archambault V, Glover DM. Polo-like kinases: conservation and divergence in their functions and regulation. Nat Rev Mol Cell Biol 2009; 10:265-75. [PMID: 19305416 DOI: 10.1038/nrm2653] [Citation(s) in RCA: 492] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Polo-like kinases (Plks) are potent regulators of M phase that are conserved from yeasts to humans. Their roles in mitotic entry, spindle pole functions and cytokinesis are broadly conserved despite physical and molecular differences in these processes in disparate organisms. Plks are characterized by their Polo-box domain, which mediates protein interactions. They are additionally controlled by phosphorylation, proteolysis and transcription, depending on the biological context. Plks are now recognized to link cell division to developmental processes and to function in differentiated cells. A comparison of Plk function and regulation between organisms offers insight into the rich variations of cell division.
Collapse
Affiliation(s)
- Vincent Archambault
- Cancer Research UK, Cell Cycle Genetics Research Group, University of Cambridge, Department of Genetics, Downing Street, Cambridge, CB2 3EH, UK.
| | | |
Collapse
|
29
|
Sequestration of Polo kinase to microtubules by phosphopriming-independent binding to Map205 is relieved by phosphorylation at a CDK site in mitosis. Genes Dev 2008; 22:2707-20. [PMID: 18832073 DOI: 10.1101/gad.486808] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The conserved Polo kinase controls multiple events in mitosis and cytokinesis. Although Polo-like kinases are regulated by phosphorylation and proteolysis, control of subcellular localization plays a major role in coordinating their mitotic functions. This is achieved largely by the Polo-Box Domain, which binds prephosphorylated targets. However, it remains unclear whether and how Polo might interact with partner proteins when priming mitotic kinases are inactive. Here we show that Polo associates with microtubules in interphase and cytokinesis, through a strong interaction with the microtubule-associated protein Map205. Surprisingly, this interaction does not require priming phosphorylation of Map205, and the Polo-Box Domain of Polo is required but not sufficient for this interaction. Moreover, phosphorylation of Map205 at a CDK site relieves this interaction. Map205 can stabilize Polo and inhibit its cellular activity in vivo. In syncytial embryos, the centrosome defects observed in polo hypomorphs are enhanced by overexpression of Map205 and suppressed by its deletion. We propose that Map205-dependent targeting of Polo to microtubules provides a stable reservoir of Polo that can be rapidly mobilized by the activity of Cdk1 at mitotic entry.
Collapse
|
30
|
Losada A. The regulation of sister chromatid cohesion. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1786:41-8. [PMID: 18474253 DOI: 10.1016/j.bbcan.2008.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 03/06/2008] [Accepted: 04/08/2008] [Indexed: 01/20/2023]
Abstract
Sister chromatid cohesion is a major feature of the eukaryotic chromosome. It entails the formation of a physical linkage between the two copies of a chromosome that result from the duplication process. This linkage must be maintained until chromosome segregation takes place in order to ensure the accurate distribution of the genomic information. Cohesin, a multiprotein complex conserved from yeast to humans, is largely responsible for sister chromatid cohesion. Other cohesion factors regulate the interaction of cohesin with chromatin as well as the establishment and dissolution of cohesion. In addition, the presence of cohesin throughout the genome appears to influence processes other than chromosome segregation, such as transcription and DNA repair. In this review I summarize recent advances in our understanding of cohesin function and regulation in mitosis, and discuss the consequences of impairing the cohesion process at the level of the whole organism.
Collapse
Affiliation(s)
- Ana Losada
- Chromosome Dynamics Group, Spanish National Cancer Research Centre, Melchor Fernández Almagro 3, Madrid E-28029, Spain.
| |
Collapse
|
31
|
Abstract
Sgo1 plays a key role in protecting sister chromatid cohesion during mitosis. In this issue of Developmental Cell, Wang et al. describe a shorter splice variant of Sgo1 (sSgo1) that functions specifically in centriole cohesion. sSgo1 may be the "glue" that holds paired centrioles together in an engaged state before their disengagement in late mitosis.
Collapse
Affiliation(s)
- William Y Tsang
- Department of Pathology and Cancer Institute, New York University School of Medicine, 522 1(st) Avenue, New York, NY 10016, USA
| | | |
Collapse
|
32
|
Wang X, Yang Y, Duan Q, Jiang N, Huang Y, Darzynkiewicz Z, Dai W. sSgo1, a major splice variant of Sgo1, functions in centriole cohesion where it is regulated by Plk1. Dev Cell 2008; 14:331-41. [PMID: 18331714 PMCID: PMC2279080 DOI: 10.1016/j.devcel.2007.12.007] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 10/18/2007] [Accepted: 12/07/2007] [Indexed: 12/19/2022]
Abstract
Shugoshin 1 (Sgo1) functions as a protector of centromeric cohesion of sister chromatids in higher eukaryotes. Here, we provide evidence for a previously unrecognized role for Sgo1 in centriole cohesion. Sgo1 depletion via RNA interference induces the formation of multiple centrosome-like structures in mitotic cells that result from the separation of paired centrioles. Sgo1+/- mitotic murine embryonic fibroblasts display split centrosomes. Localization study of two major endogenous splice variants of Sgo1 indicates that the smaller variant, sSgo1, is found at the centrosome in interphase and at spindle poles in mitosis. sSgo1 interacts with Plk1 and its spindle pole localization is Plk1 dependent. Centriole splitting induced by Sgo1 depletion or expression of a dominant negative mutant is suppressed by ectopic expression of sSgo1 or by Plk1 knockdown. Our studies strongly suggest that sSgo1 plays an essential role in protecting centriole cohesion, which is partly regulated by Plk1.
Collapse
Affiliation(s)
- Xiaoxing Wang
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987
| | - Yali Yang
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987
| | - Qing Duan
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987
| | - Ning Jiang
- Tepnel Lifecodes Corporation, Stamford, CT 06902
| | - Ying Huang
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987
| | | | - Wei Dai
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, NY 10987
| |
Collapse
|
33
|
Gregan J, Rumpf C, Li Z, Cipak L. What makes centromeric cohesion resistant to separase cleavage during meiosis I but not during meiosis II? Cell Cycle 2008; 7:151-3. [PMID: 18256525 PMCID: PMC2956405 DOI: 10.4161/cc.7.2.5325] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Segregation of chromosomes during meiosis I is triggered by separase cleavage of the cohesin's Rec8 subunit along chromosome arms. Centromeric cohesin is protected from separase cleavage during meiosis I by Sgo1/MEI-S332 proteins in complex with protein phosphatase 2A (PP2A). This retention of centromeric sister chromatid cohesion is essential for faithful segregation of chromatids during the second meiotic division. While Sgo1/PP2A complex is required for protecting centromeric sister chromatid cohesion during meiosis I, it is not known what renders the centromeric cohesion sensitive to separase cleavage during meiosis II. Our data suggest that the absence of Sgo1 and PP2A from meiosis II centromeres is not sufficient to render centromeric cohesion sensitive to cleavage by separase and additional factors are required to ensure the removal of centromeric cohesion during meiosis II.
Collapse
Affiliation(s)
- Juraj Gregan
- Max F. Perutz Laboratories, Department of Chromosome Biology, University of Vienna, Vienna, Austria.
| | | | | | | |
Collapse
|
34
|
Lee J, Kitajima TS, Tanno Y, Yoshida K, Morita T, Miyano T, Miyake M, Watanabe Y. Unified mode of centromeric protection by shugoshin in mammalian oocytes and somatic cells. Nat Cell Biol 2008; 10:42-52. [PMID: 18084284 DOI: 10.1038/ncb1667] [Citation(s) in RCA: 196] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Accepted: 11/29/2007] [Indexed: 12/24/2022]
Abstract
Reductional chromosome segregation in germ cells, where sister chromatids are pulled to the same pole, accompanies the protection of cohesin at centromeres from separase cleavage. Here, we show that mammalian shugoshin Sgo2 is expressed in germ cells and is solely responsible for the centromeric localization of PP2A and the protection of cohesin Rec8 in oocytes, proving conservation of the mechanism from yeast to mammals. However, this role of Sgo2 contrasts with its mitotic role in protecting centromeric cohesin only from prophase dissociation, but never from anaphase cleavage. We demonstrate that, in somatic cells, shugoshin colocalizes with cohesin in prophase or prometaphase, but their localizations become separate when centromeres are pulled oppositely at metaphase. Remarkably, if tension is artificially removed from the centromeres at the metaphase-anaphase transition, cohesin at the centromeres can be protected from separase cleavage even in somatic cells, as in germ cells. These results argue for a unified view of centromeric protection by shugoshin in mitosis and meiosis.
Collapse
Affiliation(s)
- Jibak Lee
- Laboratory of Reproductive Biology and Biotechnology, Graduate School of Science and Technology, Kobe University, Kobe 657-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Xiang Y, Takeo S, Florens L, Hughes SE, Huo LJ, Gilliland WD, Swanson SK, Teeter K, Schwartz JW, Washburn MP, Jaspersen SL, Hawley RS. The inhibition of polo kinase by matrimony maintains G2 arrest in the meiotic cell cycle. PLoS Biol 2007; 5:e323. [PMID: 18052611 PMCID: PMC2100146 DOI: 10.1371/journal.pbio.0050323] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Accepted: 10/23/2007] [Indexed: 11/19/2022] Open
Abstract
Many meiotic systems in female animals include a lengthy arrest in G2 that separates the end of pachytene from nuclear envelope breakdown (NEB). However, the mechanisms by which a meiotic cell can arrest for long periods of time (decades in human females) have remained a mystery. The Drosophila Matrimony (Mtrm) protein is expressed from the end of pachytene until the completion of meiosis I. Loss-of-function mtrm mutants result in precocious NEB. Coimmunoprecipitation experiments reveal that Mtrm physically interacts with Polo kinase (Polo) in vivo, and multidimensional protein identification technology mass spectrometry analysis reveals that Mtrm binds to Polo with an approximate stoichiometry of 1:1. Mutation of a Polo-Box Domain (PBD) binding site in Mtrm ablates the function of Mtrm and the physical interaction of Mtrm with Polo. The meiotic defects observed in mtrm/+ heterozygotes are fully suppressed by reducing the dose of polo+, demonstrating that Mtrm acts as an inhibitor of Polo. Mtrm acts as a negative regulator of Polo during the later stages of G2 arrest. Indeed, both the repression of Polo expression until stage 11 and the inactivation of newly synthesized Polo by Mtrm until stage 13 play critical roles in maintaining and properly terminating G2 arrest. Our data suggest a model in which the eventual activation of Cdc25 by an excess of Polo at stage 13 triggers NEB and entry into prometaphase.
Collapse
Affiliation(s)
- Youbin Xiang
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Satomi Takeo
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Laurence Florens
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Stacie E Hughes
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Li-Jun Huo
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - William D Gilliland
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Selene K Swanson
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Kathy Teeter
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Joel W Schwartz
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Michael P Washburn
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Sue L Jaspersen
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- University of Kansas School of Medicine, Kansas City, Kansas, United States of America
| | - R. Scott Hawley
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- University of Kansas School of Medicine, Kansas City, Kansas, United States of America
| |
Collapse
|
36
|
Archambault V, Zhao X, White-Cooper H, Carpenter ATC, Glover DM. Mutations in Drosophila Greatwall/Scant reveal its roles in mitosis and meiosis and interdependence with Polo kinase. PLoS Genet 2007; 3:e200. [PMID: 17997611 PMCID: PMC2065886 DOI: 10.1371/journal.pgen.0030200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Accepted: 09/28/2007] [Indexed: 11/18/2022] Open
Abstract
Polo is a conserved kinase that coordinates many events of mitosis and meiosis, but how it is regulated remains unclear. Drosophila females having only one wild-type allele of the polo kinase gene and the dominant Scant mutation produce embryos in which one of the centrosomes detaches from the nuclear envelope in late prophase. We show that Scant creates a hyperactive form of Greatwall (Gwl) with altered specificity in vitro, another protein kinase recently implicated in mitotic entry in Drosophila and Xenopus. Excess Gwl activity in embryos causes developmental failure that can be rescued by increasing maternal Polo dosage, indicating that coordination between the two mitotic kinases is crucial for mitotic progression. Revertant alleles of Scant that restore fertility to polo-Scant heterozygous females are recessive alleles or deficiencies of gwl; they show chromatin condensation defects and anaphase bridges in larval neuroblasts. One recessive mutant allele specifically disrupts a Gwl isoform strongly expressed during vitellogenesis. Females hemizygous for this allele are sterile, and their oocytes fail to arrest in metaphase I of meiosis; both homologues and sister chromatids separate on elongated meiotic spindles with little or no segregation. This allelic series of gwl mutants highlights the multiple roles of Gwl in both mitotic and meiotic progression. Our results indicate that Gwl activity antagonizes Polo and thus identify an important regulatory interaction of the cell cycle.
Collapse
Affiliation(s)
- Vincent Archambault
- CRUK Cell Cycle Genetics Group, Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Xinbei Zhao
- CRUK Cell Cycle Genetics Group, Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Helen White-Cooper
- CRUK Cell Cycle Genetics Group, Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Adelaide T. C Carpenter
- CRUK Cell Cycle Genetics Group, Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - David M Glover
- CRUK Cell Cycle Genetics Group, Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
37
|
|
38
|
Wang H, Ouyang Y, Somers WG, Chia W, Lu B. Polo inhibits progenitor self-renewal and regulates Numb asymmetry by phosphorylating Pon. Nature 2007; 449:96-100. [PMID: 17805297 PMCID: PMC3047501 DOI: 10.1038/nature06056] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Accepted: 06/28/2007] [Indexed: 01/07/2023]
Abstract
Self-renewal and differentiation are cardinal features of stem cells. Asymmetric cell division provides one fundamental mechanism by which stem cell self-renewal and differentiation are balanced. A failure of this balance could lead to diseases such as cancer. During asymmetric division of stem cells, factors controlling their self-renewal and differentiation are unequally segregated between daughter cells. Numb is one such factor that is segregated to the differentiating daughter cell during the stem-cell-like neuroblast divisions in Drosophila melanogaster, where it inhibits self-renewal. The localization and function of Numb is cell-cycle-dependent. Here we show that Polo (ref. 13), a key cell cycle regulator, the mammalian counterparts of which have been implicated as oncogenes as well as tumour suppressors, acts as a tumour suppressor in the larval brain. Supernumerary neuroblasts are produced at the expense of neurons in polo mutants. Polo directly phosphorylates Partner of Numb (Pon, ref. 16), an adaptor protein for Numb, and this phosphorylation event is important for Pon to localize Numb. In polo mutants, the asymmetric localization of Pon, Numb and atypical protein kinase C are disrupted, whereas other polarity markers are largely unaffected. Overexpression of Numb suppresses neuroblast overproliferation caused by polo mutations, suggesting that Numb has a major role in mediating this effect of Polo. Our results reveal a biochemical link between the cell cycle and the asymmetric protein localization machinery, and indicate that Polo can inhibit progenitor self-renewal by regulating the localization and function of Numb.
Collapse
Affiliation(s)
- Hongyan Wang
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, Singapore 117604
| | | | | | | | | |
Collapse
|
39
|
Gómez R, Valdeolmillos A, Parra MT, Viera A, Carreiro C, Roncal F, Rufas JS, Barbero JL, Suja JA. Mammalian SGO2 appears at the inner centromere domain and redistributes depending on tension across centromeres during meiosis II and mitosis. EMBO Rep 2007; 8:173-80. [PMID: 17205076 PMCID: PMC1796771 DOI: 10.1038/sj.embor.7400877] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Revised: 11/09/2006] [Accepted: 11/09/2006] [Indexed: 11/10/2022] Open
Abstract
Shugoshin (SGO) is a family of proteins that protect centromeric cohesin complexes from release during mitotic prophase and from degradation during meiosis I. Two mammalian SGO paralogues - SGO1 and SGO2 - have been identified, but their distribution and function during mammalian meiosis have not been reported. Here, we analysed the expression of SGO2 during male mouse meiosis and mitosis. During meiosis I, SGO2 accumulates at centromeres during diplotene, and colocalizes differentially with the cohesin subunits RAD21 and REC8 at metaphase I centromeres. However, SGO2 and RAD21 change their relative distributions during telophase I when sister-kinetochore association is lost. During meiosis II, SGO2 shows a striking tension-dependent redistribution within centromeres throughout chromosome congression during prometaphase II, as it does during mitosis. We propose a model by which the redistribution of SGO2 would unmask cohesive centromere proteins, which would be then released or cleaved by separase, to trigger chromatid segregation to opposite poles.
Collapse
Affiliation(s)
- Rocío Gómez
- Unidad de Biología Celular, Departamento de Biología, Universidad Autónoma de Madrid, Calle Darwin 2, E-28049 Madrid, Spain
| | - Ana Valdeolmillos
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Calle Darwin 3, E-28049 Madrid, Spain
| | - María Teresa Parra
- Unidad de Biología Celular, Departamento de Biología, Universidad Autónoma de Madrid, Calle Darwin 2, E-28049 Madrid, Spain
| | - Alberto Viera
- Unidad de Biología Celular, Departamento de Biología, Universidad Autónoma de Madrid, Calle Darwin 2, E-28049 Madrid, Spain
| | - Candelas Carreiro
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Calle Darwin 3, E-28049 Madrid, Spain
| | - Fernando Roncal
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Calle Darwin 3, E-28049 Madrid, Spain
| | - Julio S Rufas
- Unidad de Biología Celular, Departamento de Biología, Universidad Autónoma de Madrid, Calle Darwin 2, E-28049 Madrid, Spain
| | - José L Barbero
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Calle Darwin 3, E-28049 Madrid, Spain
| | - José A Suja
- Unidad de Biología Celular, Departamento de Biología, Universidad Autónoma de Madrid, Calle Darwin 2, E-28049 Madrid, Spain
| |
Collapse
|
40
|
Gandhi R, Gillespie P, Hirano T. Human Wapl is a cohesin-binding protein that promotes sister-chromatid resolution in mitotic prophase. Curr Biol 2006; 16:2406-17. [PMID: 17112726 PMCID: PMC1850625 DOI: 10.1016/j.cub.2006.10.061] [Citation(s) in RCA: 320] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 10/03/2006] [Accepted: 10/30/2006] [Indexed: 01/08/2023]
Abstract
BACKGROUND The linkage between duplicated chromosomes (sister chromatids) is established during S phase by the action of cohesin, a multisubunit complex conserved from yeast to humans. Most cohesin dissociates from chromosome arms when the cell enters mitotic prophase, leading to the formation of metaphase chromosomes with two cytologically discernible chromatids. This process is known as sister-chromatid resolution. Although two mitotic kinases have been implicated in this process, it remains unknown exactly how the cohesin-mediated linkage is destabilized at a mechanistic level. RESULTS The wings apart-like (Wapl) protein was originally identified as a gene product that potentially regulates heterochromatin organization in Drosophila melanogaster. We show that the human ortholog of Wapl is a cohesin-binding protein that facilitates cohesin's timely release from chromosome arms during prophase. Depletion of Wapl from HeLa cells causes transient accumulation of prometaphase-like cells with chromosomes that display poorly resolved sister chromatids with a high level of cohesin. Reduction of cohesin relieves the Wapl-depletion phenotype, and depletion of Wapl rescues premature sister separation observed in Sgo1-depleted or Esco2-depleted cells. Conversely, overexpression of Wapl causes premature separation of sister chromatids. Wapl physically associates with cohesin in HeLa-cell nuclear extracts. Remarkably, in vitro reconstitution experiments demonstrate that Wapl forms a stoichiometric, ternary complex with two regulatory subunits of cohesin, implicating its noncatalytic function in inactivating cohesin's ability to interact with chromatin. CONCLUSIONS Wapl is a new regulator of sister chromatid resolution and promotes release of cohesin from chromosomes by directly interacting with its regulatory subunits.
Collapse
Affiliation(s)
- Rita Gandhi
- Cold Spring Harbor Laboratory, One Bungtown Road, P. O. Box 100, Cold Spring Harbor, NY 11724
| | | | - Tatsuya Hirano
- Cold Spring Harbor Laboratory, One Bungtown Road, P. O. Box 100, Cold Spring Harbor, NY 11724
| |
Collapse
|
41
|
McInnes C, Mazumdar A, Mezna M, Meades C, Midgley C, Scaerou F, Carpenter L, Mackenzie M, Taylor P, Walkinshaw M, Fischer PM, Glover D. Inhibitors of Polo-like kinase reveal roles in spindle-pole maintenance. Nat Chem Biol 2006; 2:608-17. [PMID: 17028581 DOI: 10.1038/nchembio825] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Accepted: 08/24/2006] [Indexed: 01/08/2023]
Abstract
Polo-like kinases (Plks) have several functions in mitotic progression and are upregulated in many tumor types. Small-molecule Plk inhibitors would be valuable as tools for studying Plk biology and for developing antitumor agents. Guided by homology modeling of the Plk1 kinase domain, we have discovered a chemical series that shows potent and selective Plk1 inhibition. The effects of one such optimized benzthiazole N-oxide, cyclapolin 1 (1), on purified centrosomes indicate that Plks are required to generate MPM2 epitopes, recruit gamma-tubulin and enable nucleation of microtubules. The compound can also promote loss of centrosome integrity and microtubule nucleating ability apparently through increased accessibility of protein phosphatases. We show that treatment of living S2 cells with cyclapolin 1 leads to collapsed spindles, in contrast to the metaphase-arrested bipolar spindles observed after RNAi. This different response to protein depletion and protein inhibition may have significance in the development of antitumor agents.
Collapse
|
42
|
Cesario JM, Jang JK, Redding B, Shah N, Rahman T, McKim KS. Kinesin 6 family member Subito participates in mitotic spindle assembly and interacts with mitotic regulators. J Cell Sci 2006; 119:4770-80. [PMID: 17077127 DOI: 10.1242/jcs.03235] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Drosophila Subito is a kinesin 6 family member and ortholog of mitotic kinesin-like protein (MKLP2) in mammalian cells. Based on the previously established requirement for Subito in meiotic spindle formation and for MKLP2 in cytokinesis, we investigated the function of Subito in mitosis. During metaphase, Subito localized to microtubules at the center of the mitotic spindle, probably interpolar microtubules that originate at the poles and overlap in antiparallel orientation. Consistent with this localization pattern, subito mutants improperly assembled microtubules at metaphase, causing activation of the spindle assembly checkpoint and lagging chromosomes at anaphase. These results are the first demonstration of a kinesin 6 family member with a function in mitotic spindle assembly, possibly involving the interpolar microtubules. However, the role of Subito during mitotic anaphase resembles other kinesin 6 family members. Subito localizes to the spindle midzone at anaphase and is required for the localization of Polo, Incenp and Aurora B. Genetic evidence suggested that the effects of subito mutants are attenuated as a result of redundant mechanisms for spindle assembly and cytokinesis. For example, subito double mutants with ncd, polo, Aurora B or Incenp mutations were synthetic lethal with severe defects in microtubule organization.
Collapse
Affiliation(s)
- Jeff M Cesario
- Waksman Institute and Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854-8020, USA
| | | | | | | | | | | |
Collapse
|
43
|
Vaur S, Cubizolles F, Plane G, Genier S, Rabitsch PK, Gregan J, Nasmyth K, Vanoosthuyse V, Hardwick KG, Javerzat JP. Control of Shugoshin function during fission-yeast meiosis. Curr Biol 2006; 15:2263-70. [PMID: 16360688 DOI: 10.1016/j.cub.2005.11.034] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 10/20/2005] [Accepted: 11/01/2005] [Indexed: 10/25/2022]
Abstract
Meiosis consists of a single round of DNA replication followed by two consecutive nuclear divisions. During the first division (MI), sister kinetochores must orient toward the same pole to favor reductional segregation. Correct chromosome segregation during the second division (MII) requires the retention of centromeric cohesion until anaphase II. The spindle checkpoint protein Bub1 is essential for both processes in fission yeast . When bub1 is deleted, the Shugoshin protein Sgo1 is not recruited to centromeres, cohesin Rec8 does not persist at centromeres, and sister-chromatid cohesion is lost by the end of MI. Deletion of bub1 also affects kinetochore orientation because sister centromeres can move to opposite spindle poles in approximately 30% of MI divisions. We show here that these two functions are separable within the Bub1 protein. The N terminus of Bub1 is necessary and sufficient for Sgo1 targeting to centromeres and the protection of cohesion, whereas the C-terminal kinase domain acts together with Sgo2, the second fission-yeast Shugoshin protein, to promote sister-kinetochore co-orientation during MI. Additional analyses suggest that the protection of centromeric cohesion does not operate when sister kinetochores attach to opposite spindle poles during MI. Sgo1-mediated protection of centromere cohesion might therefore be regulated by the mode of kinetochore attachment.
Collapse
Affiliation(s)
- Sabine Vaur
- Centre National de la Recherche Scientifique, Institut de Biochimie et Génétique Cellulaires, Unité mixte de recherche 5095, Bordeaux, F-33077, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Resnick TD, Satinover DL, MacIsaac F, Stukenberg PT, Earnshaw WC, Orr-Weaver TL, Carmena M. INCENP and Aurora B promote meiotic sister chromatid cohesion through localization of the Shugoshin MEI-S332 in Drosophila. Dev Cell 2006; 11:57-68. [PMID: 16824953 PMCID: PMC7115953 DOI: 10.1016/j.devcel.2006.04.021] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 03/28/2006] [Accepted: 04/13/2006] [Indexed: 10/24/2022]
Abstract
The chromosomal passenger complex protein INCENP is required in mitosis for chromosome condensation, spindle attachment and function, and cytokinesis. Here, we show that INCENP has an essential function in the specialized behavior of centromeres in meiosis. Mutations affecting Drosophila incenp profoundly affect chromosome segregation in both meiosis I and II, due, at least in part, to premature sister chromatid separation in meiosis I. INCENP binds to the cohesion protector protein MEI-S332, which is also an excellent in vitro substrate for Aurora B kinase. A MEI-S332 mutant that is only poorly phosphorylated by Aurora B is defective in localization to centromeres. These results implicate the chromosomal passenger complex in directly regulating MEI-S332 localization and, therefore, the control of sister chromatid cohesion in meiosis.
Collapse
Affiliation(s)
- Tamar D. Resnick
- Whitehead Institute and Department of Biology, Massachusetts Institute of Technology, Nine Cambridge Center, Cambridge, Massachusetts 02142
| | - David L. Satinover
- University of Virginia, Department of Biochemistry and Molecular Genetics, Jordan Hall, Room 6017, 1300 Jefferson Park Avenue, Charlottesville, Virginia 22908
| | - Fiona MacIsaac
- Wellcome Trust Centre for Cell Biology, School of Biology, King’s Buildings, University of Edinburgh, EH9 3JR Edinburgh, Scotland
| | - P. Todd Stukenberg
- University of Virginia, Department of Biochemistry and Molecular Genetics, Jordan Hall, Room 6017, 1300 Jefferson Park Avenue, Charlottesville, Virginia 22908
| | - William C. Earnshaw
- Wellcome Trust Centre for Cell Biology, School of Biology, King’s Buildings, University of Edinburgh, EH9 3JR Edinburgh, Scotland
| | - Terry L. Orr-Weaver
- Whitehead Institute and Department of Biology, Massachusetts Institute of Technology, Nine Cambridge Center, Cambridge, Massachusetts 02142
| | - Mar Carmena
- Wellcome Trust Centre for Cell Biology, School of Biology, King’s Buildings, University of Edinburgh, EH9 3JR Edinburgh, Scotland
- Correspondence:
| |
Collapse
|
45
|
Qi W, Tang Z, Yu H. Phosphorylation- and polo-box-dependent binding of Plk1 to Bub1 is required for the kinetochore localization of Plk1. Mol Biol Cell 2006; 17:3705-16. [PMID: 16760428 PMCID: PMC1525235 DOI: 10.1091/mbc.e06-03-0240] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Accepted: 05/31/2006] [Indexed: 11/11/2022] Open
Abstract
Polo-like kinase 1 (Plk1) is required for the generation of the tension-sensing 3F3/2 kinetochore epitope and facilitates kinetochore localization of Mad2 and other spindle checkpoint proteins. Here, we investigate the mechanism by which Plk1 itself is recruited to kinetochores. We show that Plk1 binds to budding uninhibited by benzimidazole 1 (Bub1) in mitotic human cells. The Plk1-Bub1 interaction requires the polo-box domain (PBD) of Plk1 and is enhanced by cyclin-dependent kinase 1 (Cdk1)-mediated phosphorylation of Bub1 at T609. The PBD-dependent binding of Plk1 to Bub1 facilitates phosphorylation of Bub1 by Plk1 in vitro. Depletion of Bub1 in HeLa cells by RNA interference (RNAi) diminishes the kinetochore localization of Plk1. Ectopic expression of the wild-type Bub1, but not the Bub1-T609A mutant, in Bub1-RNAi cells restores the kinetochore localization of Plk1. Our results suggest that phosphorylation of Bub1 at T609 by Cdk1 creates a docking site for the PBD of Plk1 and facilitates the kinetochore recruitment of Plk1.
Collapse
Affiliation(s)
- Wei Qi
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9041
| | - Zhanyun Tang
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9041
| | - Hongtao Yu
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390-9041
| |
Collapse
|
46
|
Abstract
Sister chromatid cohesion mediated by the ring-shaped cohesin complex is essential for faithful chromosome segregation. A tight spatial and temporal control of cohesin release is observed in mitosis and meiosis, and a family of proteins known as shugoshins play a major role in this process. Shugoshin (Sgo) protects centromeric cohesin from dissociation in early mitosis and from cleavage by separase in meiosis I. Three exciting new reports indicate that this is accomplished by recruiting the serine/threonine protein phosphatase 2A (PP2A) to centromeres.((1-3)) The proposed targets of PP2A activity include cohesin and Sgo, both of which would otherwise dissociate from chromosomes upon phosphorylation by Polo kinase. Thus, a balance of kinase and phosphatase activities seems to be the key to the conserved mechanism that regulates the stepwise release of cohesin from mitotic and meiotic chromosomes. Additional evidence, however, suggests that this is only part of the story, and that Sgo has also a role independent of PP2A.
Collapse
Affiliation(s)
- Teresa Rivera
- Chromosome Dynamics Group, Spanish National Cancer Center (CNIO), Madrid, Spain
| | | |
Collapse
|
47
|
Dai W, Wang X. The Yin and Yang of centromeric cohesion of sister chromatids: mitotic kinases meet protein phosphatase 2A. Cell Div 2006; 1:9. [PMID: 16759372 PMCID: PMC1524732 DOI: 10.1186/1747-1028-1-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Accepted: 05/26/2006] [Indexed: 11/10/2022] Open
Abstract
Accurate chromosome segregation during meiosis and mitosis is essential for the maintenance of genomic stability. Defects in the regulation of chromosome segregation during division predispose cells to undergo mitotic catastrophe or neoplastic transformation. Cohesin, a molecular glue holding sister chromatids together, is removed from chromosomes in a stepwise fashion during mitosis and meiosis. Cohesin at centromeres but not on chromosome arm remains intact until anaphase onset during early mitosis and the initiation of anaphase II during meiosis. Several recent studies indicate that the activity of protein phosphatase 2A is essential for maintaining the integrity of centromeric cohesin. Shugoshin, a guardian for sister chromatid segregation, may cooperate with and/or mediate PP2A function by suppressing the phosphorylation status of centromeric proteins including cohesin.
Collapse
Affiliation(s)
- Wei Dai
- Division of Molecular Carcinogenesis, Department of Medicine, New York Medical College, Valhalla, NY 10595, USA
| | - Xiaoxing Wang
- Division of Molecular Carcinogenesis, Department of Medicine, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
48
|
Kitajima TS, Sakuno T, Ishiguro KI, Iemura SI, Natsume T, Kawashima SA, Watanabe Y. Shugoshin collaborates with protein phosphatase 2A to protect cohesin. Nature 2006; 441:46-52. [PMID: 16541025 DOI: 10.1038/nature04663] [Citation(s) in RCA: 444] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Accepted: 02/21/2006] [Indexed: 11/08/2022]
Abstract
Sister chromatid cohesion, mediated by a complex called cohesin, is crucial--particularly at centromeres--for proper chromosome segregation in mitosis and meiosis. In animal mitotic cells, phosphorylation of cohesin promotes its dissociation from chromosomes, but centromeric cohesin is protected by shugoshin until kinetochores are properly captured by the spindle microtubules. However, the mechanism of shugoshin-dependent protection of cohesin is unknown. Here we find a specific subtype of serine/threonine protein phosphatase 2A (PP2A) associating with human shugoshin. PP2A colocalizes with shugoshin at centromeres and is required for centromeric protection. Purified shugoshin complex has an ability to reverse the phosphorylation of cohesin in vitro, suggesting that dephosphorylation of cohesin is the mechanism of protection at centromeres. Meiotic shugoshin of fission yeast also associates with PP2A, with both proteins collaboratively protecting Rec8-containing cohesin at centromeres. Thus, we have revealed a conserved mechanism of centromeric protection of eukaryotic chromosomes in mitosis and meiosis.
Collapse
Affiliation(s)
- Tomoya S Kitajima
- Laboratory of Chromosome Dynamics, Institute of Molecular and Cellular Biosciences, University of Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Tang Z, Shu H, Qi W, Mahmood NA, Mumby MC, Yu H. PP2A is required for centromeric localization of Sgo1 and proper chromosome segregation. Dev Cell 2006; 10:575-85. [PMID: 16580887 DOI: 10.1016/j.devcel.2006.03.010] [Citation(s) in RCA: 258] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 03/21/2006] [Accepted: 03/22/2006] [Indexed: 10/24/2022]
Abstract
Loss of sister-chromatid cohesion triggers chromosome segregation in mitosis and occurs through two mechanisms in vertebrate cells: (1) phosphorylation and removal of cohesin from chromosome arms by mitotic kinases, including Plk1, during prophase, and (2) cleavage of centromeric cohesin by separase at the metaphase-anaphase transition. Bub1 and the MEI-S332/Shugoshin (Sgo1) family of proteins protect centromeric cohesin from mitotic kinases during prophase. We show that human Sgo1 binds to protein phosphatase 2A (PP2A). PP2A localizes to centromeres in a Bub1-dependent manner. The Sgo1-PP2A interaction is required for centromeric localization of Sgo1 and proper chromosome segregation in human cells. Depletion of Plk1 by RNA interference (RNAi) restores centromeric localization of Sgo1 and prevents chromosome missegregation in cells depleted of PP2A_Aalpha. Our findings suggest that Bub1 targets PP2A to centromeres, which in turn maintains Sgo1 at centromeres by counteracting Plk1-mediated chromosome removal of Sgo1.
Collapse
Affiliation(s)
- Zhanyun Tang
- Department of Pharmacology, The University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, Texas 75390, USA
| | | | | | | | | | | |
Collapse
|
50
|
Clarke A, Orr-Weaver TL. Sister chromatid cohesion at the centromere: confrontation between kinases and phosphatases? Dev Cell 2006; 10:544-7. [PMID: 16678770 DOI: 10.1016/j.devcel.2006.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Accurate chromosome segregation in mitosis and meiosis requires that the cohesin complex be protected at the centromere by the Shugoshin/MEI-S332 protein family. Recent studies show that Sgo directly binds the phosphatase PP2A, tethering it to the centromere where it can protect cohesin subunits from phosphorylation, and that localization of Sgo/MEI-S332 itself is regulated by phosphorylation.
Collapse
Affiliation(s)
- Astrid Clarke
- Whitehead Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | | |
Collapse
|