1
|
Yaguchi J, Sakai K, Horiuchi A, Yamamoto T, Yamashita T, Yaguchi S. Light-modulated neural control of sphincter regulation in the evolution of through-gut. Nat Commun 2024; 15:8881. [PMID: 39424783 PMCID: PMC11489725 DOI: 10.1038/s41467-024-53203-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/04/2024] [Indexed: 10/21/2024] Open
Abstract
The development of a continuous digestive tract, or through-gut, represents a key milestone in bilaterian evolution. However, the regulatory mechanisms in ancient bilaterians (urbilaterians) are not well understood. Our study, using larval sea urchins as a model, reveals a sophisticated system that prevents the simultaneous opening of the pylorus and anus, entry and exit points of the gut. This regulation is influenced by external light, with blue light affecting the pylorus via serotonergic neurons and both blue and longer wavelengths controlling the anus through cholinergic and dopaminergic neurons. These findings provide new insights into the neural orchestration of sphincter control in a simplified through-gut, which includes the esophagus, stomach, and intestine. Here, we propose that the emergence of the earliest urbilaterian through-gut was accompanied by the evolution of neural systems regulating sphincters in response to light, shedding light on the functional regulation of primordial digestive systems.
Collapse
Affiliation(s)
- Junko Yaguchi
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025, Japan
| | - Kazumi Sakai
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, Kyoto, 606-8502, Japan
| | - Atsushi Horiuchi
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, Kyoto, 606-8502, Japan
| | - Takashi Yamamoto
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Takahiro Yamashita
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto, Kyoto, 606-8502, Japan
| | - Shunsuke Yaguchi
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, 415-0025, Japan.
- Japan Science and Technology Agency, PRESTO, 7 Gobancho, Chiyoda-ku, 102-0076, Tokyo, Japan.
| |
Collapse
|
2
|
Kimura JO, Bolaños DM, Ricci L, Srivastava M. Embryonic origins of adult pluripotent stem cells. Cell 2022; 185:4756-4769.e13. [PMID: 36493754 PMCID: PMC9761687 DOI: 10.1016/j.cell.2022.11.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/16/2022] [Accepted: 11/08/2022] [Indexed: 12/13/2022]
Abstract
Although adult pluripotent stem cells (aPSCs) are found in many animal lineages, mechanisms for their formation during embryogenesis are unknown. Here, we leveraged Hofstenia miamia, a regenerative worm that possesses collectively pluripotent aPSCs called neoblasts and produces manipulable embryos. Lineage tracing and functional experiments revealed that one pair of blastomeres gives rise to cells that resemble neoblasts in distribution, behavior, and gene expression. In Hofstenia, aPSCs include transcriptionally distinct subpopulations that express markers associated with differentiated tissues; our data suggest that despite their heterogeneity, aPSCs are derived from one lineage, not from multiple tissue-specific lineages during development. Next, we combined single-cell transcriptome profiling across development with neoblast cell-lineage tracing and identified a molecular trajectory for neoblast formation that includes transcription factors Hes, FoxO, and Tbx. This identification of a cellular mechanism and molecular trajectory for aPSC formation opens the door for in vivo studies of aPSC regulation and evolution.
Collapse
Affiliation(s)
- Julian O Kimura
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - D Marcela Bolaños
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Lorenzo Ricci
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Mansi Srivastava
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
3
|
Martindale MQ. Emerging models: The "development" of the ctenophore Mnemiopsis leidyi and the cnidarian Nematostella vectensis as useful experimental models. Curr Top Dev Biol 2022; 147:93-120. [PMID: 35337468 DOI: 10.1016/bs.ctdb.2022.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The goal of this chapter is to explain the reasoning for developing two understudied invertebrate animal species for asking specific biological questions. The first is the ctenophore (comb jelly) Mnemiopsis leidyi and the second is the anthozoan cnidarian (starlet sea anemone) Nematostella vectensis. Although these two taxa belong to some of the earliest branching extant metazoan clades, their developmental features could hardly be more different from one another. This should serve as a general warning to be careful when extrapolating comparisons of one species to another. Two-taxon comparisons are especially flawed; and to interpret features in a phylogenetic context one must sample carefully within a given taxon to determine how representative certain features are before comparing with other clades. The other benefit of this comparison is to identify key practical factors when attempting to develop new species for experimental investigation.
Collapse
Affiliation(s)
- Mark Q Martindale
- Whitney Lab for Marine Bioscience, University of Florida, St. Augustine, FL, United States.
| |
Collapse
|
4
|
Swartz SZ, Tan TH, Perillo M, Fakhri N, Wessel GM, Wikramanayake AH, Cheeseman IM. Polarized Dishevelled dissolution and reassembly drives embryonic axis specification in sea star oocytes. Curr Biol 2021; 31:5633-5641.e4. [PMID: 34739818 PMCID: PMC8692449 DOI: 10.1016/j.cub.2021.10.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/20/2021] [Accepted: 10/08/2021] [Indexed: 11/22/2022]
Abstract
The organismal body axes that are formed during embryogenesis are intimately linked to intrinsic asymmetries established at the cellular scale in oocytes.1 However, the mechanisms that generate cellular asymmetries within the oocyte and then transduce that polarity to organismal scale body axes are poorly understood outside of select model organisms. Here, we report an axis-defining event in meiotic oocytes of the sea star Patiria miniata. Dishevelled (Dvl) is a cytoplasmic Wnt pathway effector required for axis development in diverse species,2-4 but the mechanisms governing its function and distribution remain poorly defined. Using time-lapse imaging, we find that Dvl localizes uniformly to puncta throughout the cell cortex in Prophase I-arrested oocytes but becomes enriched at the vegetal pole following meiotic resumption through a dissolution-reassembly mechanism. This process is driven by an initial disassembly phase of Dvl puncta, followed by selective reformation of Dvl assemblies at the vegetal pole. Rather than being driven by Wnt signaling, this localization behavior is coupled to meiotic cell cycle progression and influenced by Lamp1+ endosome association and Frizzled receptors pre-localized within the oocyte cortex. Our results reveal a cell cycle-linked mechanism by which maternal cellular polarity is transduced to the embryo through spatially regulated Dvl dynamics.
Collapse
Affiliation(s)
- S Zachary Swartz
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Embryology Course: Concepts and Techniques in Modern Developmental Biology, Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| | - Tzer Han Tan
- Massachusetts Institute of Technology, Department of Physics, Cambridge, MA 02142, USA
| | | | - Nikta Fakhri
- Massachusetts Institute of Technology, Department of Physics, Cambridge, MA 02142, USA
| | - Gary M Wessel
- MCB Department, Brown University, Providence, RI 02912, USA
| | - Athula H Wikramanayake
- Department of Biology, University of Miami, Coral Gables, FL 33134, USA; Embryology Course: Concepts and Techniques in Modern Developmental Biology, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
| |
Collapse
|
5
|
Tan S, Huan P, Liu B. Molluscan dorsal-ventral patterning relying on BMP2/4 and Chordin provides insights into spiralian development and evolution. Mol Biol Evol 2021; 39:6424002. [PMID: 34751376 PMCID: PMC8789067 DOI: 10.1093/molbev/msab322] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although a conserved mechanism relying on BMP2/4 and Chordin is suggested for animal dorsal–ventral (DV) patterning, this mechanism has not been reported in spiralians, one of the three major clades of bilaterians. Studies on limited spiralian representatives have suggested markedly diverse DV patterning mechanisms, a considerable number of which no longer deploy BMP signaling. Here, we showed that BMP2/4 and Chordin regulate DV patterning in the mollusk Lottia goshimai, which was predicted in spiralians but not previously reported. In the context of the diverse reports in spiralians, it conversely represents a relatively unusual case. We showed that BMP2/4 and Chordin coordinate to mediate signaling from the D-quadrant organizer to induce the DV axis, and Chordin relays the symmetry-breaking information from the organizer. Further investigations on L. goshimai embryos with impaired DV patterning suggested roles of BMP signaling in regulating the behavior of the blastopore and the organization of the nervous system. These findings provide insights into the evolution of animal DV patterning and the unique development mode of spiralians driven by the D-quadrant organizer.
Collapse
Affiliation(s)
- Sujian Tan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Pin Huan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Baozhong Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| |
Collapse
|
6
|
Anlas K, Trivedi V. Studying evolution of the primary body axis in vivo and in vitro. eLife 2021; 10:e69066. [PMID: 34463611 PMCID: PMC8456739 DOI: 10.7554/elife.69066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023] Open
Abstract
The metazoan body plan is established during early embryogenesis via collective cell rearrangements and evolutionarily conserved gene networks, as part of a process commonly referred to as gastrulation. While substantial progress has been achieved in terms of characterizing the embryonic development of several model organisms, underlying principles of many early patterning processes nevertheless remain enigmatic. Despite the diversity of (pre-)gastrulating embryo and adult body shapes across the animal kingdom, the body axes, which are arguably the most fundamental features, generally remain identical between phyla. Recently there has been a renewed appreciation of ex vivo and in vitro embryo-like systems to model early embryonic patterning events. Here, we briefly review key examples and propose that similarities in morphogenesis and associated gene expression dynamics may reveal an evolutionarily conserved developmental mode as well as provide further insights into the role of external or extraembryonic cues in shaping the early embryo. In summary, we argue that embryo-like systems can be employed to inform previously uncharted aspects of animal body plan evolution as well as associated patterning rules.
Collapse
Affiliation(s)
| | - Vikas Trivedi
- EMBL BarcelonaBarcelonaSpain
- EMBL Heidelberg, Developmental BiologyHeidelbergGermany
| |
Collapse
|
7
|
Duruz J, Kaltenrieder C, Ladurner P, Bruggmann R, Martìnez P, Sprecher SG. Acoel Single-Cell Transcriptomics: Cell Type Analysis of a Deep Branching Bilaterian. Mol Biol Evol 2021; 38:1888-1904. [PMID: 33355655 PMCID: PMC8097308 DOI: 10.1093/molbev/msaa333] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bilaterian animals display a wide variety of cell types, organized into defined anatomical structures and organ systems, which are mostly absent in prebilaterian animals. Xenacoelomorpha are an early-branching bilaterian phylum displaying an apparently relatively simple anatomical organization that have greatly diverged from other bilaterian clades. In this study, we use whole-body single-cell transcriptomics on the acoel Isodiametra pulchra to identify and characterize different cell types. Our analysis identifies the existence of ten major cell type categories in acoels all contributing to main biological functions of the organism: metabolism, locomotion and movements, behavior, defense, and development. Interestingly, although most cell clusters express core fate markers shared with other animal clades, we also describe a surprisingly large number of clade-specific marker genes, suggesting the emergence of clade-specific common molecular machineries functioning in distinct cell types. Together, these results provide novel insight into the evolution of bilaterian cell types and open the door to a better understanding of the origins of the bilaterian body plan and their constitutive cell types.
Collapse
Affiliation(s)
- Jules Duruz
- Department of Biology, Institute of Zoology, University of Fribourg, Fribourg, Switzerland
| | - Cyrielle Kaltenrieder
- Department of Biology, Institute of Zoology, University of Fribourg, Fribourg, Switzerland
| | - Peter Ladurner
- Institute of Zoology and Center of Molecular Bioscience Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Rémy Bruggmann
- Institute of Cell Biology, University of Bern, Bern, Switzerland.,Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland
| | - Pedro Martìnez
- Departament de Genètica, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Institut Català de Recerca i Estudis Avancats (ICREA), Passeig de Lluís Companys, Barcelona, Spain
| | - Simon G Sprecher
- Department of Biology, Institute of Zoology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
8
|
Lebedeva T, Aman AJ, Graf T, Niedermoser I, Zimmermann B, Kraus Y, Schatka M, Demilly A, Technau U, Genikhovich G. Cnidarian-bilaterian comparison reveals the ancestral regulatory logic of the β-catenin dependent axial patterning. Nat Commun 2021; 12:4032. [PMID: 34188050 PMCID: PMC8241978 DOI: 10.1038/s41467-021-24346-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 05/30/2021] [Indexed: 11/09/2022] Open
Abstract
In animals, body axis patterning is based on the concentration-dependent interpretation of graded morphogen signals, which enables correct positioning of the anatomical structures. The most ancient axis patterning system acting across animal phyla relies on β-catenin signaling, which directs gastrulation, and patterns the main body axis. However, within Bilateria, the patterning logic varies significantly between protostomes and deuterostomes. To deduce the ancestral principles of β-catenin-dependent axial patterning, we investigate the oral–aboral axis patterning in the sea anemone Nematostella—a member of the bilaterian sister group Cnidaria. Here we elucidate the regulatory logic by which more orally expressed β-catenin targets repress more aborally expressed β-catenin targets, and progressively restrict the initially global, maternally provided aboral identity. Similar regulatory logic of β-catenin-dependent patterning in Nematostella and deuterostomes suggests a common evolutionary origin of these processes and the equivalence of the cnidarian oral–aboral and the bilaterian posterior–anterior body axes. The authors show in Nematostella that the more orally expressed β-catenin targets repress the more aborally expressed β-catenin targets, thus patterning the oral-aboral axis. This likely represents the common mechanism of β-catenin-dependent axial patterning shared by Cnidaria and Bilateria.
Collapse
Affiliation(s)
- Tatiana Lebedeva
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, Vienna, Austria
| | - Andrew J Aman
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, Vienna, Austria
| | - Thomas Graf
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, Vienna, Austria
| | - Isabell Niedermoser
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, Vienna, Austria
| | - Bob Zimmermann
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, Vienna, Austria
| | - Yulia Kraus
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, Vienna, Austria.,Department of Evolutionary Biology, Faculty of Biology, Lomonosov Moscow State University, Leninskiye gory 1/12, Moscow, Russia
| | - Magdalena Schatka
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, Vienna, Austria
| | - Adrien Demilly
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, Vienna, Austria
| | - Ulrich Technau
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, Vienna, Austria
| | - Grigory Genikhovich
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, Vienna, Austria.
| |
Collapse
|
9
|
Sun H, Peng CFJ, Wang L, Feng H, Wikramanayake AH. An early global role for Axin is required for correct patterning of the anterior-posterior axis in the sea urchin embryo. Development 2021; 148:dev.191197. [PMID: 33688076 PMCID: PMC8034878 DOI: 10.1242/dev.191197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 02/25/2021] [Indexed: 12/22/2022]
Abstract
Activation of Wnt/β-catenin (cWnt) signaling at the future posterior end of early bilaterian embryos is a highly conserved mechanism for establishing the anterior-posterior (AP) axis. Moreover, inhibition of cWnt at the anterior end is required for development of anterior structures in many deuterostome taxa. This phenomenon, which occurs around the time of gastrulation, has been fairly well characterized, but the significance of intracellular inhibition of cWnt signaling in cleavage-stage deuterostome embryos for normal AP patterning is less well understood. To investigate this process in an invertebrate deuterostome, we defined Axin function in early sea urchin embryos. Axin is ubiquitously expressed at relatively high levels in early embryos and functional analysis revealed that Axin suppresses posterior cell fates in anterior blastomeres by blocking ectopic cWnt activation in these cells. Structure-function analysis of sea urchin Axin demonstrated that only its GSK-3β-binding domain is required for cWnt inhibition. These observations and results in other deuterostomes suggest that Axin plays a crucial conserved role in embryonic AP patterning by preventing cWnt activation in multipotent early blastomeres, thus protecting them from assuming ectopic cell fates. Summary: Axin function is required in the early sea urchin embryo to regulate nuclear β-catenin levels and prevent ectopic cell fates in multipotent early blastomeres, and to ensure correct anterior-posterior axis patterning.
Collapse
Affiliation(s)
- Hongyan Sun
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA
| | | | - Lingyu Wang
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA
| | - Honglin Feng
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA
| | | |
Collapse
|
10
|
Salinas-Saavedra M, Martindale MQ. Par protein localization during the early development of Mnemiopsis leidyi suggests different modes of epithelial organization in the metazoa. eLife 2020; 9:54927. [PMID: 32716297 PMCID: PMC7441587 DOI: 10.7554/elife.54927] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023] Open
Abstract
In bilaterians and cnidarians, epithelial cell-polarity is regulated by the interactions between Par proteins, Wnt/PCP signaling pathway, and cell-cell adhesion. Par proteins are highly conserved across Metazoa, including ctenophores. But strikingly, ctenophore genomes lack components of the Wnt/PCP pathway and cell-cell adhesion complexes raising the question if ctenophore cells are polarized by mechanisms involving Par proteins. Here, by using immunohistochemistry and live-cell imaging of specific mRNAs, we describe for the first time the subcellular localization of selected Par proteins in blastomeres and epithelial cells during the embryogenesis of the ctenophore Mnemiopsis leidyi. We show that these proteins distribute differently compared to what has been described for other animals, even though they segregate in a host-specific fashion when expressed in cnidarian embryos. This differential localization might be related to the emergence of different junctional complexes during metazoan evolution.
Collapse
Affiliation(s)
- Miguel Salinas-Saavedra
- The Whitney Laboratory for Marine Bioscience, and the Department of Biology, University of Florida, St. Augustine, United States
| | - Mark Q Martindale
- The Whitney Laboratory for Marine Bioscience, and the Department of Biology, University of Florida, St. Augustine, United States
| |
Collapse
|
11
|
Technau U. Gastrulation and germ layer formation in the sea anemone Nematostella vectensis and other cnidarians. Mech Dev 2020; 163:103628. [PMID: 32603823 DOI: 10.1016/j.mod.2020.103628] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/23/2020] [Accepted: 06/19/2020] [Indexed: 01/03/2023]
Abstract
Among the basally branching metazoans, cnidarians display well-defined gastrulation processes leading to a diploblastic body plan, consisting of an endodermal and an ectodermal cell layer. As the outgroup to all Bilateria, cnidarians are an interesting group to investigate ancestral developmental mechanisms. Interestingly, all known gastrulation mechanisms known in Bilateria are already found in different species of Cnidaria. Here I review the morphogenetic processes found in different Cnidaria and focus on the investigation of the cellular and molecular mechanisms in the sea anemone Nematostella vectensis, which has been a major model organism among cnidarians for evolutionary developmental biology. Many of the genes involved in germ layer specification and morphogenetic processes in Bilateria are also found active during gastrulation of Nematostella and other cnidarians, suggesting an ancestral role of this process. The molecular analyses indicate a tight link between gastrulation and axis patterning processes by Wnt and FGF signaling. Interestingly, the endodermal layer displays many features of the mesodermal layer in Bilateria, while the pharyngeal ectoderm has an endodermal expression profile. Comparative analyses as well as experimental studies using embryonic aggregates suggest that minor differences in the gene regulatory networks allow the embryo to transition relatively easily from one mode of gastrulation to another.
Collapse
Affiliation(s)
- Ulrich Technau
- University of Vienna, Dept. of Neurosciences and Developmental Biology, Althanstrasse 14, 1090 Wien, Austria.
| |
Collapse
|
12
|
Forsthoefel DJ, Cejda NI, Khan UW, Newmark PA. Cell-type diversity and regionalized gene expression in the planarian intestine. eLife 2020; 9:e52613. [PMID: 32240093 PMCID: PMC7117911 DOI: 10.7554/elife.52613] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/06/2020] [Indexed: 12/17/2022] Open
Abstract
Proper function and repair of the digestive system are vital to most animals. Deciphering the mechanisms involved in these processes requires an atlas of gene expression and cell types. Here, we applied laser-capture microdissection (LCM) and RNA-seq to characterize the intestinal transcriptome of Schmidtea mediterranea, a planarian flatworm that can regenerate all organs, including the gut. We identified hundreds of genes with intestinal expression undetected by previous approaches. Systematic analyses revealed extensive conservation of digestive physiology and cell types with other animals, including humans. Furthermore, spatial LCM enabled us to uncover previously unappreciated regionalization of gene expression in the planarian intestine along the medio-lateral axis, especially among intestinal goblet cells. Finally, we identified two intestine-enriched transcription factors that specifically regulate regeneration (hedgehog signaling effector gli-1) or maintenance (RREB2) of goblet cells. Altogether, this work provides resources for further investigation of mechanisms involved in gastrointestinal function, repair and regeneration.
Collapse
Affiliation(s)
- David J Forsthoefel
- Genes and Human Disease Research Program, Oklahoma Medical Research FoundationOklahoma CityUnited States
- Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Nicholas I Cejda
- Genes and Human Disease Research Program, Oklahoma Medical Research FoundationOklahoma CityUnited States
| | - Umair W Khan
- Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Phillip A Newmark
- Howard Hughes Medical Institute, Department of Cell and Developmental Biology, University of Illinois at Urbana-ChampaignUrbanaUnited States
| |
Collapse
|
13
|
Fields C, Levin M. Does regeneration recapitulate phylogeny? Planaria as a model of body-axis specification in ancestral eumetazoa. Commun Integr Biol 2020; 13:27-38. [PMID: 32128026 PMCID: PMC7039665 DOI: 10.1080/19420889.2020.1729601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/07/2020] [Accepted: 02/09/2020] [Indexed: 12/31/2022] Open
Abstract
Metazoan body plans combine well-defined primary, secondary, and in many bilaterians, tertiary body axes with structural asymmetries at multiple scales. Despite decades of study, how axis-defining symmetries and system-defining asymmetries co-emerge during both evolution and development remain open questions. Regeneration studies in asexual planaria have demonstrated an array of viable forms with symmetrized and, in some cases, duplicated body axes. We suggest that such forms may point toward an ancestral eumetazoan form with characteristics of both cnidarians and placazoa.
Collapse
Affiliation(s)
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA, USA
| |
Collapse
|
14
|
Martín-Durán JM, Hejnol A. A developmental perspective on the evolution of the nervous system. Dev Biol 2019; 475:181-192. [PMID: 31610146 DOI: 10.1016/j.ydbio.2019.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 06/02/2018] [Accepted: 10/04/2019] [Indexed: 12/20/2022]
Abstract
The evolution of nervous systems in animals has always fascinated biologists, and thus multiple evolutionary scenarios have been proposed to explain the appearance of neurons and complex neuronal centers. However, the absence of a robust phylogenetic framework for animal interrelationships, the lack of a mechanistic understanding of development, and a recapitulative view of animal ontogeny have traditionally limited these scenarios. Only recently, the integration of advanced molecular and morphological studies in a broad range of animals has allowed to trace the evolution of developmental and neuronal characters on a better-resolved animal phylogeny. This has falsified most traditional scenarios for nervous system evolution, paving the way for the emergence of new testable hypotheses. Here we summarize recent progress in studies of nervous system development in major animal lineages and formulate some of the arising questions. In particular, we focus on how lineage analyses of nervous system development and a comparative study of the expression of neural-related genes has influenced our understanding of the evolution of an elaborated central nervous system in Bilateria. We argue that a phylogeny-guided study of neural development combining thorough descriptive and functional analyses is key to establish more robust scenarios for the origin and evolution of animal nervous systems.
Collapse
Affiliation(s)
- José M Martín-Durán
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thørmohlensgate 55, 5006, Bergen, Norway; School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, E1 4NS, London, UK.
| | - Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thørmohlensgate 55, 5006, Bergen, Norway.
| |
Collapse
|
15
|
сWnt signaling modulation results in a change of the colony architecture in a hydrozoan. Dev Biol 2019; 456:145-153. [PMID: 31473187 DOI: 10.1016/j.ydbio.2019.08.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/11/2019] [Accepted: 08/28/2019] [Indexed: 01/11/2023]
Abstract
At the polyp stage, most hydrozoan cnidarians form highly elaborate colonies with a variety of branching patterns, which makes them excellent models for studying the evolutionary mechanisms of body plan diversification. At the same time, molecular mechanisms underlying the robust patterning of the architecturally complex hydrozoan colonies remain unexplored. Using non-model hydrozoan Dynamena pumila we showed that the key components of the Wnt/β-catenin (cWnt) pathway (β-catenin, TCF) and the cWnt-responsive gene, brachyury 2, are involved in specification and patterning of the developing colony shoots. Strikingly, pharmacological modulation of the cWnt pathway leads to radical modification of the monopodially branching colony of Dynamena which acquire branching patterns typical for colonies of other hydrozoan species. Our results suggest that modulation of the cWnt signaling is the driving force promoting the evolution of the vast variety of the body plans in hydrozoan colonies and offer an intriguing possibility that the involvement of the cWnt pathway in the regulation of branching morphogenesis might represent an ancestral feature predating the cnidarian-bilaterian split.
Collapse
|
16
|
Oulhen N, Swartz SZ, Wang L, Wikramanayake A, Wessel GM. Distinct transcriptional regulation of Nanos2 in the germ line and soma by the Wnt and delta/notch pathways. Dev Biol 2019; 452:34-42. [PMID: 31075220 PMCID: PMC6848975 DOI: 10.1016/j.ydbio.2019.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/19/2019] [Accepted: 04/21/2019] [Indexed: 12/23/2022]
Abstract
Specification of the primordial germ cells (PGCs) is essential for sexually reproducing animals. Although the mechanisms of PGC specification are diverse between organisms, the RNA binding protein Nanos is consistently required in the germ line in all species tested. How Nanos is selectively expressed in the germ line, however, remains largely elusive. We report that in sea urchin embryos, the early expression of Nanos2 in the PGCs requires the maternal Wnt pathway. During gastrulation, however, Nanos2 expression expands into adjacent somatic mesodermal cells and this secondary Nanos expression instead requires Delta/Notch signaling through the forkhead family member FoxY. Each of these transcriptional regulators were tested by chromatin immunoprecipitation analysis and found to directly interact with a DNA locus upstream of Nanos2. Given the conserved importance of Nanos in germ line specification, and the derived character of the micromeres and small micromeres in the sea urchin, we propose that the ancestral mechanism of Nanos2 expression in echinoderms was by induction in mesodermal cells during gastrulation.
Collapse
Affiliation(s)
- Nathalie Oulhen
- Department of Molecular and Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI, 02912, USA
| | - S Zachary Swartz
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA, 02142, USA
| | - Lingyu Wang
- Department of Biology and Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | | | - Gary M Wessel
- Department of Molecular and Cell Biology and Biochemistry, Brown University, 185 Meeting Street, Providence, RI, 02912, USA.
| |
Collapse
|
17
|
Visualizing egg and embryonic polarity. Methods Cell Biol 2019. [PMID: 30777179 DOI: 10.1016/bs.mcb.2019.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
During development metazoan embryos have to establish the molecular coordinates for elaboration of the embryonic body plan. Typically, bilaterian (bilaterally symmetric animals) embryos establish anterior-posterior (AP) and dorsal-ventral (DV) axes, and in most cases the AP axis is established first. For over a century it has been known that formation of the AP axis is strongly influenced by the primary axis of the egg, the animal-vegetal (AV) axis. The molecular basis for how the AV axis influences AP polarity remains poorly understood, but sea urchins have proven to be important for elucidating the molecular basis for this process. In fact, it is the first model system where a critical role for Wnt signaling in specification and patterning the AV and AP axis was first established. One current area of research is focused on identifying the maternal factors that regulate localized activation of Wnt/β-catenin signaling at the vegetal pole during development. An essential tool for this work is the means to identify the AV polarity in oocytes and eggs. This permits investigation into how polarity is established and allows development of experimental strategies to identify maternal factors that contribute to and control axial polarity. This chapter provides protocols to accomplish this in sea urchin eggs and early embryos. We describe simple methods to visualize polarity including direct observation of eggs and oocytes, using a microscope for overt morphological signs of polarity, and more extensive methods involving localization of known factors indicative of inherent embryonic polarity, such as the upstream regulators of the Wnt/β-catenin pathway.
Collapse
|
18
|
Laumer CE, Gruber-Vodicka H, Hadfield MG, Pearse VB, Riesgo A, Marioni JC, Giribet G. Support for a clade of Placozoa and Cnidaria in genes with minimal compositional bias. eLife 2018; 7:e36278. [PMID: 30373720 PMCID: PMC6277202 DOI: 10.7554/elife.36278] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 10/11/2018] [Indexed: 12/22/2022] Open
Abstract
The phylogenetic placement of the morphologically simple placozoans is crucial to understanding the evolution of complex animal traits. Here, we examine the influence of adding new genomes from placozoans to a large dataset designed to study the deepest splits in the animal phylogeny. Using site-heterogeneous substitution models, we show that it is possible to obtain strong support, in both amino acid and reduced-alphabet matrices, for either a sister-group relationship between Cnidaria and Placozoa, or for Cnidaria and Bilateria as seen in most published work to date, depending on the orthologues selected to construct the matrix. We demonstrate that a majority of genes show evidence of compositional heterogeneity, and that support for the Cnidaria + Bilateria clade can be assigned to this source of systematic error. In interpreting these results, we caution against a peremptory reading of placozoans as secondarily reduced forms of little relevance to broader discussions of early animal evolution.
Collapse
Affiliation(s)
- Christopher E Laumer
- Wellcome Trust Sanger InstituteHinxtonUnited Kingdom
- European Molecular Biology Laboratories-European Bioinformatics InstituteHinxtonUnited Kingdom
| | | | - Michael G Hadfield
- Kewalo Marine LaboratoryPacific Biosciences Research Center and the University of Hawaii-ManoaHonoluluUnited States
| | - Vicki B Pearse
- Institute of Marine SciencesUniversity of CaliforniaSanta CruzUnited States
| | - Ana Riesgo
- Invertebrate Division, Life Sciences DepartmentThe Natural History MuseumLondonUnited Kingdom
| | - John C Marioni
- Wellcome Trust Sanger InstituteHinxtonUnited Kingdom
- European Molecular Biology Laboratories-European Bioinformatics InstituteHinxtonUnited Kingdom
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeUnited States
| |
Collapse
|
19
|
Onai T. Canonical Wnt/β-catenin and Notch signaling regulate animal/vegetal axial patterning in the cephalochordate amphioxus. Evol Dev 2018; 21:31-43. [PMID: 30288919 DOI: 10.1111/ede.12273] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In bilaterians, animal/vegetal axial (A/V) patterning is a fundamental early developmental event for establishment of animal/vegetal polarity and following specification of the germ layers (ectoderm, mesoderm, endoderm), of which the evolutionary origin is enigmatic. Understanding A/V axial patterning in a basal animal from each phylum would help to reconstruct the ancestral state of germ layer specification in bilaterians and thus, the evolution of mesoderm, the third intermediate cell layer. Herein, data show that the canonical Wnt/β-catenin (cWnt) and Notch signaling pathways control mesoderm specification from the early endomesoderm in the basal chordate amphioxus. Amphioxus belongs to the deuterostome, one of the main superphyla in Bilateria. In the present study, genes (tcf, dsh, axin, gsk3β) encoding cWnt components were expressed in the endomesoderm during the gastrula stages. Excess cWnt signaling by BIO, a GSK3 inhibitor, expanded the expression domains of outer endomesodermal genes that include future mesodermal ones and suppressed inner endomesodermal and ectodermal genes. Interfering Notch signaling by DAPT, a γ-secretase inhibitor, resulted in decreased expression of ectodermal and endomesodermal markers. These results suggest that cWnt and Notch have important roles in mesoderm specification in amphioxus embryos. The evolution of the mesoderm is also discussed.
Collapse
Affiliation(s)
- Takayuki Onai
- Department of Anatomy, University of Fukui, School of Medical Sciences, Fukui, Japan.,Life Science Innovation Center, University of Fukui, Fukui, Japan
| |
Collapse
|
20
|
Evolution of the bilaterian mouth and anus. Nat Ecol Evol 2018; 2:1358-1376. [PMID: 30135501 DOI: 10.1038/s41559-018-0641-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 06/26/2018] [Accepted: 07/11/2018] [Indexed: 12/17/2022]
Abstract
It is widely held that the bilaterian tubular gut with mouth and anus evolved from a simple gut with one major gastric opening. However, there is no consensus on how this happened. Did the single gastric opening evolve into a mouth, with the anus forming elsewhere in the body (protostomy), or did it evolve into an anus, with the mouth forming elsewhere (deuterostomy), or did it evolve into both mouth and anus (amphistomy)? These questions are addressed by the comparison of developmental fates of the blastopore, the opening of the embryonic gut, in diverse animals that live today. Here we review comparative data on the identity and fate of blastoporal tissue, investigate how the formation of the through-gut relates to the major body axes, and discuss to what extent evolutionary scenarios are consistent with these data. Available evidence indicates that stem bilaterians had a slit-like gastric opening that was partially closed in subsequent evolution, leaving open the anus and most likely also the mouth, which would favour amphistomy. We discuss remaining difficulties, and outline directions for future research.
Collapse
|
21
|
Favarolo MB, López SL. Notch signaling in the division of germ layers in bilaterian embryos. Mech Dev 2018; 154:122-144. [PMID: 29940277 DOI: 10.1016/j.mod.2018.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/08/2018] [Accepted: 06/18/2018] [Indexed: 01/09/2023]
Abstract
Bilaterian embryos are triploblastic organisms which develop three complete germ layers (ectoderm, mesoderm, and endoderm). While the ectoderm develops mainly from the animal hemisphere, there is diversity in the location from where the endoderm and the mesoderm arise in relation to the animal-vegetal axis, ranging from endoderm being specified between the ectoderm and mesoderm in echinoderms, and the mesoderm being specified between the ectoderm and the endoderm in vertebrates. A common feature is that part of the mesoderm segregates from an ancient bipotential endomesodermal domain. The process of segregation is noisy during the initial steps but it is gradually refined. In this review, we discuss the role of the Notch pathway in the establishment and refinement of boundaries between germ layers in bilaterians, with special focus on its interaction with the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- María Belén Favarolo
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis" (IBCN), Facultad de Medicina, Laboratorio de Embriología Molecular "Prof. Dr. Andrés E. Carrasco", Buenos Aires, Argentina
| | - Silvia L López
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis" (IBCN), Facultad de Medicina, Laboratorio de Embriología Molecular "Prof. Dr. Andrés E. Carrasco", Buenos Aires, Argentina.
| |
Collapse
|
22
|
Wijesena N, Martindale MQ. Reengineering the primary body axis by ectopic cWnt signaling. Curr Biol 2018; 28:R206-R207. [PMID: 29510105 DOI: 10.1016/j.cub.2018.01.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The evolution of gastrulation, the embryonic formation of distinct tissue layers, was a pivotal event in the metazoan radiation, as it paved the way for diversification of animal body plans from a hollow, ciliated, radially symmetrical ancestor [1]. The position of the site of gastrulation (that segregates internal endomesodermal precursors from outer ectodermal tissue) has played a role in our understanding of patterns of body plan evolution and is tightly regulated during development. In bilaterians (a large clade of bilaterally symmetrical animals that represent over 99% of all extant species), the site of gastrulation is determined by a localized molecular asymmetry resulting from a differential distribution of maternal determinants [2] along the so-called animal-vegetal axis (A-V axis) where the animal pole is marked by the site of polar body release during meiosis [1,3]. In most bilaterians, the site of gastrulation occurs at the vegetal pole (the side opposite the animal pole); however, in cnidarians (corals, sea anemones, and jellyfish) [3], the sister group to all bilaterians and ctenophores (comb jellies), likely to be the earliest branching group of extant metazoans [3], gastrulation occurs at the animal pole [3,4]. Here we show that components of the canonical Wnt-β-catenin (cWnt) signaling pathway mediate endomesoderm formation and patterns the adult primary body axis.
Collapse
Affiliation(s)
- Naveen Wijesena
- Whitney Laboratory for Marine Bioscience, University of Florida, Saint Augustine, Florida, USA
| | - Mark Q Martindale
- Whitney Laboratory for Marine Bioscience, University of Florida, Saint Augustine, Florida, USA.
| |
Collapse
|
23
|
Darras S, Fritzenwanker JH, Uhlinger KR, Farrelly E, Pani AM, Hurley IA, Norris RP, Osovitz M, Terasaki M, Wu M, Aronowicz J, Kirschner M, Gerhart JC, Lowe CJ. Anteroposterior axis patterning by early canonical Wnt signaling during hemichordate development. PLoS Biol 2018; 16:e2003698. [PMID: 29337984 PMCID: PMC5786327 DOI: 10.1371/journal.pbio.2003698] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 01/26/2018] [Accepted: 12/22/2017] [Indexed: 12/28/2022] Open
Abstract
The Wnt family of secreted proteins has been proposed to play a conserved role in early specification of the bilaterian anteroposterior (A/P) axis. This hypothesis is based predominantly on data from vertebrate embryogenesis as well as planarian regeneration and homeostasis, indicating that canonical Wnt (cWnt) signaling endows cells with positional information along the A/P axis. Outside of these phyla, there is strong support for a conserved role of cWnt signaling in the repression of anterior fates, but little comparative support for a conserved role in promotion of posterior fates. We further test the hypothesis by investigating the role of cWnt signaling during early patterning along the A/P axis of the hemichordate Saccoglossus kowalevskii. We have cloned and investigated the expression of the complete Wnt ligand and Frizzled receptor complement of S. kowalevskii during early development along with many secreted Wnt modifiers. Eleven of the 13 Wnt ligands are ectodermally expressed in overlapping domains, predominantly in the posterior, and Wnt antagonists are localized predominantly to the anterior ectoderm in a pattern reminiscent of their distribution in vertebrate embryos. Overexpression and knockdown experiments, in combination with embryological manipulations, establish the importance of cWnt signaling for repression of anterior fates and activation of mid-axial ectodermal fates during the early development of S. kowalevskii. However, surprisingly, terminal posterior fates, defined by posterior Hox genes, are unresponsive to manipulation of cWnt levels during the early establishment of the A/P axis at late blastula and early gastrula. We establish experimental support for a conserved role of Wnt signaling in the early specification of the A/P axis during deuterostome body plan diversification, and further build support for an ancestral role of this pathway in early evolution of the bilaterian A/P axis. We find strong support for a role of cWnt in suppression of anterior fates and promotion of mid-axial fates, but we find no evidence that cWnt signaling plays a role in the early specification of the most posterior axial fates in S. kowalevskii. This posterior autonomy may be a conserved feature of early deuterostome axis specification.
Collapse
Affiliation(s)
- Sébastien Darras
- Institut de Biologie du Développement de Marseille, Aix-Marseille Université, CNRS UMR 7288, Marseille, France
| | - Jens H. Fritzenwanker
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, California
| | - Kevin R. Uhlinger
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, California
| | - Ellyn Farrelly
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois
| | - Ariel M. Pani
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois
| | - Imogen A. Hurley
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois
| | - Rachael P. Norris
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Michelle Osovitz
- Department of Natural Sciences, St. Petersburg College, Clearwater, Florida
| | - Mark Terasaki
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut
| | - Mike Wu
- Department of Molecular and Cellular Biology, University of California Berkeley, Berkeley, California
| | - Jochanan Aronowicz
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois
| | - Marc Kirschner
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts
| | - John C. Gerhart
- Department of Molecular and Cellular Biology, University of California Berkeley, Berkeley, California
| | - Christopher J. Lowe
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, California
| |
Collapse
|
24
|
Abstract
Bilaterality – the possession of two orthogonal body axes – is the name-giving trait of all bilaterian animals. These body axes are established during early embryogenesis and serve as a three-dimensional coordinate system that provides crucial spatial cues for developing cells, tissues, organs and appendages. The emergence of bilaterality was a major evolutionary transition, as it allowed animals to evolve more complex body plans. Therefore, how bilaterality evolved and whether it evolved once or several times independently is a fundamental issue in evolutionary developmental biology. Recent findings from non-bilaterian animals, in particular from Cnidaria, the sister group to Bilateria, have shed new light into the evolutionary origin of bilaterality. Here, we compare the molecular control of body axes in radially and bilaterally symmetric cnidarians and bilaterians, identify the minimal set of traits common for Bilateria, and evaluate whether bilaterality arose once or more than once during evolution.
Collapse
Affiliation(s)
- Grigory Genikhovich
- Department for Molecular Evolution and Development, Centre of Organismal Systems Biology, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| | - Ulrich Technau
- Department for Molecular Evolution and Development, Centre of Organismal Systems Biology, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| |
Collapse
|
25
|
Lyons DC, Perry KJ, Henry JQ. Morphogenesis along the animal-vegetal axis: fates of primary quartet micromere daughters in the gastropod Crepidula fornicata. BMC Evol Biol 2017; 17:217. [PMID: 28915788 PMCID: PMC5603038 DOI: 10.1186/s12862-017-1057-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/29/2017] [Indexed: 11/30/2022] Open
Abstract
Background The Spiralia are a large, morphologically diverse group of protostomes (e.g. molluscs, annelids, nemerteans) that share a homologous mode of early development called spiral cleavage. One of the most highly-conserved features of spiralian development is the contribution of the primary quartet cells, 1a-1d, to the anterior region of the embryo (including the brain, eyes, and the anterior ciliary band, called the prototroch). Yet, very few studies have analyzed the ultimate fates of primary quartet sub-lineages, or examined the morphogenetic events that take place in the anterior region of the embryo. Results This study focuses on the caenogastropod slipper snail, Crepidula fornicata, a model for molluscan developmental biology. Through direct lineage tracing of primary quartet daughter cells, and examination of these cells during gastrulation and organogenesis stages, we uncovered behaviors never described before in a spiralian. For the first time, we show that the 1a2-1d2 cells do not contribute to the prototroch (as they do in other species) and are ultimately lost before hatching. During gastrulation and anterior-posterior axial elongation stages, these cells cleavage-arrest and spread dramatically, contributing to a thin provisional epidermis on the dorsal side of the embryo. This spreading is coupled with the displacement of the animal pole, and other pretrochal cells, closer to the ventrally-positioned mouth, and the vegetal pole. Conclusions This is the first study to document the behavior and fate of primary quartet sub-lineages among molluscs. We speculate that the function of 1a2-1d2 cells (in addition to two cells derived from 1d12, and the 2b lineage) is to serve as a provisional epithelium that allows for anterior displacement of the other progeny of the primary quartet towards the anterior-ventral side of the embryo. These data support a new and novel mechanism for axial bending, distinct from canonical models in which axial bending is suggested to be driven primarily by differential proliferation of posterior dorsal cells. These data suggest also that examining sub-lineages in other spiralians will reveal greater variation than previously assumed.
Collapse
Affiliation(s)
- Deirdre C Lyons
- Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, San Diego, CA, 92093, USA.
| | - Kimberly J Perry
- Department of Cell & Developmental Biology, University of Illinois, 601 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - Jonathan Q Henry
- Department of Cell & Developmental Biology, University of Illinois, 601 S. Goodwin Ave, Urbana, IL, 61801, USA.
| |
Collapse
|
26
|
Servetnick MD, Steinworth B, Babonis LS, Simmons D, Salinas-Saavedra M, Martindale MQ. Cas9-mediated excision of Nematostella brachyury disrupts endoderm development, pharynx formation and oral-aboral patterning. Development 2017; 144:2951-2960. [PMID: 28705897 PMCID: PMC5592810 DOI: 10.1242/dev.145839] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 07/05/2017] [Indexed: 12/26/2022]
Abstract
The mesoderm is a key novelty in animal evolution, although we understand little of how the mesoderm arose. brachyury, the founding member of the T-box gene family, is a key gene in chordate mesoderm development. However, the brachyury gene was present in the common ancestor of fungi and animals long before mesoderm appeared. To explore ancestral roles of brachyury prior to the evolution of definitive mesoderm, we excised the gene using CRISPR/Cas9 in the diploblastic cnidarian Nematostella vectensis Nvbrachyury is normally expressed in precursors of the pharynx, which separates endoderm from ectoderm. In knockout embryos, the pharynx does not form, embryos fail to elongate, and endoderm organization, ectodermal cell polarity and patterning along the oral-aboral axis are disrupted. Expression of many genes both inside and outside the Nvbrachyury expression domain is affected, including downregulation of Wnt genes at the oral pole. Our results point to an ancient role for brachyury in morphogenesis, cell polarity and the patterning of both ectodermal and endodermal derivatives along the primary body axis.
Collapse
Affiliation(s)
- Marc D Servetnick
- Division of Biological Sciences, University of Washington Bothell, Bothell, WA 98011, USA
| | - Bailey Steinworth
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL 32080, USA
| | - Leslie S Babonis
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL 32080, USA
| | - David Simmons
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL 32080, USA
| | - Miguel Salinas-Saavedra
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL 32080, USA
| | - Mark Q Martindale
- Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL 32080, USA
| |
Collapse
|
27
|
A bipolar role of the transcription factor ERG for cnidarian germ layer formation and apical domain patterning. Dev Biol 2017; 430:346-361. [PMID: 28818668 DOI: 10.1016/j.ydbio.2017.08.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/29/2017] [Accepted: 08/09/2017] [Indexed: 02/06/2023]
Abstract
Germ layer formation and axial patterning are biological processes that are tightly linked during embryonic development of most metazoans. In addition to canonical WNT, it has been proposed that ERK-MAPK signaling is involved in specifying oral as well as aboral territories in cnidarians. However, the effector and the molecular mechanism underlying latter phenomenon is unknown. By screening for potential effectors of ERK-MAPK signaling in both domains, we identified a member of the ETS family of transcription factors, Nverg that is bi-polarily expressed prior to gastrulation. We further describe the crucial role of NvERG for gastrulation, endomesoderm as well as apical domain formation. The molecular characterization of the obtained NvERG knock-down phenotype using previously described as well as novel potential downstream targets, provides evidence that a single transcription factor, NvERG, simultaneously controls expression of two different sets of downstream targets, leading to two different embryonic gene regulatory networks (GRNs) in opposite poles of the developing embryo. We also highlight the molecular interaction of cWNT and MEK/ERK/ERG signaling that provides novel insight into the embryonic axial organization of Nematostella, and show a cWNT repressive role of MEK/ERK/ERG signaling in segregating the endomesoderm in two sub-domains, while a common input of both pathways is required for proper apical domain formation. Taking together, we build the first blueprint for a global cnidarian embryonic GRN that is the foundation for additional gene specific studies addressing the evolution of embryonic and larval development.
Collapse
|
28
|
Janssen R, Budd GE. Investigation of endoderm marker-genes during gastrulation and gut-development in the velvet worm Euperipatoides kanangrensis. Dev Biol 2017; 427:155-164. [DOI: 10.1016/j.ydbio.2017.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 04/14/2017] [Accepted: 04/23/2017] [Indexed: 11/30/2022]
|
29
|
Loh KM, van Amerongen R, Nusse R. Generating Cellular Diversity and Spatial Form: Wnt Signaling and the Evolution of Multicellular Animals. Dev Cell 2017; 38:643-55. [PMID: 27676437 DOI: 10.1016/j.devcel.2016.08.011] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/29/2016] [Accepted: 08/22/2016] [Indexed: 01/01/2023]
Abstract
There were multiple prerequisites to the evolution of multicellular animal life, including the generation of multiple cell fates ("cellular diversity") and their patterned spatial arrangement ("spatial form"). Wnt proteins operate as primordial symmetry-breaking signals. By virtue of their short-range nature and their capacity to activate both lineage-specifying and cell-polarizing intracellular signaling cascades, Wnts can polarize cells at their site of contact, orienting the axis of cell division while simultaneously programming daughter cells to adopt diverging fates in a spatially stereotyped way. By coupling cell fate to position, symmetry-breaking Wnt signals were pivotal in constructing the metazoan body by generating cellular diversity and spatial form.
Collapse
Affiliation(s)
- Kyle M Loh
- Department of Developmental Biology, Howard Hughes Medical Institute, Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA
| | - Renée van Amerongen
- Section of Molecular Cytology and Van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Roel Nusse
- Department of Developmental Biology, Howard Hughes Medical Institute, Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, Stanford, CA 94305, USA.
| |
Collapse
|
30
|
Chen J, Jacox LA, Saldanha F, Sive H. Mouth development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 6. [PMID: 28514120 PMCID: PMC5574021 DOI: 10.1002/wdev.275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/28/2017] [Accepted: 04/03/2017] [Indexed: 12/12/2022]
Abstract
A mouth is present in all animals, and comprises an opening from the outside into the oral cavity and the beginnings of the digestive tract to allow eating. This review focuses on the earliest steps in mouth formation. In the first half, we conclude that the mouth arose once during evolution. In all animals, the mouth forms from ectoderm and endoderm. A direct association of oral ectoderm and digestive endoderm is present even in triploblastic animals, and in chordates, this region is known as the extreme anterior domain (EAD). Further support for a single origin of the mouth is a conserved set of genes that form a 'mouth gene program' including foxA and otx2. In the second half of this review, we discuss steps involved in vertebrate mouth formation, using the frog Xenopus as a model. The vertebrate mouth derives from oral ectoderm from the anterior neural ridge, pharyngeal endoderm and cranial neural crest (NC). Vertebrates form a mouth by breaking through the body covering in a precise sequence including specification of EAD ectoderm and endoderm as well as NC, formation of a 'pre-mouth array,' basement membrane dissolution, stomodeum formation, and buccopharyngeal membrane perforation. In Xenopus, the EAD is also a craniofacial organizer that guides NC, while reciprocally, the NC signals to the EAD to elicit its morphogenesis into a pre-mouth array. Human mouth anomalies are prevalent and are affected by genetic and environmental factors, with understanding guided in part by use of animal models. WIREs Dev Biol 2017, 6:e275. doi: 10.1002/wdev.275 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Justin Chen
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Laura A Jacox
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.,Harvard-MIT Health Sciences and Technology Program, Cambridge, MA, USA.,Harvard School of Dental Medicine, Boston, MA, USA
| | | | - Hazel Sive
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
31
|
Vellutini BC, Martín-Durán JM, Hejnol A. Cleavage modification did not alter blastomere fates during bryozoan evolution. BMC Biol 2017; 15:33. [PMID: 28454545 PMCID: PMC5408385 DOI: 10.1186/s12915-017-0371-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/04/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Stereotypic cleavage patterns play a crucial role in cell fate determination by precisely positioning early embryonic blastomeres. Although misplaced cell divisions can alter blastomere fates and cause embryonic defects, cleavage patterns have been modified several times during animal evolution. However, it remains unclear how evolutionary changes in cleavage impact the specification of blastomere fates. Here, we analyze the transition from spiral cleavage - a stereotypic pattern remarkably conserved in many protostomes - to a biradial cleavage pattern, which occurred during the evolution of bryozoans. RESULTS Using 3D-live imaging time-lapse microscopy (4D-microscopy), we characterize the cell lineage, MAPK signaling, and the expression of 16 developmental genes in the bryozoan Membranipora membranacea. We found that the molecular identity and the fates of early bryozoan blastomeres are similar to the putative homologous blastomeres in spiral-cleaving embryos. CONCLUSIONS Our work suggests that bryozoans have retained traits of spiral development, such as the early embryonic fate map, despite the evolution of a novel cleavage geometry. These findings provide additional support that stereotypic cleavage patterns can be modified during evolution without major changes to the molecular identity and fate of embryonic blastomeres.
Collapse
Affiliation(s)
- Bruno C Vellutini
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway
| | - José M Martín-Durán
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway
| | - Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway.
| |
Collapse
|
32
|
Martín-Durán JM, Passamaneck YJ, Martindale MQ, Hejnol A. The developmental basis for the recurrent evolution of deuterostomy and protostomy. Nat Ecol Evol 2016; 1:5. [PMID: 28812551 DOI: 10.1038/s41559-016-0005] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 09/29/2016] [Indexed: 12/14/2022]
Abstract
The mouth opening of bilaterian animals develops either separate from (deuterostomy) or connected to (protostomy) the embryonic blastopore, the site of endomesoderm internalization. Although this distinction preluded the classification of bilaterian animals in Deuterostomia and Protostomia, and has influenced major scenarios of bilaterian evolution, the developmental basis for the appearance of these different embryonic patterns remains unclear. To identify the underlying mechanisms, we compared the development of two brachiopod species that show deuterostomy (Novocrania anomala) and protostomy (Terebratalia transversa), respectively. We show that the differential activity of Wnt signalling, together with the timing and location of mesoderm formation, correlate with the differential behaviour and fate of the blastopore. We further assess these principles in the spiral-cleaving group Annelida, and propose that the developmental relationships of mouth and blastoporal openings are secondary by-products of variations in axial and mesoderm development. This challenges the previous evolutionary emphasis on extant blastoporal behaviours to explain the origin and diversification of bilaterian animals.
Collapse
Affiliation(s)
- José M Martín-Durán
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, Bergen 5006, Norway
| | - Yale J Passamaneck
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, St Augustine, Florida 32080, USA.,Kewalo Marine Laboratory, PBRC, University of Hawaii, 41 Ahui Street, Honolulu, Hawaii 96813, USA
| | - Mark Q Martindale
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Boulevard, St Augustine, Florida 32080, USA.,Kewalo Marine Laboratory, PBRC, University of Hawaii, 41 Ahui Street, Honolulu, Hawaii 96813, USA
| | - Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, Bergen 5006, Norway
| |
Collapse
|
33
|
The Presence of a Functionally Tripartite Through-Gut in Ctenophora Has Implications for Metazoan Character Trait Evolution. Curr Biol 2016; 26:2814-2820. [DOI: 10.1016/j.cub.2016.08.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/03/2016] [Accepted: 08/04/2016] [Indexed: 01/04/2023]
|
34
|
Cell tracking supports secondary gastrulation in the moon jellyfish Aurelia. Dev Genes Evol 2016; 226:383-387. [PMID: 27535146 DOI: 10.1007/s00427-016-0559-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 08/09/2016] [Indexed: 10/21/2022]
Abstract
The moon jellyfish Aurelia exhibits a dramatic reorganization of tissue during its metamorphosis from planula larva to polyp. There are currently two competing hypotheses regarding the fate of embryonic germ layers during this metamorphosis. In one scenario, the original endoderm undergoes apoptosis and is replaced by a secondary endoderm derived from ectodermal cells. In the second scenario, both ectoderm and endoderm remain intact through development. In this study, we performed a pulse-chase experiment to trace the fate of larval ectodermal cells. We observed that prior to metamorphosis, ectodermal cells that proliferated early in larval development concentrate at the future oral end of the polyp. During metamorphosis, these cells migrate into the endoderm, extending all the way to the aboral portion of the gut. We therefore reject the hypothesis that larval endoderm remains intact during metamorphosis and provide additional support for the "secondary gastrulation" hypothesis. Aurelia appears to offer the first and only described case where a cnidarian derives its endoderm twice during normal development, adding to a growing body of evidence that germ layers can be dramatically reorganized in cnidarian life cycles.
Collapse
|
35
|
Perry KJ, Lyons DC, Truchado-Garcia M, Fischer AHL, Helfrich LW, Johansson KB, Diamond JC, Grande C, Henry JQ. Deployment of regulatory genes during gastrulation and germ layer specification in a model spiralian mollusc Crepidula. Dev Dyn 2016. [PMID: 26197970 DOI: 10.1002/dvdy.24308] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND During gastrulation, endoderm and mesoderm are specified from a bipotential precursor (endomesoderm) that is argued to be homologous across bilaterians. Spiralians also generate mesoderm from ectodermal precursors (ectomesoderm), which arises near the blastopore. While a conserved gene regulatory network controls specification of endomesoderm in deuterostomes and ecdysozoans, little is known about genes controlling specification or behavior of either source of spiralian mesoderm or the digestive tract. RESULTS Using the mollusc Crepidula, we examined conserved regulatory factors and compared their expression to fate maps to score expression in the germ layers, blastopore lip, and digestive tract. Many genes were expressed in both ecto- and endomesoderm, but only five were expressed in ectomesoderm exclusively. The latter may contribute to epithelial-to-mesenchymal transition seen in ectomesoderm. CONCLUSIONS We present the first comparison of genes expressed during spiralian gastrulation in the context of high-resolution fate maps. We found variation of genes expressed in the blastopore lip, mouth, and cells that will form the anus. Shared expression of many genes in both mesodermal sources suggests that components of the conserved endomesoderm program were either co-opted for ectomesoderm formation or that ecto- and endomesoderm are derived from a common mesodermal precursor that became subdivided into distinct domains during evolution.
Collapse
Affiliation(s)
- Kimberly J Perry
- University of Illinois, Department of Cell and Developmental Biology, Urbana, Illinois
| | | | - Marta Truchado-Garcia
- Departamento de Biología Molecular and Centro de Biología Molecular, "Severo Ochoa" (CSIC, Universidad Autónoma de Madrid), Madrid, Spain
| | - Antje H L Fischer
- Department of Metabolic Biochemistry, Ludwig-Maximilians-University, Munich, Germany.,Marine Biological Laboratory, Woods Hole, Massachusetts
| | | | - Kimberly B Johansson
- Marine Biological Laboratory, Woods Hole, Massachusetts.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts
| | | | - Cristina Grande
- Departamento de Biología Molecular and Centro de Biología Molecular, "Severo Ochoa" (CSIC, Universidad Autónoma de Madrid), Madrid, Spain
| | - Jonathan Q Henry
- University of Illinois, Department of Cell and Developmental Biology, Urbana, Illinois
| |
Collapse
|
36
|
Hejnol A, Pang K. Xenacoelomorpha's significance for understanding bilaterian evolution. Curr Opin Genet Dev 2016; 39:48-54. [PMID: 27322587 DOI: 10.1016/j.gde.2016.05.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 04/02/2016] [Accepted: 05/30/2016] [Indexed: 12/25/2022]
Abstract
The Xenacoelomorpha, with its phylogenetic position as sister group of the Nephrozoa (Protostomia+Deuterostomia), plays a key-role in understanding the evolution of bilaterian cell types and organ systems. Current studies of the morphological and developmental diversity of this group allow us to trace the evolution of different organ systems within the group and to reconstruct characters of the most recent common ancestor of Xenacoelomorpha. The disparity of the clade shows that there cannot be a single xenacoelomorph 'model' species and strategic sampling is essential for understanding the evolution of major traits. With this strategy, fundamental insights into the evolution of molecular mechanisms and their role in shaping animal organ systems can be expected in the near future.
Collapse
Affiliation(s)
- Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway.
| | - Kevin Pang
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway
| |
Collapse
|
37
|
Layden MJ, Rentzsch F, Röttinger E. The rise of the starlet sea anemone Nematostella vectensis as a model system to investigate development and regeneration. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:408-28. [PMID: 26894563 PMCID: PMC5067631 DOI: 10.1002/wdev.222] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/20/2015] [Accepted: 11/28/2015] [Indexed: 02/01/2023]
Abstract
Reverse genetics and next‐generation sequencing unlocked a new era in biology. It is now possible to identify an animal(s) with the unique biology most relevant to a particular question and rapidly generate tools to functionally dissect that biology. This review highlights the rise of one such novel model system, the starlet sea anemone Nematostella vectensis. Nematostella is a cnidarian (corals, jellyfish, hydras, sea anemones, etc.) animal that was originally targeted by EvoDevo researchers looking to identify a cnidarian animal to which the development of bilaterians (insects, worms, echinoderms, vertebrates, mollusks, etc.) could be compared. Studies in Nematostella have accomplished this goal and informed our understanding of the evolution of key bilaterian features. However, Nematostella is now going beyond its intended utility with potential as a model to better understand other areas such as regenerative biology, EcoDevo, or stress response. This review intends to highlight key EvoDevo insights from Nematostella that guide our understanding about the evolution of axial patterning mechanisms, mesoderm, and nervous systems in bilaterians, as well as to discuss briefly the potential of Nematostella as a model to better understand the relationship between development and regeneration. Lastly, the sum of research to date in Nematostella has generated a variety of tools that aided the rise of Nematostella to a viable model system. We provide a catalogue of current resources and techniques available to facilitate investigators interested in incorporating Nematostella into their research. WIREs Dev Biol 2016, 5:408–428. doi: 10.1002/wdev.222 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Michael J Layden
- Department of Biological Sciences, Lehigh University, Bethlehem, PA, USA
| | - Fabian Rentzsch
- Sars Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Eric Röttinger
- Institute for Research on Cancer and Aging (IRCAN), CNRS UMR 7284, INSERM U1081, Université de Nice-Sophia-Antipolis, Nice, France
| |
Collapse
|
38
|
|
39
|
Janssen R, Jörgensen M, Lagebro L, Budd GE. Fate and nature of the onychophoran mouth-anus furrow and its contribution to the blastopore. Proc Biol Sci 2015; 282:rspb.2014.2628. [PMID: 25788603 DOI: 10.1098/rspb.2014.2628] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The ancestral states of bilaterian development, and which living groups have conserved them the most, has been a controversial topic in biology for well over a hundred years. In recent years, the idea that gastrulation primitively proceeded via the formation of a slit-like blastopore that then evolved into either protostomy or deuterostomy has gained renewed attention and some molecular developmental support. One of the key pieces of evidence for this 'amphistomy' theory comes from the onychophorans, which form a clear ventral groove during gastrulation. The interpretation of this structure has, however, proved problematic. Based on expression patterns of forkhead (fkh), caudal (cad), brachyury (bra) and wingless (wg/Wnt1), we show that this groove does not correspond to the blastopore, even though both the mouth and anus later develop from it. Rather, the posterior pit appears to be the blastopore; the posterior of the groove later fuses with it to form the definitive anus. Onychophoran development therefore represents a case of 'concealed' deuterostomy. The new data from the onychophorans thus remove one of the key pieces of evidence for the amphistomy theory. Rather, in line with other recent results, it suggests that ancestral bilaterian development was deuterostomic.
Collapse
Affiliation(s)
- Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236 Uppsala, Sweden
| | - Mette Jörgensen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236 Uppsala, Sweden
| | - Linda Lagebro
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236 Uppsala, Sweden
| | - Graham E Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236 Uppsala, Sweden
| |
Collapse
|
40
|
Gold DA, Runnegar B, Gehling JG, Jacobs DK. Ancestral state reconstruction of ontogeny supports a bilaterian affinity for
Dickinsonia. Evol Dev 2015; 17:315-24. [DOI: 10.1111/ede.12168] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- David A. Gold
- Department of EarthAtmosphericand Planetary SciencesMassachusetts Institute of Technology77 Massachusetts AvenueCambridgeMA 02139USA
| | - Bruce Runnegar
- Department of EarthPlanetaryand Space SciencesUniversity of CaliforniaLos AngelesCA 90095‐1567USA
| | - James G. Gehling
- South Australia Museum and the Sprigg Geobiology CentreUniversity of Adelaide, North TerraceAdelaideSouth Australia 5000Australia
| | - David K. Jacobs
- Department of EarthPlanetaryand Space SciencesUniversity of CaliforniaLos AngelesCA 90095‐1567USA
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaLos AngelesCA 90095USA
| |
Collapse
|
41
|
Martín-Durán JM, Vellutini BC, Hejnol A. Evolution and development of the adelphophagic, intracapsular Schmidt's larva of the nemertean Lineus ruber. EvoDevo 2015; 6:28. [PMID: 26417429 PMCID: PMC4584431 DOI: 10.1186/s13227-015-0023-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/14/2015] [Indexed: 11/22/2022] Open
Abstract
Background The life cycle of many animals includes a larval stage, which has diversified into an astonishing variety of ecological strategies. The Nemertea is a group of spiralians that exhibits a broad diversity of larval forms, including the iconic pilidium. A pelagic planktotrophic pilidium is the ancestral form in the Pilidiophora, but several lineages exhibit deviations of this condition, mostly as a transition to pelagic lecithotrophy. The most extreme case occurs, however, in the Pilidiophoran Lineus ruber, which exhibits an adelphophagic intracapsular pilidium, the so-called Schmidt’s larva. Results We combined confocal laser scanning microscopy and gene expression studies to characterize the development and metamorphosis of the Schmidt’s larva of L. ruber. The larva forms after gastrulation, and comprises a thin epidermis, a proboscis rudiment and two pairs of imaginal discs from which the juvenile will develop. The cells internalized during gastrulation form a blind gut and the blastopore gives rise to the mouth of the larva and juvenile. The Schmidt’s larva eats other siblings that occupy the same egg capsule, accumulating nutrients for the juvenile. A gradual metamorphosis involves the differentiation of the juvenile cell types from the imaginal discs and the shedding of the larval epidermis. The expression of evolutionarily conserved anterior (foxQ2, six3/6, gsc, otx), endomesodermal (foxA, GATA456-a, twi-a) and posterior (evx, cdx) markers demonstrate that the juvenile retains the molecular patterning of the Schmidt’s larva. After metamorphosis, the juveniles stay over 20 days within the egg masses, until they are fully mature and hatch. Conclusions The evolution of the intracapsular Schmidt’s larva involved the loss of the typical feeding structures of the planktotrophic pilidium and a precocious formation of the imaginal discs, as also observed in other pelagic lecithotrophic forms. However, no special adaptations are observed related to adelphophagy. As in planktotrophic pilidium, the molecular mechanism patterning the juvenile is only active in the imaginal discs and not during the early development of the larva, suggesting two separate molecular programs during nemertean embryogenesis. Our results illuminate the diversification of larval forms in the Pilidiophora and Nemertea, and thus on the developmental mechanisms underlying metazoan larval evolution. Electronic supplementary material The online version of this article (doi:10.1186/s13227-015-0023-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- José M Martín-Durán
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway
| | - Bruno C Vellutini
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway
| | - Andreas Hejnol
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway
| |
Collapse
|
42
|
Botman D, Jansson F, Röttinger E, Martindale MQ, de Jong J, Kaandorp JA. Analysis of a spatial gene expression database for sea anemone Nematostella vectensis during early development. BMC SYSTEMS BIOLOGY 2015; 9:63. [PMID: 26400098 PMCID: PMC4581490 DOI: 10.1186/s12918-015-0209-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 09/09/2015] [Indexed: 11/17/2022]
Abstract
Background The spatial distribution of many genes has been visualized during the embryonic development in the starlet sea anemone Nematostella vectensis in the last decade. In situ hybridization images are available in the Kahi Kai gene expression database, and a method has been developed to quantify spatial gene expression patterns of N. vectensis. In this paper, gene expression quantification is performed on a wide range of gene expression patterns from this database and descriptions of observed expression domains are stored in a separate database for further analysis. Methods Spatial gene expression from suitable in situ hybridization images has been quantified with the GenExp program. A correlation analysis has been performed on the resulting numerical gene expression profiles for each stage. Based on the correlated clusters of spatial gene expression and detailed descriptions of gene expression domains, various mechanisms for developmental gene expression are proposed. Results In the blastula and gastrula stages of development in N. vectensis, its continuous sheet of cells is partitioned into correlating gene expression domains. During progressing development, these regions likely correspond to different fates. A statistical analysis shows that genes generally remain expressed during the planula stages in those major regions that they occupy at the end of gastrulation. Discussion Observed shifts in gene expression domain boundaries suggest that elongation in the planula stage mainly occurs in the vegetal ring under the influence of the gene Rx. The secondary body axis in N. vectensis is proposed to be determined at the mid blastula transition. Conclusions Early gene expression domains in N. vectensis appear to maintain a positional order along the primary body axis. Early determination in N. vectensis occurs in two stages: expression in broad circles and rings in the blastula is consolidated during gastrulation, and more complex expression patterns appear in the planula within these broad regions. Quantification and comparison of gene expression patterns across a database can generate hypotheses about collective cell movements before these movements are measured directly. Electronic supplementary material The online version of this article (doi:10.1186/s12918-015-0209-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel Botman
- Computational Science, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands.
| | - Fredrik Jansson
- Computational Science, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands.
| | - Eric Röttinger
- Université Nice Sophia Antipolis, Institute for Research on Cancer and Aging, Nice (IRCAN), UMR 7284, Nice, France. .,Centre National de la Recherche Scientifique (CNRS), Institute for Research on Cancer and Aging, Nice (IRCAN), UMR 7284, Nice, France. .,Institut National de la Santé et de la Recherche Médicale (INSERM), Institute for Research on Cancer and Aging, Nice (IRCAN), U1081, Nice, France.
| | - Mark Q Martindale
- Whitney Lab for Marine Bioscience, University of Florida, St. Augustine, FL, USA.
| | - Johann de Jong
- Computational Cancer Biology Group, Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Jaap A Kaandorp
- Computational Science, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands.
| |
Collapse
|
43
|
Lyons DC, Perry KJ, Henry JQ. Spiralian gastrulation: germ layer formation, morphogenesis, and fate of the blastopore in the slipper snail Crepidula fornicata. EvoDevo 2015; 6:24. [PMID: 26664718 PMCID: PMC4673862 DOI: 10.1186/s13227-015-0019-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 04/15/2015] [Indexed: 12/14/2022] Open
Abstract
Background Gastrulation is a critical step in bilaterian development, directly linked to the segregation of germ layers, establishment of axes, and emergence of the through-gut. Theories about the evolution of gastrulation often concern the fate of the blastopore (site of endomesoderm internalization), which varies widely in a major branch of bilaterians, the Spiralia. In this group, the blastopore has been said to become the mouth, the anus, both, or neither. Different developmental explanations for this variation exist, yet no modern lineage tracing study has ever correlated the position of cells surrounding the blastopore with their contribution to tissues of the mouth, foregut, and anus in a spiralian. This is the first study to do so, using the gastropod Crepidula fornicata. Results Crepidula gastrulation occurs by epiboly: the first through third quartet micromeres form an epithelial animal cap that expands to cover vegetal endomesodermal precursors. Initially, descendants of the second and third quartet micromeres (2a–2d, 3a–3d) occupy a portion of the blastopore lip. As the blastopore narrows, the micromeres’ progeny exhibit lineage-specific behaviors that result in certain sublineages leaving the lip’s edge. Anteriorly, cells derived from 3a2 and 3b2 undergo a unique epithelial-to-mesenchymal transition involving proliferation and a collective movement of cells into the archenteron. These cells make a novel spiralian germ layer, the ectomesoderm. Posteriorly, cells derived from 3c2 and 3d2 undergo a form of convergence and extension that involves zippering of cells and their intercalation across the ventral midline. During this process, several of these cells, as well as the 2d clone, become displaced posteriorly, away from the blastopore. Progeny of 2a-2c and 3a-3d make the mouth and foregut, and the blastopore becomes the opening to the mouth. The anus forms days later, as a secondary opening within the 2d2 clone, and not from the classically described “anal cells”, which we identify as the 3c221 and 3d221 cells. Conclusions Our analysis of Crepidula gastrulation constitutes the first description of blastopore lip morphogenesis and fates using lineage tracing and live imaging. These data have profound implications for hypotheses about the evolution of the bilaterian gut and help explain observed variation in blastopore morphogenesis among spiralians. Electronic supplementary material The online version of this article (doi:10.1186/s13227-015-0019-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Deirdre C Lyons
- Biology Department, Duke University, 124 Science Drive, Durham, NC 27708 USA
| | - Kimberly J Perry
- Department of Cell and Developmental Biology, University of Illinois, 601 S. Goodwin Ave., Urbana, IL 61801 USA
| | - Jonathan Q Henry
- Department of Cell and Developmental Biology, University of Illinois, 601 S. Goodwin Ave., Urbana, IL 61801 USA
| |
Collapse
|
44
|
The deuterostome context of chordate origins. Nature 2015; 520:456-65. [PMID: 25903627 DOI: 10.1038/nature14434] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/03/2015] [Indexed: 01/08/2023]
Abstract
Our understanding of vertebrate origins is powerfully informed by comparative morphology, embryology and genomics of chordates, hemichordates and echinoderms, which together make up the deuterostome clade. Striking body-plan differences among these phyla have historically hindered the identification of ancestral morphological features, but recent progress in molecular genetics and embryology has revealed deep similarities in body-axis formation and organization across deuterostomes, at stages before morphological differences develop. These developmental genetic features, along with robust support of pharyngeal gill slits as a shared deuterostome character, provide the foundation for the emergence of chordates.
Collapse
|
45
|
Salinas-Saavedra M, Stephenson TQ, Dunn CW, Martindale MQ. Par system components are asymmetrically localized in ectodermal epithelia, but not during early development in the sea anemone Nematostella vectensis. EvoDevo 2015; 6:20. [PMID: 26101582 PMCID: PMC4476184 DOI: 10.1186/s13227-015-0014-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 03/12/2015] [Indexed: 11/10/2022] Open
Abstract
Background The evolutionary origins of cell polarity in metazoan embryos are unclear. In most bilaterian animals, embryonic and cell polarity are set up during embryogenesis with the same molecules being utilized to regulate tissue polarity at different life stages. Atypical protein kinase C (aPKC), lethal giant larvae (Lgl), and Partitioning-defective (Par) proteins are conserved components of cellular polarization, and their role in establishing embryonic asymmetry and tissue polarity have been widely studied in model bilaterian groups. However, the deployment and role of these proteins in animals outside Bilateria has not been studied. We address this by characterizing the localization of different components of the Par system during early development of the sea anemone Nematostella vectensis, a member of the clade Cnidaria, the sister group to bilaterian animals. Results Immunostaining using specific N. vectensis antibodies and the overexpression of mRNA-reporter constructs show that components of the N. vectensis Par system (NvPar-1, NvPar-3, NvPar-6, NvaPKC, and NvLgl) distribute throughout the microtubule cytoskeleton of eggs and early embryos without clear polarization along any embryonic axis. However, they become asymmetrically distributed at later stages, when the embryo forms an ectodermal epithelial layer. NvLgl and NvPar-1 localize in the basolateral cortex, and NvaPKC, NvPar-6, and NvPar-3 at the apical zone of the cell in a manner seen in bilaterian animals. Conclusions The cnidarian N. vectensis exhibits clear polarity at all stages of early embryonic development, which appears to be established independent of the Par system reported in many bilaterian embryos. However, in N. vectensis, using multiple immunohistochemical and fluorescently labeled markers in vivo, components of this system are deployed to organize epithelial cell polarity at later stages of development. This suggests that Par system proteins were co-opted to organize early embryonic cell polarity at the base of the Bilateria and that, therefore, different molecular mechanisms operate in early cnidarian embryogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s13227-015-0014-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Miguel Salinas-Saavedra
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 N, Ocean Shore Blvd, St. Augustine, FL 32080-8610 USA
| | - Thomas Q Stephenson
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 N, Ocean Shore Blvd, St. Augustine, FL 32080-8610 USA
| | - Casey W Dunn
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912 USA
| | - Mark Q Martindale
- The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 N, Ocean Shore Blvd, St. Augustine, FL 32080-8610 USA
| |
Collapse
|
46
|
|
47
|
Moran Y, Barzilai MG, Liebeskind BJ, Zakon HH. Evolution of voltage-gated ion channels at the emergence of Metazoa. J Exp Biol 2015; 218:515-25. [DOI: 10.1242/jeb.110270] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Voltage-gated ion channels are large transmembrane proteins that enable the passage of ions through their pore across the cell membrane. These channels belong to one superfamily and carry pivotal roles such as the propagation of neuronal and muscular action potentials and the promotion of neurotransmitter secretion in synapses. In this review, we describe in detail the current state of knowledge regarding the evolution of these channels with a special emphasis on the metazoan lineage. We highlight the contribution of the genomic revolution to the understanding of ion channel evolution and for revealing that these channels appeared long before the appearance of the first animal. We also explain how the elucidation of channel selectivity properties and function in non-bilaterian animals such as cnidarians (sea anemones, corals, jellyfish and hydroids) can contribute to the study of channel evolution. Finally, we point to open questions and future directions in this field of research.
Collapse
Affiliation(s)
- Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Maya Gur Barzilai
- Department of Molecular Biology and Ecology of Plants, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Benjamin J. Liebeskind
- Department of Integrative Biology and Center for Computational Biology and Bioinformatics, University of Texas, Austin, TX 78712, USA
| | - Harold H. Zakon
- Department of Integrative Biology and Center for Computational Biology and Bioinformatics, University of Texas, Austin, TX 78712, USA
- Department of Neuroscience, University of Texas at Austin, TX 78712, USA
- Josephine Bay Paul Center for Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| |
Collapse
|
48
|
Schlosser G. Vertebrate cranial placodes as evolutionary innovations--the ancestor's tale. Curr Top Dev Biol 2015; 111:235-300. [PMID: 25662263 DOI: 10.1016/bs.ctdb.2014.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Evolutionary innovations often arise by tinkering with preexisting components building new regulatory networks by the rewiring of old parts. The cranial placodes of vertebrates, ectodermal thickenings that give rise to many of the cranial sense organs (ear, nose, lateral line) and ganglia, originated as such novel structures, when vertebrate ancestors elaborated their head in support of a more active and exploratory life style. This review addresses the question of how cranial placodes evolved by tinkering with ectodermal patterning mechanisms and sensory and neurosecretory cell types that have their own evolutionary history. With phylogenetic relationships among the major branches of metazoans now relatively well established, a comparative approach is used to infer, which structures evolved in which lineages and allows us to trace the origin of placodes and their components back from ancestor to ancestor. Some of the core networks of ectodermal patterning and sensory and neurosecretory differentiation were already established in the common ancestor of cnidarians and bilaterians and were greatly elaborated in the bilaterian ancestor (with BMP- and Wnt-dependent patterning of dorsoventral and anteroposterior ectoderm and multiple neurosecretory and sensory cell types). Rostral and caudal protoplacodal domains, giving rise to some neurosecretory and sensory cells, were then established in the ectoderm of the chordate and tunicate-vertebrate ancestor, respectively. However, proper cranial placodes as clusters of proliferating progenitors producing high-density arrays of neurosecretory and sensory cells only evolved and diversified in the ancestors of vertebrates.
Collapse
Affiliation(s)
- Gerhard Schlosser
- School of Natural Sciences & Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, Ireland.
| |
Collapse
|
49
|
Molecular conservation of metazoan gut formation: evidence from expression of endomesoderm genes in Capitella teleta (Annelida). EvoDevo 2014; 5:39. [PMID: 25908956 PMCID: PMC4407770 DOI: 10.1186/2041-9139-5-39] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 09/17/2014] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Metazoan digestive systems develop from derivatives of ectoderm, endoderm and mesoderm, and vary in the relative contribution of each germ layer across taxa and between gut regions. In a small number of well-studied model systems, gene regulatory networks specify endoderm and mesoderm of the gut within a bipotential germ layer precursor, the endomesoderm. Few studies have examined expression of endomesoderm genes outside of those models, and thus, it is unknown whether molecular specification of gut formation is broadly conserved. In this study, we utilize a sequenced genome and comprehensive fate map to correlate the expression patterns of six transcription factors with embryonic germ layers and gut subregions during early development in Capitella teleta. RESULTS The genome of C. teleta contains the five core genes of the sea urchin endomesoderm specification network. Here, we extend a previous study and characterize expression patterns of three network orthologs and three additional genes by in situ hybridization during cleavage and gastrulation stages and during formation of distinct gut subregions. In cleavage stage embryos, Ct-otx, Ct-blimp1, Ct-bra and Ct-nkx2.1a are expressed in all four macromeres, the endoderm precursors. Ct-otx, Ct-blimp1, and Ct-nkx2.1a are also expressed in presumptive endoderm of gastrulae and later during midgut development. Additional gut-specific expression patterns include Ct-otx, Ct-bra, Ct-foxAB and Ct-gsc in oral ectoderm; Ct-otx, Ct-blimp1, Ct-bra and Ct-nkx2.1a in the foregut; and both Ct-bra and Ct-nkx2.1a in the hindgut. CONCLUSIONS Identification of core sea urchin endomesoderm genes in C. teleta indicates they are present in all three bilaterian superclades. Expression of Ct-otx, Ct-blimp1 and Ct-bra, combined with previously published Ct-foxA and Ct-gataB1 patterns, provide the most comprehensive comparison of these five orthologs from a single species within Spiralia. Each ortholog is likely involved in endoderm specification and midgut development, and several may be essential for establishment of the oral ectoderm, foregut and hindgut, including specification of ectodermal and mesodermal contributions. When the five core genes are compared across the Metazoa, their conserved expression patterns suggest that 'gut gene' networks evolved to specify distinct digestive system subregions, regardless of species-specific differences in gut architecture or germ layer contributions within each subregion.
Collapse
|
50
|
Botman D, Röttinger E, Martindale MQ, de Jong J, Kaandorp JA. A computational approach towards a gene regulatory network for the developing Nematostella vectensis gut. PLoS One 2014; 9:e103341. [PMID: 25076223 PMCID: PMC4116165 DOI: 10.1371/journal.pone.0103341] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 06/26/2014] [Indexed: 11/19/2022] Open
Abstract
Background The starlet sea anemone Nematostella vectensis is a diploblastic cnidarian that expresses a set of conserved genes for gut formation during its early development. During the last decade, the spatial distribution of many of these genes has been visualized with RNA hybridization or protein immunolocalization techniques. However, due to N. vectensis' curved and changing morphology, quantification of these spatial data is problematic. A method is developed for two-dimensional gene expression quantification, which enables a numerical analysis and dynamic modeling of these spatial patterns. Methods/Result In this work, first standardized gene expression profiles are generated from publicly available N. vectensis embryo images that display mRNA and/or protein distributions. Then, genes expressed during gut formation are clustered based on their expression profiles, and further grouped based on temporal appearance of their gene products in embryonic development. Representative expression profiles are manually selected from these clusters, and used as input for a simulation-based optimization scheme. This scheme iteratively fits simulated profiles to the selected profiles, leading to an optimized estimation of the model parameters. Finally, a preliminary gene regulatory network is derived from the optimized model parameters. Outlook While the focus of this study is N. vectensis, the approach outlined here is suitable for inferring gene regulatory networks in the embryonic development of any animal, thus allowing to comparatively study gene regulation of gut formation in silico across various species.
Collapse
Affiliation(s)
- Daniel Botman
- Computational Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Eric Röttinger
- Université Nice Sophia Antipolis, Institute for Research on Cancer and Aging, Nice (IRCAN), UMR 7284, Nice, France
- Centre National de la Recherche Scientifique (CNRS), Institute for Research on Cancer and Aging, Nice (IRCAN), UMR 7284, Nice, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), Institute for Research on Cancer and Aging, Nice (IRCAN), U1081, Nice, France
| | - Mark Q. Martindale
- Whitney Lab for Marine Bioscience, University of Florida, St. Augustine, Florida, United States of America
| | - Johann de Jong
- Computational Cancer Biology Group, Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jaap A. Kaandorp
- Computational Science, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|