1
|
Shang X, Talross GJS, Carlson JR. Exitron splicing of odor receptor genes in Drosophila. Proc Natl Acad Sci U S A 2024; 121:e2320277121. [PMID: 38507450 PMCID: PMC10990081 DOI: 10.1073/pnas.2320277121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/06/2024] [Indexed: 03/22/2024] Open
Abstract
Proper expression of odor receptor genes is critical for the function of olfactory systems. In this study, we identified exitrons (exonic introns) in four of the 39 Odorant receptor (Or) genes expressed in the Drosophila antenna. Exitrons are sequences that can be spliced out from within a protein-coding exon, thereby altering the encoded protein. We focused on Or88a, which encodes a pheromone receptor, and found that exitron splicing of Or88a is conserved across five Drosophila species over 20 My of evolution. The exitron was spliced out in 15% of Or88a transcripts. Removal of this exitron creates a non-coding RNA rather than an RNA that encodes a stable protein. Our results suggest the hypothesis that in the case of Or88a, exitron splicing could act in neuronal modulation by decreasing the level of functional Or transcripts. Activation of Or88a-expressing olfactory receptor neurons via either optogenetics or pheromone stimulation increased the level of exitron-spliced transcripts, with optogenetic activation leading to a 14-fold increase. A fifth Or can also undergo an alternative splicing event that eliminates most of the canonical open reading frame. Besides these cases of alternative splicing, we found alternative polyadenylation of four Ors, and exposure of Or67c to its ligand ethyl lactate in the antenna downregulated all of its 3' isoforms. Our study reveals mechanisms by which neuronal activity could be modulated via regulation of the levels of Or isoforms.
Collapse
Affiliation(s)
- Xueying Shang
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT06511
| | - Gaëlle J. S. Talross
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT06511
| | - John R. Carlson
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT06511
| |
Collapse
|
2
|
Arguello JR, Abuin L, Armida J, Mika K, Chai PC, Benton R. Targeted molecular profiling of rare olfactory sensory neurons identifies fate, wiring, and functional determinants. eLife 2021; 10:63036. [PMID: 33666172 PMCID: PMC7993999 DOI: 10.7554/elife.63036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
Determining the molecular properties of neurons is essential to understand their development, function and evolution. Using Targeted DamID (TaDa), we characterize RNA polymerase II occupancy and chromatin accessibility in selected Ionotropic receptor (Ir)-expressing olfactory sensory neurons in Drosophila. Although individual populations represent a minute fraction of cells, TaDa is sufficiently sensitive and specific to identify the expected receptor genes. Unique Ir expression is not consistently associated with differences in chromatin accessibility, but rather to distinct transcription factor profiles. Genes that are heterogeneously expressed across populations are enriched for neurodevelopmental factors, and we identify functions for the POU-domain protein Pdm3 as a genetic switch of Ir neuron fate, and the atypical cadherin Flamingo in segregation of neurons into discrete glomeruli. Together this study reveals the effectiveness of TaDa in profiling rare neural populations, identifies new roles for a transcription factor and a neuronal guidance molecule, and provides valuable datasets for future exploration.
Collapse
Affiliation(s)
- J Roman Arguello
- Center for Integrative Genomics Faculty of Biology and Medicine University of Lausanne, Lausanne, Switzerland.,Department of Ecology and Evolution Faculty of Biology and Medicine University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Liliane Abuin
- Center for Integrative Genomics Faculty of Biology and Medicine University of Lausanne, Lausanne, Switzerland
| | - Jan Armida
- Center for Integrative Genomics Faculty of Biology and Medicine University of Lausanne, Lausanne, Switzerland
| | - Kaan Mika
- Center for Integrative Genomics Faculty of Biology and Medicine University of Lausanne, Lausanne, Switzerland
| | - Phing Chian Chai
- Center for Integrative Genomics Faculty of Biology and Medicine University of Lausanne, Lausanne, Switzerland
| | - Richard Benton
- Center for Integrative Genomics Faculty of Biology and Medicine University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
A molecular odorant transduction model and the complexity of spatio-temporal encoding in the Drosophila antenna. PLoS Comput Biol 2020; 16:e1007751. [PMID: 32287275 PMCID: PMC7182276 DOI: 10.1371/journal.pcbi.1007751] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 04/24/2020] [Accepted: 02/27/2020] [Indexed: 12/20/2022] Open
Abstract
Over the past two decades, substantial amount of work has been conducted to characterize different odorant receptors, neuroanatomy and odorant response properties of the early olfactory system of Drosophila melanogaster. Yet many odorant receptors remain only partially characterized, and the odorant transduction process and the axon hillock spiking mechanism of the olfactory sensory neurons (OSNs) have yet to be fully determined. Identity and concentration, two key characteristics of the space of odorants, are encoded by the odorant transduction process. Detailed molecular models of the odorant transduction process are, however, scarce for fruit flies. To address these challenges we advance a comprehensive model of fruit fly OSNs as a cascade consisting of an odorant transduction process (OTP) and a biophysical spike generator (BSG). We model odorant identity and concentration using an odorant-receptor binding rate tensor, modulated by the odorant concentration profile, and an odorant-receptor dissociation rate tensor, and quantitatively describe the mechanics of the molecular ligand binding/dissociation of the OTP. We model the BSG as a Connor-Stevens point neuron. The resulting spatio-temporal encoding model of the Drosophila antenna provides a theoretical foundation for understanding the neural code of both odorant identity and odorant concentration and advances the state-of-the-art in a number of ways. First, it quantifies on the molecular level the spatio-temporal level of complexity of the transformation taking place in the antennae. The concentration-dependent spatio-temporal code at the output of the antenna circuits determines the level of complexity of olfactory processing in the downstream neuropils, such as odorant recognition and olfactory associative learning. Second, the model is biologically validated using multiple electrophysiological recordings. Third, the model demonstrates that the currently available data for odorant-receptor responses only enable the estimation of the affinity of the odorant-receptor pairs. The odorant-dissociation rate is only available for a few odorant-receptor pairs. Finally, our model calls for new experiments for massively identifying the odorant-receptor dissociation rates of relevance to flies. Identity and concentration, intrinsically embedded in the odorant space, are two key characteristics of olfactory coding that define the level of complexity of neural processing throughout the olfactory system in the fruit fly. In this paper we advance a theoretical foundation for understanding these two characteristics by quantifying mathematically the odorant space and devising a biophysical model of the olfactory sensory neurons (OSNs). To validate our modeling approach, we propose and apply an algorithm to estimate the affinity value and the dissociation rate, the two characteristics that define odorant identity, of multiple odorant-receptor pairs. We then evaluate our model with a multitude of odorant waveforms and demonstrate that the model output reproduces the temporal responses of OSNs obtained from in vivo electrophysiology recordings. Furthermore, we evaluate the model at the OSN population level and quantify on the molecular level the spatio-temporal level of complexity of the transformation taking place between the odorant space and the OSNs. The resulting concentration-dependent spatio-temporal code determines the level of complexity of the input space driving olfactory processing in the downstream neuropils. Lastly, our model demonstrates that the currently available data for OSN responses only enables estimation of affinity value. This calls for new experiments for massively identifying the odorant-receptor dissociation rates of relevance to flies.
Collapse
|
4
|
Zhan S, Fang G, Cai M, Kou Z, Xu J, Cao Y, Bai L, Zhang Y, Jiang Y, Luo X, Xu J, Xu X, Zheng L, Yu Z, Yang H, Zhang Z, Wang S, Tomberlin JK, Zhang J, Huang Y. Genomic landscape and genetic manipulation of the black soldier fly Hermetia illucens, a natural waste recycler. Cell Res 2020; 30:50-60. [PMID: 31767972 PMCID: PMC6951338 DOI: 10.1038/s41422-019-0252-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/22/2019] [Indexed: 11/09/2022] Open
Abstract
The black soldier fly (BSF), Hermetia illucens (Diptera: Stratiomyidae), is renowned for its bioconversion of organic waste into a sustainable source of animal feed. We report a high-quality genome of 1.1 Gb and a consensus set of 16,770 gene models for this beneficial species. Compared to those of other dipteran species, the BSF genome has undergone a substantial expansion in functional modules related to septic adaptation, including immune system factors, olfactory receptors, and cytochrome P450s. We further profiled midgut transcriptomes and associated microbiomes of BSF larvae fed with representative types of organic waste. We find that the pathways related to digestive system and fighting infection are commonly enriched and that Firmicutes bacteria dominate the microbial community in BSF across all diets. To extend its potential practical applications, we further developed an efficient CRISPR/Cas9-based gene editing approach and implemented this to yield flightless and enhanced feeding capacity phenotypes, both of which could expand BSF production capabilities. Our study provides valuable genomic and technical resources for optimizing BSF lines for industrialization.
Collapse
Affiliation(s)
- Shuai Zhan
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Gangqi Fang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minmin Cai
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zongqing Kou
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jun Xu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yanghui Cao
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Liang Bai
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yixiang Zhang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongmao Jiang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xingyu Luo
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Xu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xia Xu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Longyu Zheng
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Ziniu Yu
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Hong Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Zhijian Zhang
- School of Economics, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, China
| | - Sibao Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jeffery K Tomberlin
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, TX, 77845, USA.
| | - Jibin Zhang
- State Key Laboratory of Agricultural Microbiology, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Yongping Huang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Chai PC, Cruchet S, Wigger L, Benton R. Sensory neuron lineage mapping and manipulation in the Drosophila olfactory system. Nat Commun 2019; 10:643. [PMID: 30733440 PMCID: PMC6367400 DOI: 10.1038/s41467-019-08345-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/28/2018] [Indexed: 11/20/2022] Open
Abstract
Nervous systems exhibit myriad cell types, but understanding how this diversity arises is hampered by the difficulty to visualize and genetically-probe specific lineages, especially at early developmental stages prior to expression of unique molecular markers. Here, we use a genetic immortalization method to analyze the development of sensory neuron lineages in the Drosophila olfactory system, from their origin to terminal differentiation. We apply this approach to define a fate map of nearly all olfactory lineages and refine the model of temporal patterns of lineage divisions. Taking advantage of a selective marker for the lineage that gives rise to Or67d pheromone-sensing neurons and a genome-wide transcription factor RNAi screen, we identify the spatial and temporal requirements for Pointed, an ETS family member, in this developmental pathway. Transcriptomic analysis of wild-type and Pointed-depleted olfactory tissue reveals a universal requirement for this factor as a switch-like determinant of fates in these sensory lineages. Few tools exist to study molecular diversity during neurodevelopment. Here the authors apply a genetic immortalization method in Drosophila to generate a fate map of olfactory sensory lineages, examine the relationships of this map and the neuroanatomical, molecular and evolutionary properties of the mature circuits, and identify a novel factor controlling lineage development.
Collapse
Affiliation(s)
- Phing Chian Chai
- Center for Integrative Genomics, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland
| | - Steeve Cruchet
- Center for Integrative Genomics, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland
| | - Leonore Wigger
- Lausanne Genomic Technologies Facility, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland.,Vital-IT Group, SIB Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Richard Benton
- Center for Integrative Genomics, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
6
|
Jacob VEJM. Current Source Density Analysis of Electroantennogram Recordings: A Tool for Mapping the Olfactory Response in an Insect Antenna. Front Cell Neurosci 2018; 12:287. [PMID: 30233325 PMCID: PMC6135050 DOI: 10.3389/fncel.2018.00287] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/13/2018] [Indexed: 11/29/2022] Open
Abstract
The set of chemosensory receptors expressed by the olfactory receptor neurons lying in an insect's antennae and maxillary palps define the ability of this insect to perceive the volatile chemicals of its environment. The main two electrophysiological methods of antennal recordings for studying the range of chemicals that activate chemosensory receptors have limitations. Single-sensillum recording (SSR) samples a subset of olfactory receptor neurons and therefore does not reveal the full capacity of an insect to perceive an odor. Electroantennography (EAG), even if less resolutive than SSRs, is sometimes preferred since it samples the activity of a large number of the olfactory receptor neurons. But, at least in flies, the amplitude of the EAG signal is not directly correlated with the degree of sensitivity of the insect to the olfactory compound. Such dual methodology was also used to study mammalian brains, and the current source density (CSD) analysis was developed to bridge the gap between the cellular and the population recordings. This paper details the use of a similar approach adapted to the study of olfactory responses within insects with bulbous antennae. The EAG was recorded at multiple antennal positions and the CSD that generates the EAG potentials were estimated. The method measures the activation of olfactory receptor neurons (ORNs) across the antennae and thus it quantifies the olfactory sensitivity of the insect. It allows a rapid mapping of olfactory responses and thus can be used to guide further SSRs or to determine that two chemicals are detected by independent ORNs. This study further explored biases resulting from a limited number of recording positions or from an approximation of the antennal geometry that should be considered for interpreting the CSD maps. It also shows that the CSD analysis of EAGs is compatible with a gas chromatograph stimulator for analyzing the response to complex odors. Finally, I discuss the origin of the EAG signal in light of the CSD theory.
Collapse
|
7
|
Jacob V, Scolari F, Delatte H, Gasperi G, Jacquin-Joly E, Malacrida AR, Duyck PF. Current source density mapping of antennal sensory selectivity reveals conserved olfactory systems between tephritids and Drosophila. Sci Rep 2017; 7:15304. [PMID: 29127313 PMCID: PMC5681579 DOI: 10.1038/s41598-017-15431-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/27/2017] [Indexed: 11/09/2022] Open
Abstract
Ecological specialization of insects involves the functional and morphological reshaping of olfactory systems. Little is known about the degree to which insect sensitivity to odorant compounds is conserved between genera, tribes, or families. Here we compared the olfactory systems of six tephritid fruit fly species spanning two tribes and the distantly related Drosophila melanogaster at molecular, functional, and morphological levels. Olfaction in these flies is mediated by a set of olfactory receptors (ORs) expressed in different functional classes of neurons located in distinct antennal regions. We performed a phylogenetic analysis that revealed both family-specific OR genes and putative orthologous OR genes between tephritids and Drosophila. With respect to function, we then used a current source density (CSD) analysis to map activity across antennae. Functional maps mirrored the intrinsic structure of antennae observed with scanning electron microscopy. Together, the results revealed partial conservation of the olfactory systems between tephritids and Drosophila. We also demonstrate that the mapping of olfactory responses is necessary to decipher antennal sensory selectivity to olfactory compounds. CSD analysis can be easily applied to map antennae of other species and therefore enables the rapid deriving of olfactory maps and the reconstructing of the target organisms' history of evolution.
Collapse
Affiliation(s)
- Vincent Jacob
- UMR PVBMT, Université de la Réunion, Saint Pierre, La Réunion, France.
- UMR PVBMT, CIRAD, Saint Pierre, La Réunion, France.
| | - Francesca Scolari
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - Giuliano Gasperi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - Anna R Malacrida
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | |
Collapse
|
8
|
Pan JW, Li Q, Barish S, Okuwa S, Zhao S, Soeder C, Kanke M, Jones CD, Volkan PC. Patterns of transcriptional parallelism and variation in the developing olfactory system of Drosophila species. Sci Rep 2017; 7:8804. [PMID: 28821769 PMCID: PMC5562767 DOI: 10.1038/s41598-017-08563-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/13/2017] [Indexed: 11/09/2022] Open
Abstract
Organisms have evolved strikingly parallel phenotypes in response to similar selection pressures suggesting that there may be shared constraints limiting the possible evolutionary trajectories. For example, the behavioral adaptation of specialist Drosophila species to specific host plants can exhibit parallel changes in their adult olfactory neuroanatomy. We investigated the genetic basis of these parallel changes by comparing gene expression during the development of the olfactory system of two specialist Drosophila species to that of four other generalist species. Our results suggest that the parallelism observed in the adult olfactory neuroanatomy of ecological specialists extends more broadly to their developmental antennal expression profiles, and to the transcription factor combinations specifying olfactory receptor neuron (ORN) fates. Additionally, comparing general patterns of variation for the antennal transcriptional profiles in the adult and developing olfactory system of the six species suggest the possibility that specific, non-random components of the developmental programs underlying the Drosophila olfactory system harbor a disproportionate amount of interspecies variation. Further examination of these developmental components may be able to inform a deeper understanding of how traits evolve.
Collapse
Affiliation(s)
- Jia Wern Pan
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Qingyun Li
- Department of Biology, Stanford University, Stanford, California, USA
| | - Scott Barish
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Sumie Okuwa
- Pratt School of Engineering, Duke University, Durham, North Carolina, USA
| | - Songhui Zhao
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Charles Soeder
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Matthew Kanke
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Corbin D Jones
- Department of Biology and Integrative Program for Biological & Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
9
|
Gorur-Shandilya S, Demir M, Long J, Clark DA, Emonet T. Olfactory receptor neurons use gain control and complementary kinetics to encode intermittent odorant stimuli. eLife 2017; 6:e27670. [PMID: 28653907 PMCID: PMC5524537 DOI: 10.7554/elife.27670] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/26/2017] [Indexed: 11/13/2022] Open
Abstract
Insects find food and mates by navigating odorant plumes that can be highly intermittent, with intensities and durations that vary rapidly over orders of magnitude. Much is known about olfactory responses to pulses and steps, but it remains unclear how olfactory receptor neurons (ORNs) detect the intensity and timing of natural stimuli, where the absence of scale in the signal makes detection a formidable olfactory task. By stimulating Drosophila ORNs in vivo with naturalistic and Gaussian stimuli, we show that ORNs adapt to stimulus mean and variance, and that adaptation and saturation contribute to naturalistic sensing. Mean-dependent gain control followed the Weber-Fechner relation and occurred primarily at odor transduction, while variance-dependent gain control occurred at both transduction and spiking. Transduction and spike generation possessed complementary kinetic properties, that together preserved the timing of odorant encounters in ORN spiking, regardless of intensity. Such scale-invariance could be critical during odor plume navigation.
Collapse
Affiliation(s)
- Srinivas Gorur-Shandilya
- Interdepartmental Neuroscience Program, Yale University, New Haven, United States
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, United States
| | - Mahmut Demir
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, United States
| | - Junjiajia Long
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, United States
- Department of Physics, Yale University, New Haven, United States
| | - Damon A Clark
- Interdepartmental Neuroscience Program, Yale University, New Haven, United States
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, United States
- Department of Physics, Yale University, New Haven, United States
| | - Thierry Emonet
- Interdepartmental Neuroscience Program, Yale University, New Haven, United States
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, United States
- Department of Physics, Yale University, New Haven, United States
| |
Collapse
|
10
|
Pan JW, McLaughlin J, Yang H, Leo C, Rambarat P, Okuwa S, Monroy-Eklund A, Clark S, Jones CD, Volkan PC. Comparative analysis of behavioral and transcriptional variation underlying CO 2 sensory neuron function and development in Drosophila. Fly (Austin) 2017. [PMID: 28644712 DOI: 10.1080/19336934.2017.1344374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Carbon dioxide is an important environmental cue for many insects, regulating many behaviors including some that have direct human impacts. To further improve our understanding of how this system varies among closely related insect species, we examined both the behavioral response to CO2 as well as the transcriptional profile of key developmental regulators of CO2 sensory neurons in the olfactory system across the Drosophila genus. We found that CO2 generally evokes repulsive behavior across most of the Drosophilids we examined, but this behavior has been lost or reduced in several lineages. Comparisons of transcriptional profiles from the developing and adult antennae for subset these species suggest that behavioral differences in some species may be due to differences in the expression of the CO2 co-receptor Gr63a. Furthermore, these differences in Gr63a expression are correlated with changes in the expression of a few genes known to be involved in the development of the CO2 circuit, namely dac, an important regulator of sensilla fate for sensilla that house CO2 ORNs, and mip120, a member of the MMB/dREAM epigenetic regulatory complex that regulates CO2 receptor expression. In contrast, most of the other known structural, molecular, and developmental components of the peripheral Drosophila CO2 olfactory system seem to be well-conserved across all examined lineages. These findings suggest that certain components of CO2 sensory ORN development may be more evolutionarily labile, and may contribute to differences in CO2-evoked behavioral responses across species.
Collapse
Affiliation(s)
- Jia Wern Pan
- a Department of Biology , Duke University , Durham , North Carolina
| | - Joi McLaughlin
- a Department of Biology , Duke University , Durham , North Carolina
| | - Haining Yang
- a Department of Biology , Duke University , Durham , North Carolina
| | - Charles Leo
- a Department of Biology , Duke University , Durham , North Carolina
| | - Paula Rambarat
- a Department of Biology , Duke University , Durham , North Carolina
| | - Sumie Okuwa
- b Pratt School of Engineering , Duke University , Durham , North Carolina
| | - Anaïs Monroy-Eklund
- c Department of Biology , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina
| | - Sabrina Clark
- c Department of Biology , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina
| | - Corbin D Jones
- c Department of Biology , University of North Carolina at Chapel Hill , Chapel Hill , North Carolina
| | | |
Collapse
|
11
|
Barish S, Li Q, Pan JW, Soeder C, Jones C, Volkan PC. Transcriptional profiling of olfactory system development identifies distal antenna as a regulator of subset of neuronal fates. Sci Rep 2017; 7:40873. [PMID: 28102318 PMCID: PMC5244397 DOI: 10.1038/srep40873] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/13/2016] [Indexed: 01/22/2023] Open
Abstract
Drosophila uses 50 different olfactory receptor neuron (ORN) classes that are clustered within distinct sensilla subtypes to decipher their chemical environment. Each sensilla subtype houses 1-4 ORN identities that arise through asymmetric divisions of a single sensory organ precursor (SOP). Despite a number of mutational studies investigating the regulation of ORN development, a majority of the transcriptional programs that lead to the different ORN classes in the developing olfactory system are unknown. Here we use transcriptional profiling across the time series of antennal development to identify novel transcriptional programs governing the differentiation of ORNs. We surveyed four critical developmental stages of the olfactory system: 3rd instar larval (prepatterning), 8 hours after puparium formation (APF, SOP selection), 40 hrs APF (neurogenesis), and adult antennae. We focused on the expression profiles of olfactory receptor genes and transcription factors-the two main classes of genes that regulate the sensory identity of ORNs. We identify distinct clusters of genes that have overlapping temporal expression profiles suggesting they have a key role during olfactory system development. We show that the expression of the transcription factor distal antenna (dan) is highly similar to other prepatterning factors and is required for the expression of a subset of ORs.
Collapse
Affiliation(s)
- Scott Barish
- Duke University, Department of Biology, Durham, NC, USA
| | - Qingyun Li
- Duke University, Department of Biology, Durham, NC, USA
| | - Jia W. Pan
- Duke University, Department of Biology, Durham, NC, USA
| | - Charlie Soeder
- University of North Carolina- Chapel Hill, Integrative Program for Biological & Genome Sciences, Chapel Hill, NC, USA
| | - Corbin Jones
- University of North Carolina- Chapel Hill, Integrative Program for Biological & Genome Sciences, Chapel Hill, NC, USA
- University of North Carolina- Chapel Hill, Department of Biology, Chapel Hill, NC, USA
| | - Pelin C. Volkan
- Duke University, Department of Biology, Durham, NC, USA
- Duke Institute for Brain Sciences, Durham, NC, USA
| |
Collapse
|
12
|
Li Q, Barish S, Okuwa S, Maciejewski A, Brandt AT, Reinhold D, Jones CD, Volkan PC. A Functionally Conserved Gene Regulatory Network Module Governing Olfactory Neuron Diversity. PLoS Genet 2016; 12:e1005780. [PMID: 26765103 PMCID: PMC4713227 DOI: 10.1371/journal.pgen.1005780] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/08/2015] [Indexed: 12/21/2022] Open
Abstract
Sensory neuron diversity is required for organisms to decipher complex environmental cues. In Drosophila, the olfactory environment is detected by 50 different olfactory receptor neuron (ORN) classes that are clustered in combinations within distinct sensilla subtypes. Each sensilla subtype houses stereotypically clustered 1-4 ORN identities that arise through asymmetric divisions from a single multipotent sensory organ precursor (SOP). How each class of SOPs acquires a unique differentiation potential that accounts for ORN diversity is unknown. Previously, we reported a critical component of SOP diversification program, Rotund (Rn), increases ORN diversity by generating novel developmental trajectories from existing precursors within each independent sensilla type lineages. Here, we show that Rn, along with BarH1/H2 (Bar), Bric-à-brac (Bab), Apterous (Ap) and Dachshund (Dac), constitutes a transcription factor (TF) network that patterns the developing olfactory tissue. This network was previously shown to pattern the segmentation of the leg, which suggests that this network is functionally conserved. In antennal imaginal discs, precursors with diverse ORN differentiation potentials are selected from concentric rings defined by unique combinations of these TFs along the proximodistal axis of the developing antennal disc. The combinatorial code that demarcates each precursor field is set up by cross-regulatory interactions among different factors within the network. Modifications of this network lead to predictable changes in the diversity of sensilla subtypes and ORN pools. In light of our data, we propose a molecular map that defines each unique SOP fate. Our results highlight the importance of the early prepatterning gene regulatory network as a modulator of SOP and terminally differentiated ORN diversity. Finally, our model illustrates how conserved developmental strategies are used to generate neuronal diversity.
Collapse
Affiliation(s)
- Qingyun Li
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Scott Barish
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Sumie Okuwa
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Abigail Maciejewski
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Alicia T. Brandt
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Dominik Reinhold
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Mathematics and Computer Science, Clark University, Worcester, Massachusetts, United States of America
| | - Corbin D. Jones
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Pelin Cayirlioglu Volkan
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- Duke Institute for Brain Sciences, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
13
|
Joseph RM, Carlson JR. Drosophila Chemoreceptors: A Molecular Interface Between the Chemical World and the Brain. Trends Genet 2015; 31:683-695. [PMID: 26477743 DOI: 10.1016/j.tig.2015.09.005] [Citation(s) in RCA: 230] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/25/2015] [Accepted: 09/08/2015] [Indexed: 10/22/2022]
Abstract
Chemoreception is essential for survival. Feeding, mating, and avoidance of predators depend on detection of sensory cues. Drosophila contains diverse families of chemoreceptors that detect odors, tastants, pheromones, and noxious stimuli, including receptors of the odor receptor (Or), gustatory receptor (Gr), ionotropic receptor (IR), Pickpocket (Ppk), and Trp families. We consider recent progress in understanding chemoreception in the fly, including the identification of new receptors, the discovery of novel biological functions for receptors, and the localization of receptors in unexpected places. We discuss major unsolved problems and suggest areas that may be particularly ripe for future discoveries, including the roles of these receptors in driving the circuits and behaviors that are essential to the survival and reproduction of the animal.
Collapse
Affiliation(s)
- Ryan M Joseph
- Department of Molecular, Cellular, and Developmental Biology, Yale University, PO Box 208103, New Haven, CT 06520-8103, USA
| | - John R Carlson
- Department of Molecular, Cellular, and Developmental Biology, Yale University, PO Box 208103, New Haven, CT 06520-8103, USA.
| |
Collapse
|
14
|
Barish S, Volkan PC. Mechanisms of olfactory receptor neuron specification in Drosophila. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:609-21. [PMID: 26088441 PMCID: PMC4744966 DOI: 10.1002/wdev.197] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 05/04/2015] [Accepted: 05/16/2015] [Indexed: 11/05/2022]
Abstract
Detection of a broad range of chemosensory signals is necessary for the survival of multicellular organisms. Chemical signals are the main facilitators of foraging, escape, and social behaviors. To increase detection coverage, animal sensory systems have evolved to create a large number of neurons with highly specific functions. The olfactory system, much like the nervous system as a whole, is astonishingly diverse. The mouse olfactory system has millions of neurons with over a thousand classes, whereas the more compact Drosophila genome has approximately 80 odorant receptor genes that give rise to 50 neuronal classes and 1300 neurons in the adult.(4) Understanding how neuronal diversity is generated remains one of the central questions in developmental neurobiology. Here, we review the current knowledge on the development of the adult Drosophila olfactory system and the progress that has been made toward answering this central question.
Collapse
Affiliation(s)
- Scott Barish
- Department of Biology, Duke University, Durham, NC, USA
| | - Pelin Cayirlioglu Volkan
- Department of Biology, Duke University, Durham, NC, USA.,Duke Institute of Brain Sciences, Duke University, Durham, NC, USA
| |
Collapse
|
15
|
Engrailed alters the specificity of synaptic connections of Drosophila auditory neurons with the giant fiber. J Neurosci 2014; 34:11691-704. [PMID: 25164665 DOI: 10.1523/jneurosci.1939-14.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We show that a subset of sound-detecting Johnston's Organ neurons (JONs) in Drosophila melanogaster, which express the transcription factors Engrailed (En) and Invected (Inv), form mixed electrical and chemical synaptic inputs onto the giant fiber (GF) dendrite. These synaptic connections are detected by trans-synaptic Neurobiotin (NB) transfer and by colocalization of Bruchpilot-short puncta. We then show that misexpressing En postmitotically in a second subset of sound-responsive JONs causes them to form ectopic electrical and chemical synapses with the GF, in turn causing that postsynaptic neuron to redistribute its dendritic branches into the vicinity of these afferents. We also introduce a simple electrophysiological recording paradigm for quantifying the presynaptic and postsynaptic electrical activity at this synapse, by measuring the extracellular sound-evoked potentials (SEPs) from the antennal nerve while monitoring the likelihood of the GF firing an action potential in response to simultaneous subthreshold sound and voltage stimuli. Ectopic presynaptic expression of En strengthens the synaptic connection, consistent with there being more synaptic contacts formed. Finally, RNAi-mediated knockdown of En and Inv in postmitotic neurons reduces SEP amplitude but also reduces synaptic strength at the JON-GF synapse. Overall, these results suggest that En and Inv in JONs regulate both neuronal excitability and synaptic connectivity.
Collapse
|
16
|
Wernet MF, Desplan C. Sensory cell fates: four defaults for the price of one. Curr Biol 2013; 23:R1089-91. [PMID: 24355782 DOI: 10.1016/j.cub.2013.10.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The specification of different subtypes of olfactory sensilla, which harbor the olfactory receptor neurons (ORNs) in the Drosophila antennae, is poorly understood. Loss of the transcription factor Rotund (Rn) leads to a simultaneous mis-specification of several ORN classes, transforming them into different 'default' cell fates.
Collapse
Affiliation(s)
- Mathias F Wernet
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Claude Desplan
- Center for Developmental Genetics, Department of Biology, New York University, 100 Washington Square East, New York, NY 10003-6688, USA.
| |
Collapse
|
17
|
Li Q, Ha TS, Okuwa S, Wang Y, Wang Q, Millard SS, Smith DP, Volkan PC. Combinatorial rules of precursor specification underlying olfactory neuron diversity. Curr Biol 2013; 23:2481-90. [PMID: 24268416 DOI: 10.1016/j.cub.2013.10.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/18/2013] [Accepted: 10/21/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Sensory neuron diversity ensures optimal detection of the external world and is a hallmark of sensory systems. An extreme example is the olfactory system, as individual olfactory receptor neurons (ORNs) adopt unique sensory identities by typically expressing a single receptor gene from a large genomic repertoire. In Drosophila, about 50 different ORN classes are generated from a field of precursor cells, giving rise to spatially restricted and distinct clusters of ORNs on the olfactory appendages. Developmental strategies spawning ORN diversity from an initially homogeneous population of precursors are largely unknown. RESULTS Here we unravel the nested and binary logic of the combinatorial code that patterns the decision landscape of precursor states underlying ORN diversity in the Drosophila olfactory system. The transcription factor Rotund (Rn) is a critical component of this code that is expressed in a subset of ORN precursors. Addition of Rn to preexisting transcription factors that assign zonal identities to precursors on the antenna subdivides each zone and almost exponentially increases ORN diversity by branching off novel precursor fates from default ones within each zone. In rn mutants, rn-positive ORN classes are converted to rn-negative ones in a zone-specific manner. CONCLUSIONS We provide a model describing how nested and binary changes in combinations of transcription factors could coordinate and pattern a large number of distinct precursor identities within a population to modulate the level of ORN diversity during development and evolution.
Collapse
Affiliation(s)
- Qingyun Li
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Tal Soo Ha
- Department of Pharmacology and Center for Basic Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sumie Okuwa
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Yiping Wang
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Qian Wang
- The Pratt School of Engineering, Duke University, Durham, NC 27708, USA
| | - S Sean Millard
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Dean P Smith
- Department of Pharmacology and Center for Basic Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Pelin Cayirlioglu Volkan
- Department of Biology, Duke University, Durham, NC 27708, USA; Duke Institute for Brain Sciences, Durham, NC 27708, USA.
| |
Collapse
|
18
|
Wnt6 is required for maxillary palp formation in Drosophila. BMC Biol 2013; 11:104. [PMID: 24090348 PMCID: PMC3854539 DOI: 10.1186/1741-7007-11-104] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 09/23/2013] [Indexed: 01/24/2023] Open
Abstract
Background Wnt6 is an evolutionarily ancient member of the Wnt family. In Drosophila, Wnt6 loss-of-function animals have not yet been reported, hence information about fly Wnt6 function is lacking. In wing discs, Wnt6 is expressed at the dorsal/ventral boundary in a pattern similar to that of wingless, an important regulator of wing size. To test whether Wnt6 also contributes towards wing size regulation, we generated Wnt6 knockout flies. Results Wnt6 knockout flies are viable and have no obvious defect in wing size or planar cell polarity. Surprisingly, Wnt6 knockouts lack maxillary palps. Interestingly, Wnt6 is absent from the genome of hemipterans, correlating with the absence of maxillary palps in these insects. Conclusions Wnt6 is important for maxillary palp development in Drosophila, and phylogenetic analysis indicates that loss of Wnt6 may also have led to loss of maxillary palps on an evolutionary time scale.
Collapse
|
19
|
Pézier A, Blagburn JM. Auditory responses of engrailed and invected-expressing Johnston's Organ neurons in Drosophila melanogaster. PLoS One 2013; 8:e71419. [PMID: 23940751 PMCID: PMC3734059 DOI: 10.1371/journal.pone.0071419] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 07/03/2013] [Indexed: 11/23/2022] Open
Abstract
The roles of the transcription factor Engrailed (En), and its paralogue Invected (Inv), in adult Drosophila Johnston’s Organ sensory neurons are unknown. We used en-GAL4 driven CD8-GFP and antibody staining to characterize these neurons in the pedicel (second antennal segment). The majority of En and Inv-expressing Johnston’s Organ neurons (En-JONs) are located in the ventral part of the posterior group of JONs, with only a few in the medial group. Anatomical classification of En-JON axon projections shows they are mainly type A and E, with a few type B. Extracellular recording of sound-evoked potentials (SEPs) from the antennal nerve was used along with Kir2.1 silencing to assess the contribution that En-JONs make to the auditory response to pure-tone sound stimuli. Silencing En-JONs reduces the SEP amplitude at the onset of the stimulus by about half at 100, 200 and 400 Hz, and also reduces the steady-state response to 200 Hz. En-JONs respond to 82 dB and 92 dB sounds but not 98 dB. Despite their asymmetrical distribution in the Johnston’s Organ they respond equally strongly to both directions of movement of the arista. This implies that individual neurons are excited in both directions, a conclusion supported by reanalysis of the morphology of the pedicel-funicular joint. Other methods of silencing the JONs were also used: RNAi against the voltage-gated Na+ channel encoded by the para gene, expression of attenuated diphtheria toxin, and expression of a modified influenza toxin M2(H37A). Only the latter was found to be more effective than Kir2.1. Three additional JON subsets were characterized using Flylight GAL4 lines. inv-GAL4 88B12 and Gycβ100B-GAL4 12G03 express in different subsets of A group neurons and CG12484-GAL4 91G04 is expressed in B neurons. All three contribute to the auditory response to 200 Hz tones.
Collapse
Affiliation(s)
- Adeline Pézier
- Institute of Neurobiology, University of Puerto Rico, San Juan, Puerto Rico, United States of America
| | - Jonathan M. Blagburn
- Institute of Neurobiology, University of Puerto Rico, San Juan, Puerto Rico, United States of America
- * E-mail:
| |
Collapse
|
20
|
Rister J, Desplan C, Vasiliauskas D. Establishing and maintaining gene expression patterns: insights from sensory receptor patterning. Development 2013; 140:493-503. [PMID: 23293281 DOI: 10.1242/dev.079095] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In visual and olfactory sensory systems with high discriminatory power, each sensory neuron typically expresses one, or very few, sensory receptor genes, excluding all others. Recent studies have provided insights into the mechanisms that generate and maintain sensory receptor expression patterns. Here, we review how this is achieved in the fly retina and compare it with the mechanisms controlling sensory receptor expression patterns in the mouse retina and in the mouse and fly olfactory systems.
Collapse
Affiliation(s)
- Jens Rister
- Department of Biology, New York University, 1009 Silver Center, 100 Washington Square East, New York, NY 10003-6688, USA
| | | | | |
Collapse
|
21
|
Getahun MN, Wicher D, Hansson BS, Olsson SB. Temporal response dynamics of Drosophila olfactory sensory neurons depends on receptor type and response polarity. Front Cell Neurosci 2012; 6:54. [PMID: 23162431 PMCID: PMC3499765 DOI: 10.3389/fncel.2012.00054] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 10/28/2012] [Indexed: 12/16/2022] Open
Abstract
Insect olfactory sensory neurons (OSN) express a diverse array of receptors from different protein families, i.e. ionotropic receptors (IR), gustatory receptors (GR) and odorant receptors (OR). It is well known that insects are exposed to a plethora of odor molecules that vary widely in both space and time under turbulent natural conditions. In addition to divergent ligand specificities, these different receptors might also provide an increased range of temporal dynamics and sensitivities for the olfactory system. To test this, we challenged different Drosophila OSNs with both varying stimulus durations (10–2000 ms), and repeated stimulus pulses of key ligands at various frequencies (1–10 Hz). Our results show that OR-expressing OSNs responded faster and with higher sensitivity to short stimulations as compared to IR- and Gr21a-expressing OSNs. In addition, OR-expressing OSNs could respond to repeated stimulations of excitatory ligands up to 5 Hz, while IR-expressing OSNs required ~5x longer stimulations and/or higher concentrations to respond to similar stimulus durations and frequencies. Nevertheless, IR-expressing OSNs did not exhibit adaptation to longer stimulations, unlike OR- and Gr21a-OSNs. Both OR- and IR-expressing OSNs were also unable to resolve repeated pulses of inhibitory ligands as fast as excitatory ligands. These differences were independent of the peri-receptor environment in which the receptors were expressed and suggest that the receptor expressed by a given OSN affects both its sensitivity and its response to transient, intermittent chemical stimuli. OR-expressing OSNs are better at resolving low dose, intermittent stimuli, while IR-expressing OSNs respond more accurately to long-lasting odor pulses. This diversity increases the capacity of the insect olfactory system to respond to the diverse spatiotemporal signals in the natural environment.
Collapse
Affiliation(s)
- Merid N Getahun
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology Jena, Germany
| | | | | | | |
Collapse
|
22
|
Abstract
The distributed, apparently random pattern of odorant receptor expression is thought to reflect a stochastic choice process. In this issue of Developmental Cell, Song et al. (2012) suggest that the Drosophila pattern is established secondarily from regionally specified cell populations through changes in transcription factor expression and cell migration.
Collapse
Affiliation(s)
- Xalid Bayramli
- Department of Molecular Biology and Genetics, Bogazici University, 34342 Istanbul, Turkey
| | | |
Collapse
|