1
|
Risteski P, Martinčić J, Jagrić M, Tintor E, Petelinec A, Tolić IM. Microtubule poleward flux as a target for modifying chromosome segregation errors. Proc Natl Acad Sci U S A 2024; 121:e2405015121. [PMID: 39541344 PMCID: PMC11588092 DOI: 10.1073/pnas.2405015121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Cancer cells often display errors in chromosome segregation, some of which result from improper chromosome alignment at the spindle midplane. Chromosome alignment is facilitated by different rates of microtubule poleward flux between sister kinetochore fibers. However, the role of the poleward flux in supporting mitotic fidelity remains unknown. Here, we introduce the hypothesis that the finely tuned poleward flux safeguards against lagging chromosomes and micronuclei at mitotic exit by promoting chromosome alignment in metaphase. We used human untransformed RPE-1 cells depleted of KIF18A/kinesin-8 as a system with reduced mitotic fidelity, which we rescued by three mechanistically independent treatments, comprising low-dose taxol or codepletion of the spindle proteins HAUS8 or NuMA. The rescue of mitotic errors was due to shortening of the excessively long overlaps of antiparallel microtubules, serving as a platform for motor proteins that drive the flux, which in turn slowed down the overly fast flux and improved chromosome alignment. In contrast to the prevailing view, the rescue was not accompanied by reduction of overall microtubule growth rates. Instead, speckle microscopy revealed that the improved chromosome alignment in the rescue treatments was associated with slower growth and flux of kinetochore microtubules. In a similar manner, a low-dose taxol treatment rescued mitotic errors in a high-grade serous ovarian carcinoma cell line OVKATE. Collectively, our results highlight the potential of targeting microtubule poleward flux to modify chromosome instability and provide insight into the mechanism through which low doses of taxol rescue certain mitotic errors in cancer cells.
Collapse
Affiliation(s)
- Patrik Risteski
- Laboratory of Cell Biophysics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb10000, Croatia
| | - Jelena Martinčić
- Laboratory of Cell Biophysics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb10000, Croatia
| | - Mihaela Jagrić
- Laboratory of Cell Biophysics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb10000, Croatia
| | - Erna Tintor
- Laboratory of Cell Biophysics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb10000, Croatia
| | - Ana Petelinec
- Laboratory of Cell Biophysics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb10000, Croatia
| | - Iva M. Tolić
- Laboratory of Cell Biophysics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb10000, Croatia
| |
Collapse
|
2
|
Pun R, Kumari N, Monieb RH, Wagh S, North BJ. BubR1 and SIRT2: Insights into aneuploidy, aging, and cancer. Semin Cancer Biol 2024; 106-107:201-216. [PMID: 39490401 PMCID: PMC11625622 DOI: 10.1016/j.semcancer.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Aging is a significant risk factor for cancer which is due, in part, to heightened genomic instability. Mitotic surveillance proteins such as BubR1 play a pivotal role in ensuring accurate chromosomal segregation and preventing aneuploidy. BubR1 levels have been shown to naturally decline with age and its loss is associated with various age-related pathologies. Sirtuins, a class of NAD+-dependent deacylases, are implicated in cancer and genomic instability. Among them, SIRT2 acts as an upstream regulator of BubR1, offering a critical pathway that can potentially mitigate age-related diseases, including cancer. In this review, we explore BubR1 as a key regulator of cellular processes crucial for aging-related phenotypes. We delve into the intricate mechanisms through which BubR1 influences genomic stability and cellular senescence. Moreover, we highlight the role of NAD+ and SIRT2 in modulating BubR1 expression and function, emphasizing its potential as a therapeutic target. The interaction between BubR1 and SIRT2 not only serves as a fundamental regulatory pathway in cellular homeostasis but also represents a promising avenue for developing targeted therapies against age-related diseases, particularly cancer.
Collapse
Affiliation(s)
- Renju Pun
- Biomedical Sciences Department, Creighton University School of Medicine, Omaha, NE, USA
| | - Niti Kumari
- Biomedical Sciences Department, Creighton University School of Medicine, Omaha, NE, USA
| | - Rodaina Hazem Monieb
- Biomedical Sciences Department, Creighton University School of Medicine, Omaha, NE, USA
| | - Sachin Wagh
- Biomedical Sciences Department, Creighton University School of Medicine, Omaha, NE, USA
| | - Brian J North
- Biomedical Sciences Department, Creighton University School of Medicine, Omaha, NE, USA.
| |
Collapse
|
3
|
Lee JJ, Kim H, Park H, Lee U, Kim C, Lee M, Shin Y, Jung JJ, Lee HB, Han W, Lee H. Disruption of G-quadruplex dynamicity by BRCA2 abrogation instigates phase separation and break-induced replication at telomeres. Nucleic Acids Res 2024; 52:5756-5773. [PMID: 38587189 PMCID: PMC11162766 DOI: 10.1093/nar/gkae251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/08/2024] [Accepted: 04/03/2024] [Indexed: 04/09/2024] Open
Abstract
Dynamic interaction between BRCA2 and telomeric G-quadruplexes (G4) is crucial for maintaining telomere replication homeostasis. Cells lacking BRCA2 display telomeric damage with a subset of these cells bypassing senescence to initiate break-induced replication (BIR) for telomere synthesis. Here we show that the abnormal stabilization of telomeric G4 following BRCA2 depletion leads to telomeric repeat-containing RNA (TERRA)-R-loop accumulation, triggering liquid-liquid phase separation (LLPS) and the assembly of Alternative Lengthening of Telomeres (ALT)-associated promyelocytic leukemia (PML) bodies (APBs). Disruption of R-loops abolishes LLPS and impairs telomere synthesis. Artificial engineering of telomeric LLPS restores telomere synthesis, underscoring the critical role of LLPS in ALT. TERRA-R-loops also recruit Polycomb Repressive Complex 2 (PRC2), leading to tri-methylation of Lys27 on histone H3 (H3K27me3) at telomeres. Half of paraffin-embedded tissue sections from human breast cancers exhibit APBs and telomere length heterogeneity, suggesting that BRCA2 mutations can predispose individuals to ALT-type tumorigenesis. Overall, BRCA2 abrogation disrupts the dynamicity of telomeric G4, producing TERRA-R-loops, finally leading to the assembly of telomeric liquid condensates crucial for ALT. We propose that modulating the dynamicity of telomeric G4 and targeting TERRA-R-loops in telomeric LLPS maintenance may represent effective therapeutic strategies for treating ALT-like cancers with APBs, including those with BRCA2 disruptions.
Collapse
Affiliation(s)
- Jennifer J Lee
- Department of Biological Sciences & Institute of Molecular Biology and Genetics (IMBG), Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul 08826, Korea
| | - Hyungmin Kim
- Department of Biological Sciences & Institute of Molecular Biology and Genetics (IMBG), Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul 08826, Korea
| | - Haemin Park
- Department of Biological Sciences & Institute of Molecular Biology and Genetics (IMBG), Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul 08826, Korea
| | - UkJin Lee
- Department of Biological Sciences & Institute of Molecular Biology and Genetics (IMBG), Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul 08826, Korea
| | - Chaelim Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Korea
| | - Min Lee
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Korea
| | - Yongdae Shin
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Korea
| | - Ji-Jung Jung
- Department of Surgery, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Han-Byoel Lee
- Department of Surgery, Seoul National University College of Medicine, Seoul 03080, Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea
- Cancer Research Institute, Seoul National University, Seoul 03080, Korea
| | - Wonshik Han
- Department of Surgery, Seoul National University College of Medicine, Seoul 03080, Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Korea
- Cancer Research Institute, Seoul National University, Seoul 03080, Korea
| | - Hyunsook Lee
- Department of Biological Sciences & Institute of Molecular Biology and Genetics (IMBG), Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul 08826, Korea
| |
Collapse
|
4
|
Ding JH, Xiao Y, Yang F, Song XQ, Xu Y, Ding XH, Ding R, Shao ZM, Di GH, Jiang YZ. Guanosine diphosphate-mannose suppresses homologous recombination repair and potentiates antitumor immunity in triple-negative breast cancer. Sci Transl Med 2024; 16:eadg7740. [PMID: 38170790 DOI: 10.1126/scitranslmed.adg7740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer with poor prognosis. TNBCs with high homologous recombination deficiency (HRD) scores benefit from DNA-damaging agents, including platinum drugs and poly(ADP-ribose) polymerase (PARP) inhibitors, whereas those with low HRD scores still lack therapeutic options. Therefore, we sought to exploit metabolic alterations to induce HRD and sensitize DNA-damaging agents in TNBCs with low HRD scores. We systematically analyzed TNBC metabolomics and identified a metabolite, guanosine diphosphate (GDP)-mannose (GDP-M), that impeded homologous recombination repair (HRR). Mechanistically, the low expression of the upstream enzyme GDP-mannose-pyrophosphorylase-A (GMPPA) led to the endogenous up-regulation of GDP-M in TNBC. The accumulation of GDP-M in tumor cells further reduced the interaction between breast cancer susceptibility gene 2 (BRCA2) and ubiquitin-specific peptidase 21 (USP21), which promoted the ubiquitin-mediated degradation of BRCA2 to inhibit HRR. Therapeutically, we illustrated that the supplementation of GDP-M sensitized DNA-damaging agents to impair tumor growth in both in vitro (cancer cell line and patient-derived organoid) and in vivo (xenograft in immunodeficient mouse) models. Moreover, the combination of GDP-M with DNA-damaging agents activated STING-dependent antitumor immunity in immunocompetent syngeneic mouse models. Therefore, GDP-M supplementation combined with PARP inhibition augmented the efficacy of anti-PD-1 antibodies. Together, these findings suggest that GDP-M is a crucial HRD-related metabolite and propose a promising therapeutic strategy for TNBCs with low HRD scores using the combination of GDP-M, PARP inhibitors, and anti-PD-1 immunotherapy.
Collapse
Affiliation(s)
- Jia-Han Ding
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 201203, P. R. China
| | - Yi Xiao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Fan Yang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Xiao-Qing Song
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Ying Xu
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Xiao-Hong Ding
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Rui Ding
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Gen-Hong Di
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, P. R. China
| |
Collapse
|
5
|
Wang J, Chen Y, Li S, Liu W, Zhou XA, Luo Y, Xu Z, Xiong Y, Cheng K, Ruan M, Yu W, Li X, Wang W, Wang J. PP2A inhibition causes synthetic lethality in BRCA2-mutated prostate cancer models via spindle assembly checkpoint reactivation. J Clin Invest 2024; 134:e172137. [PMID: 37934606 PMCID: PMC10760972 DOI: 10.1172/jci172137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/31/2023] [Indexed: 11/09/2023] Open
Abstract
Mutations in the BRCA2 tumor suppressor gene have been associated with an increased risk of developing prostate cancer. One of the paradoxes concerning BRCA2 is the fact that its inactivation affects genetic stability and is deleterious for cellular and organismal survival, while BRCA2-mutated cancer cells adapt to this detriment and malignantly proliferate. Therapeutic strategies for tumors arising from BRCA2 mutations may be discovered by understanding these adaptive mechanisms. In this study, we conducted forward genetic synthetic viability screenings in Caenorhabditis elegans brc-2 (Cebrc-2) mutants and found that Ceubxn-2 inactivation rescued the viability of Cebrc-2 mutants. Moreover, loss of NSFL1C, the mammalian ortholog of CeUBXN-2, suppressed the spindle assembly checkpoint (SAC) activation and promoted the survival of BRCA2-deficient cells. Mechanistically, NSFL1C recruited USP9X to inhibit the polyubiquitination of AURKB and reduce the removal of AURKB from the centromeres by VCP, which is essential for SAC activation. SAC inactivation is common in BRCA2-deficient prostate cancer patients, but PP2A inhibitors could reactivate the SAC and achieve BRCA2-deficient prostate tumor synthetic lethality. Our research reveals the survival adaptation mechanism of BRCA2-deficient prostate tumor cells and provides different angles for exploring synthetic lethal inhibitors in addition to targeting DNA damage repair pathways.
Collapse
Affiliation(s)
- Jian Wang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Yuke Chen
- Department of Urology, Peking University First Hospital, Beijing, China
| | - Shiwei Li
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Wanchang Liu
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Xiao Albert Zhou
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Yefei Luo
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Zhanzhan Xu
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Yundong Xiong
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Kaiqi Cheng
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Mingjian Ruan
- Department of Urology, Peking University First Hospital, Beijing, China
| | - Wei Yu
- Department of Urology, Peking University First Hospital, Beijing, China
| | - Xiaoman Li
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Weibin Wang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| | - Jiadong Wang
- Department of Radiation Medicine, School of Basic Medical Sciences, Peking University International Cancer Institute, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, Beijing, China
| |
Collapse
|
6
|
The insulin receptor endocytosis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:79-107. [PMID: 36631202 DOI: 10.1016/bs.pmbts.2022.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Insulin signaling controls multiple aspects of animal physiology. At the cell surface, insulin binds and activates the insulin receptor (IR), a receptor tyrosine kinase. Insulin promotes a large conformational change of IR and stabilizes the active conformation. The insulin-activated IR triggers signaling cascades, thus controlling metabolism, growth, and proliferation. The activated IR undergoes internalization by clathrin- or caveolae-mediated endocytosis. The IR endocytosis plays important roles in insulin clearance from blood, and distribution and termination of the insulin signaling. Despite decades of extensive studies, the mechanism and regulation of IR endocytosis and its contribution to pathophysiology remain incompletely understood. Here we discuss recent findings that provide insights into the molecular mechanisms and regulatory pathways that mediate the IR endocytosis.
Collapse
|
7
|
Costanza A, Guaragnella N, Bobba A, Manzari C, L'Abbate A, Giudice CL, Picardi E, D'Erchia AM, Pesole G, Giannattasio S. Yeast as a Model to Unravel New BRCA2 Functions in Cell Metabolism. Front Oncol 2022; 12:908442. [PMID: 35734584 PMCID: PMC9207209 DOI: 10.3389/fonc.2022.908442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Mutations in BRCA2 gene increase the risk for breast cancer and for other cancer types, including pancreatic and prostate cancer. Since its first identification as an oncosupressor in 1995, the best-characterized function of BRCA2 is in the repair of DNA double-strand breaks (DSBs) by homologous recombination. BRCA2 directly interacts with both RAD51 and single-stranded DNA, mediating loading of RAD51 recombinase to sites of single-stranded DNA. In the absence of an efficient homologous recombination pathway, DSBs accumulate resulting in genome instability, thus supporting tumorigenesis. Yet the precise mechanism by which BRCA2 exerts its tumor suppressor function remains unclear. BRCA2 has also been involved in other biological functions including protection of telomere integrity and stalled replication forks, cell cycle progression, transcriptional control and mitophagy. Recently, we and others have reported a role of BRCA2 in modulating cell death programs through a molecular mechanism conserved in yeast and mammals. Here we hypothesize that BRCA2 is a multifunctional protein which exerts specific functions depending on cell stress response pathway. Based on a differential RNA sequencing analysis carried out on yeast cells either growing or undergoing a regulated cell death process, either in the absence or in the presence of BRCA2, we suggest that BRCA2 causes central carbon metabolism reprogramming in response to death stimuli and encourage further investigation on the role of metabolic reprogramming in BRCA2 oncosuppressive function.
Collapse
Affiliation(s)
- Alessandra Costanza
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | - Nicoletta Guaragnella
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy.,Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Antonella Bobba
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | - Caterina Manzari
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Alberto L'Abbate
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| | - Claudio Lo Giudice
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Ernesto Picardi
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy.,Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Anna Maria D'Erchia
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy.,Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Graziano Pesole
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy.,Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Sergio Giannattasio
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy
| |
Collapse
|
8
|
Lee J, Sung K, Joo SY, Jeong JH, Kim SK, Lee H. Dynamic interaction of BRCA2 with telomeric G-quadruplexes underlies telomere replication homeostasis. Nat Commun 2022; 13:3396. [PMID: 35697743 PMCID: PMC9192595 DOI: 10.1038/s41467-022-31156-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 05/31/2022] [Indexed: 12/02/2022] Open
Abstract
BRCA2-deficient cells precipitate telomere shortening upon collapse of stalled replication forks. Here, we report that the dynamic interaction between BRCA2 and telomeric G-quadruplex (G4), the non-canonical four-stranded secondary structure, underlies telomere replication homeostasis. We find that the OB-folds of BRCA2 binds to telomeric G4, which can be an obstacle during replication. We further demonstrate that BRCA2 associates with G-triplex (G3)-derived intermediates, which are likely to form during direct interconversion between parallel and non-parallel G4. Intriguingly, BRCA2 binding to G3 intermediates promoted RAD51 recruitment to the telomere G4. Furthermore, MRE11 resected G4-telomere, which was inhibited by BRCA2. Pathogenic mutations at the OB-folds abrogated the binding with telomere G4, indicating that the way BRCA2 associates with telomere is innate to its tumor suppressor activity. Collectively, we propose that BRCA2 binding to telomeric G4 remodels it and allows RAD51-mediated restart of the G4-driven replication fork stalling, simultaneously preventing MRE11-mediated breakdown of telomere. G-quadruplex (G4) can be formed in telomeric DNA. Here the authors show that BRCA2 interacts with telomere G4 structure generated during telomere replication, protecting telomere from nuclease attack.
Collapse
Affiliation(s)
- Junyeop Lee
- Department of Biological Sciences & IMBG, Seoul National University, Seoul, 08826, South Korea
| | - Keewon Sung
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - So Young Joo
- Department of Biological Sciences & IMBG, Seoul National University, Seoul, 08826, South Korea
| | - Jun-Hyeon Jeong
- Department of Biological Sciences & IMBG, Seoul National University, Seoul, 08826, South Korea
| | - Seong Keun Kim
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea.
| | - Hyunsook Lee
- Department of Biological Sciences & IMBG, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
9
|
Luna-Maldonado F, Andonegui-Elguera MA, Díaz-Chávez J, Herrera LA. Mitotic and DNA Damage Response Proteins: Maintaining the Genome Stability and Working for the Common Good. Front Cell Dev Biol 2021; 9:700162. [PMID: 34966733 PMCID: PMC8710681 DOI: 10.3389/fcell.2021.700162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
Cellular function is highly dependent on genomic stability, which is mainly ensured by two cellular mechanisms: the DNA damage response (DDR) and the Spindle Assembly Checkpoint (SAC). The former provides the repair of damaged DNA, and the latter ensures correct chromosome segregation. This review focuses on recently emerging data indicating that the SAC and the DDR proteins function together throughout the cell cycle, suggesting crosstalk between both checkpoints to maintain genome stability.
Collapse
Affiliation(s)
- Fernando Luna-Maldonado
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas–Universidad Nacional Autónoma de México, Instituto Nacional de Cancerología, México City, Mexico
| | - Marco A. Andonegui-Elguera
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas–Universidad Nacional Autónoma de México, Instituto Nacional de Cancerología, México City, Mexico
| | - José Díaz-Chávez
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas–Universidad Nacional Autónoma de México, Instituto Nacional de Cancerología, México City, Mexico
| | - Luis A. Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas–Universidad Nacional Autónoma de México, Instituto Nacional de Cancerología, México City, Mexico
- Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| |
Collapse
|
10
|
Le HP, Heyer WD, Liu J. Guardians of the Genome: BRCA2 and Its Partners. Genes (Basel) 2021; 12:genes12081229. [PMID: 34440403 PMCID: PMC8394001 DOI: 10.3390/genes12081229] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/28/2022] Open
Abstract
The tumor suppressor BRCA2 functions as a central caretaker of genome stability, and individuals who carry BRCA2 mutations are predisposed to breast, ovarian, and other cancers. Recent research advanced our mechanistic understanding of BRCA2 and its various interaction partners in DNA repair, DNA replication support, and DNA double-strand break repair pathway choice. In this review, we discuss the biochemical and structural properties of BRCA2 and examine how these fundamental properties contribute to DNA repair and replication fork stabilization in living cells. We highlight selected BRCA2 binding partners and discuss their role in BRCA2-mediated homologous recombination and fork protection. Improved mechanistic understanding of how BRCA2 functions in genome stability maintenance can enable experimental evidence-based evaluation of pathogenic BRCA2 mutations and BRCA2 pseudo-revertants to support targeted therapy.
Collapse
Affiliation(s)
- Hang Phuong Le
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA; (H.P.L.); (W.-D.H.)
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA; (H.P.L.); (W.-D.H.)
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Jie Liu
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA; (H.P.L.); (W.-D.H.)
- Correspondence: ; Tel.: +1-530-752-3016
| |
Collapse
|
11
|
Renaudin X, Lee M, Shehata M, Surmann EM, Venkitaraman AR. BRCA2 deficiency reveals that oxidative stress impairs RNaseH1 function to cripple mitochondrial DNA maintenance. Cell Rep 2021; 36:109478. [PMID: 34348152 PMCID: PMC8356021 DOI: 10.1016/j.celrep.2021.109478] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 06/16/2021] [Accepted: 07/13/2021] [Indexed: 01/07/2023] Open
Abstract
Oxidative stress is a ubiquitous cellular challenge implicated in aging, neurodegeneration, and cancer. By studying pathogenic mutations in the tumor suppressor BRCA2, we identify a general mechanism by which oxidative stress restricts mitochondrial (mt)DNA replication. BRCA2 inactivation induces R-loop accumulation in the mtDNA regulatory region and diminishes mtDNA replication initiation. In BRCA2-deficient cells, intracellular reactive oxygen species (ROS) are elevated, and ROS scavengers suppress the mtDNA defects. Conversely, wild-type cells exposed to oxidative stress by pharmacologic or genetic manipulation phenocopy these defects. Mechanistically, we find that 8-oxoguanine accumulation in mtDNA caused by oxidative stress suffices to impair recruitment of the mitochondrial enzyme RNaseH1 to sites of R-loop accrual, restricting mtDNA replication initiation. Thus, oxidative stress impairs RNaseH1 function to cripple mtDNA maintenance. Our findings highlight a molecular mechanism that links oxidative stress to mitochondrial dysfunction and is elicited by the inactivation of genes implicated in neurodegeneration and cancer. BRCA2-deficient cells accumulate mtDNA R-loops due to oxidative stress This stress creates 8-oxoguanine lesions impairing RNaseH1 recruitment to mtDNA RNaseH1 impairment triggers R-loop formation and restricts mtDNA replication Other sources of oxidative stress also cripple mtDNA maintenance via this mechanism
Collapse
Affiliation(s)
- Xavier Renaudin
- Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| | - Miyoung Lee
- Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| | - Mona Shehata
- Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| | - Eva-Maria Surmann
- Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| | - Ashok R Venkitaraman
- Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK.
| |
Collapse
|
12
|
Julien M, Ghouil R, Petitalot A, Caputo SM, Carreira A, Zinn-Justin S. Intrinsic Disorder and Phosphorylation in BRCA2 Facilitate Tight Regulation of Multiple Conserved Binding Events. Biomolecules 2021; 11:1060. [PMID: 34356684 PMCID: PMC8301801 DOI: 10.3390/biom11071060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 12/26/2022] Open
Abstract
The maintenance of genome integrity in the cell is an essential process for the accurate transmission of the genetic material. BRCA2 participates in this process at several levels, including DNA repair by homologous recombination, protection of stalled replication forks, and cell division. These activities are regulated and coordinated via cell-cycle dependent modifications. Pathogenic variants in BRCA2 cause genome instability and are associated with breast and/or ovarian cancers. BRCA2 is a very large protein of 3418 amino acids. Most well-characterized variants causing a strong predisposition to cancer are mutated in the C-terminal 700 residues DNA binding domain of BRCA2. The rest of the BRCA2 protein is predicted to be disordered. Interactions involving intrinsically disordered regions (IDRs) remain difficult to identify both using bioinformatics tools and performing experimental assays. However, the lack of well-structured binding sites provides unique functional opportunities for BRCA2 to bind to a large set of partners in a tightly regulated manner. We here summarize the predictive and experimental arguments that support the presence of disorder in BRCA2. We describe how BRCA2 IDRs mediate self-assembly and binding to partners during DNA double-strand break repair, mitosis, and meiosis. We highlight how phosphorylation by DNA repair and cell-cycle kinases regulate these interactions. We finally discuss the impact of cancer-associated variants on the function of BRCA2 IDRs and more generally on genome stability and cancer risk.
Collapse
Affiliation(s)
- Manon Julien
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, 91190 Gif-sur-Yvette, France; (M.J.); (R.G.)
- L’Institut de Biologie Intégrative de la Cellule (I2BC), UMR 9198, Paris-Saclay University, 91190 Gif-sur-Yvette, France;
| | - Rania Ghouil
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, 91190 Gif-sur-Yvette, France; (M.J.); (R.G.)
- L’Institut de Biologie Intégrative de la Cellule (I2BC), UMR 9198, Paris-Saclay University, 91190 Gif-sur-Yvette, France;
| | - Ambre Petitalot
- Service de Génétique, Unité de Génétique Constitutionnelle, Institut Curie, 75005 Paris, France; (A.P.); (S.M.C.)
- Institut Curie, Paris Sciences Lettres Research University, 75005 Paris, France
| | - Sandrine M. Caputo
- Service de Génétique, Unité de Génétique Constitutionnelle, Institut Curie, 75005 Paris, France; (A.P.); (S.M.C.)
- Institut Curie, Paris Sciences Lettres Research University, 75005 Paris, France
| | - Aura Carreira
- L’Institut de Biologie Intégrative de la Cellule (I2BC), UMR 9198, Paris-Saclay University, 91190 Gif-sur-Yvette, France;
- Institut Curie, Paris Sciences Lettres Research University, 75005 Paris, France
- Unité Intégrité du Génome, ARN et Cancer, Institut Curie, CNRS UMR3348, 91405 Orsay, France
| | - Sophie Zinn-Justin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, 91190 Gif-sur-Yvette, France; (M.J.); (R.G.)
- L’Institut de Biologie Intégrative de la Cellule (I2BC), UMR 9198, Paris-Saclay University, 91190 Gif-sur-Yvette, France;
| |
Collapse
|
13
|
Stok C, Kok Y, van den Tempel N, van Vugt MATM. Shaping the BRCAness mutational landscape by alternative double-strand break repair, replication stress and mitotic aberrancies. Nucleic Acids Res 2021; 49:4239-4257. [PMID: 33744950 PMCID: PMC8096281 DOI: 10.1093/nar/gkab151] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/18/2021] [Accepted: 03/05/2021] [Indexed: 12/16/2022] Open
Abstract
Tumours with mutations in the BRCA1/BRCA2 genes have impaired double-stranded DNA break repair, compromised replication fork protection and increased sensitivity to replication blocking agents, a phenotype collectively known as 'BRCAness'. Tumours with a BRCAness phenotype become dependent on alternative repair pathways that are error-prone and introduce specific patterns of somatic mutations across the genome. The increasing availability of next-generation sequencing data of tumour samples has enabled identification of distinct mutational signatures associated with BRCAness. These signatures reveal that alternative repair pathways, including Polymerase θ-mediated alternative end-joining and RAD52-mediated single strand annealing are active in BRCA1/2-deficient tumours, pointing towards potential therapeutic targets in these tumours. Additionally, insight into the mutations and consequences of unrepaired DNA lesions may also aid in the identification of BRCA-like tumours lacking BRCA1/BRCA2 gene inactivation. This is clinically relevant, as these tumours respond favourably to treatment with DNA-damaging agents, including PARP inhibitors or cisplatin, which have been successfully used to treat patients with BRCA1/2-defective tumours. In this review, we aim to provide insight in the origins of the mutational landscape associated with BRCAness by exploring the molecular biology of alternative DNA repair pathways, which may represent actionable therapeutic targets in in these cells.
Collapse
Affiliation(s)
- Colin Stok
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
| | - Yannick P Kok
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
| | - Nathalie van den Tempel
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
| | - Marcel A T M van Vugt
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
| |
Collapse
|
14
|
Park J, Yeu SY, Paik S, Kim H, Choi SY, Lee J, Jang J, Lee S, Koh Y, Lee H. Loss of BubR1 acetylation provokes replication stress and leads to complex chromosomal rearrangements. FEBS J 2021; 288:5925-5942. [PMID: 33955658 DOI: 10.1111/febs.15912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/25/2021] [Accepted: 05/04/2021] [Indexed: 11/27/2022]
Abstract
Accurate chromosomal segregation during mitosis is regulated by the spindle assembly checkpoint (SAC). SAC failure results in aneuploidy, a hallmark of cancer. However, many studies have suggested that aneuploidy alone is not oncogenic. We have reported that BubR1 acetylation deficiency in mice (K243R/+) caused spontaneous tumorigenesis via weakened SAC signaling and unstable chromosome-spindle attachment, resulting in massive chromosomal mis-segregation. In addition to aneuploidy, cells derived from K243R/+ mice exhibited moderate genetic instability and chromosomal translocation. Here, we investigated how the loss of BubR1 acetylation led to genetic instability and chromosomal rearrangement. To rescue all chromosomal abnormalities generated by the loss of BubR1 acetylation during development, K243R/+ mice were crossed with p53-deficient mice. Genome-wide sequencing and spectral karyotyping of tumors derived from these double-mutant mice revealed that BubR1 acetylation deficiency was associated with complex chromosomal rearrangements, including Robertsonian-like whole-arm translocations. By analyzing the telomeres and centromeres in metaphase chromosome spreads, we found that BubR1 acetylation deficiency increased the collapse of stalled replication forks, commonly referred to as replication stress, and led to DNA damage and chromosomal rearrangements. BubR1 mutations that are critical in interacting with PCAF acetyltransferase and acetylating K250, L249F and A251P, were found from human cancers. Furthermore, a subset of human cancer cells exhibiting whole-arm translocation also displayed defects in BubR1 acetylation, supporting that defects in BubR1 acetylation in mitosis contributes to tumorigenesis. Collectively, loss of BubR1 acetylation provokes replication stress, particularly at the telomeres, leading to genetic instability and chromosomal rearrangement.
Collapse
Affiliation(s)
- Jiho Park
- Department of Biological Sciences & Institute of Molecular Biology and Genetics, Seoul National University, Korea
| | - Song Y Yeu
- Department of Biological Sciences & Institute of Molecular Biology and Genetics, Seoul National University, Korea
| | - Sangjin Paik
- Department of Biological Sciences & Institute of Molecular Biology and Genetics, Seoul National University, Korea
| | - Hyungmin Kim
- Department of Biological Sciences & Institute of Molecular Biology and Genetics, Seoul National University, Korea
| | - Si-Young Choi
- Department of Biological Sciences & Institute of Molecular Biology and Genetics, Seoul National University, Korea
| | - Junyeop Lee
- Department of Biological Sciences & Institute of Molecular Biology and Genetics, Seoul National University, Korea
| | - Jinho Jang
- Department of Bioengineering, School of Life Sciences, Ulsan National Institute of Science and Technology, Korea
| | - Semin Lee
- Department of Bioengineering, School of Life Sciences, Ulsan National Institute of Science and Technology, Korea
| | - Youngil Koh
- Department of Internal Medicine, Seoul National University Hospital, Korea
| | - Hyunsook Lee
- Department of Biological Sciences & Institute of Molecular Biology and Genetics, Seoul National University, Korea
| |
Collapse
|
15
|
Ehlén Å, Sessa G, Zinn-Justin S, Carreira A. The phospho-dependent role of BRCA2 on the maintenance of chromosome integrity. Cell Cycle 2021; 20:731-741. [PMID: 33691600 PMCID: PMC8098065 DOI: 10.1080/15384101.2021.1892994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/21/2021] [Accepted: 02/16/2021] [Indexed: 12/18/2022] Open
Abstract
Chromosomal instability is a hallmark of cancer. The tumor suppressor protein BRCA2 performs an important role in the maintenance of genome integrity particularly in interphase; as a mediator of homologous recombination DNA repair pathway, it participates in the repair of DNA double-strand breaks, inter-strand crosslinks and replicative DNA lesions. BRCA2 also protects stalled replication forks from aberrant degradation. Defects in these functions lead to structural chromosomal aberrations. BRCA2 is a large protein containing highly disordered regions that are heavily phosphorylated particularly in mitosis. The functions of these modifications are getting elucidated and reveal emerging activities in chromosome alignment, chromosome segregation and abscission during cell division. Defects in these activities result in numerical chromosomal aberrations. In addition to BRCA2, other factors of the DNA damage response (DDR) participate in mitosis in close association with cell cycle kinases and phosphatases suggesting that the maintenance of genome integrity functions of these factors extends beyond DNA repair. Here we will discuss the regulation of BRCA2 functions through phosphorylation by cell cycle kinases particularly in mitosis, and illustrate with some examples how BRCA2 and other DDR proteins partially rewire their interactions, essentially via phosphorylation, to fulfill mitotic specific functions that ensure chromosome stability.
Collapse
Affiliation(s)
- Åsa Ehlén
- Institut Curie, PSL University, CNRS, UMR3348, Orsay, France
- Paris-Saclay University CNRS, UMR3348, Orsay, France
| | - Gaetana Sessa
- Institut Curie, PSL University, CNRS, UMR3348, Orsay, France
- Paris-Saclay University CNRS, UMR3348, Orsay, France
| | - Sophie Zinn-Justin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Aura Carreira
- Institut Curie, PSL University, CNRS, UMR3348, Orsay, France
- Paris-Saclay University CNRS, UMR3348, Orsay, France
| |
Collapse
|
16
|
El Dika M. Use of Xenopus laevis cell-free extracts to study BRCA2 role in chromosome alignment. DNA Repair (Amst) 2021; 100:103053. [PMID: 33550028 DOI: 10.1016/j.dnarep.2021.103053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 11/18/2022]
Affiliation(s)
- Mohammed El Dika
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, VT, USA; Institut Curie, PSL Research University, CNRS, UMR3348, Orsay, France; Paris Sud University, Paris-Saclay University, CNRS, UMR3348, Orsay, France.
| |
Collapse
|
17
|
Ariyannur P, Srinivasalu VK. Molecular Mechanisms of Early Breast Cancer. MANAGEMENT OF EARLY STAGE BREAST CANCER 2021:59-83. [DOI: 10.1007/978-981-15-6171-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
18
|
Gruber JJ, Chen J, Geller B, Jäger N, Lipchik AM, Wang G, Kurian AW, Ford JM, Snyder MP. Chromatin Remodeling in Response to BRCA2-Crisis. Cell Rep 2020; 28:2182-2193.e6. [PMID: 31433991 DOI: 10.1016/j.celrep.2019.07.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 06/05/2019] [Accepted: 07/17/2019] [Indexed: 10/26/2022] Open
Abstract
Individuals with a single functional copy of the BRCA2 tumor suppressor have elevated risks for breast, ovarian, and other solid tumor malignancies. The exact mechanisms of carcinogenesis due to BRCA2 haploinsufficiency remain unclear, but one possibility is that at-risk cells are subject to acute periods of decreased BRCA2 availability and function ("BRCA2-crisis"), which may contribute to disease. Here, we establish an in vitro model for BRCA2-crisis that demonstrates chromatin remodeling and activation of an NF-κB survival pathway in response to transient BRCA2 depletion. Mechanistically, we identify BRCA2 chromatin binding, histone acetylation, and associated transcriptional activity as critical determinants of the epigenetic response to BRCA2-crisis. These chromatin alterations are reflected in transcriptional profiles of pre-malignant tissues from BRCA2 carriers and, therefore, may reflect natural steps in human disease. By modeling BRCA2-crisis in vitro, we have derived insights into pre-neoplastic molecular alterations that may enhance the development of preventative therapies.
Collapse
Affiliation(s)
- Joshua J Gruber
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Oncology Division, Stanford University, Stanford, CA 94305, USA
| | - Justin Chen
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Benjamin Geller
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Natalie Jäger
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Andrew M Lipchik
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Guangwen Wang
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Allison W Kurian
- Department of Medicine, Oncology Division, Stanford University, Stanford, CA 94305, USA
| | - James M Ford
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Oncology Division, Stanford University, Stanford, CA 94305, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
19
|
Ehlén Å, Martin C, Miron S, Julien M, Theillet FX, Ropars V, Sessa G, Beaurepere R, Boucherit V, Duchambon P, El Marjou A, Zinn-Justin S, Carreira A. Proper chromosome alignment depends on BRCA2 phosphorylation by PLK1. Nat Commun 2020; 11:1819. [PMID: 32286328 PMCID: PMC7156385 DOI: 10.1038/s41467-020-15689-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/20/2020] [Indexed: 12/18/2022] Open
Abstract
The BRCA2 tumor suppressor protein is involved in the maintenance of genome integrity through its role in homologous recombination. In mitosis, BRCA2 is phosphorylated by Polo-like kinase 1 (PLK1). Here we describe how this phosphorylation contributes to the control of mitosis. We identify a conserved phosphorylation site at T207 of BRCA2 that constitutes a bona fide docking site for PLK1 and is phosphorylated in mitotic cells. We show that BRCA2 bound to PLK1 forms a complex with the phosphatase PP2A and phosphorylated-BUBR1. Reducing BRCA2 binding to PLK1, as observed in BRCA2 breast cancer variants S206C and T207A, alters the tetrameric complex resulting in unstable kinetochore-microtubule interactions, misaligned chromosomes, faulty chromosome segregation and aneuploidy. We thus reveal a role of BRCA2 in the alignment of chromosomes, distinct from its DNA repair function, with important consequences on chromosome stability. These findings may explain in part the aneuploidy observed in BRCA2-mutated tumors.
Collapse
Affiliation(s)
- Åsa Ehlén
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405, Orsay, France
- Paris Sud University, Paris-Saclay University CNRS, UMR3348, F-91405, Orsay, France
| | - Charlotte Martin
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405, Orsay, France
- Paris Sud University, Paris-Saclay University CNRS, UMR3348, F-91405, Orsay, France
| | - Simona Miron
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, Cedex, France
| | - Manon Julien
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, Cedex, France
- Department of Biology, École Normale Supérieure, 94230, Cachan, France
| | - François-Xavier Theillet
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, Cedex, France
| | - Virginie Ropars
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, Cedex, France
| | - Gaetana Sessa
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405, Orsay, France
- Paris Sud University, Paris-Saclay University CNRS, UMR3348, F-91405, Orsay, France
| | - Romane Beaurepere
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405, Orsay, France
- Paris Sud University, Paris-Saclay University CNRS, UMR3348, F-91405, Orsay, France
| | - Virginie Boucherit
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405, Orsay, France
- Paris Sud University, Paris-Saclay University CNRS, UMR3348, F-91405, Orsay, France
| | - Patricia Duchambon
- Protein Expression and Purification Core Facility, Institut Curie, 26 rue d'Ulm, 75248, Paris, Cedex 05, France
- INSERM U1196, 91405, Orsay, Cedex, France
| | - Ahmed El Marjou
- Protein Expression and Purification Core Facility, Institut Curie, 26 rue d'Ulm, 75248, Paris, Cedex 05, France
- CNRS UMR144, 12 rue Lhomond, 75005, Paris, France
| | - Sophie Zinn-Justin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, Cedex, France.
| | - Aura Carreira
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405, Orsay, France.
- Paris Sud University, Paris-Saclay University CNRS, UMR3348, F-91405, Orsay, France.
| |
Collapse
|
20
|
Julien M, Miron S, Carreira A, Theillet FX, Zinn-Justin S. 1H, 13C and 15N backbone resonance assignment of the human BRCA2 N-terminal region. BIOMOLECULAR NMR ASSIGNMENTS 2020; 14:79-85. [PMID: 31900740 DOI: 10.1007/s12104-019-09924-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
The Breast Cancer susceptibility protein 2 (BRCA2) is involved in mechanisms that maintain genome stability, including DNA repair, replication and cell division. These functions are ensured by the folded C-terminal DNA binding domain of BRCA2 but also by its large regions predicted to be disordered. Several studies have shown that disordered regions of BRCA2 are subjected to phosphorylation, thus regulating BRCA2 interactions through the cell cycle. The N-terminal region of BRCA2 contains two highly conserved clusters of phosphorylation sites between amino acids 75 and 210. Upon phosphorylation by CDK, the cluster 1 is known to become a docking site for the kinase PLK1. The cluster 2 is phosphorylated by PLK1 at least at two positions. Both of these phosphorylation clusters are important for mitosis progression, in particular for chromosome segregation and cytokinesis. In order to identify the phosphorylated residues and to characterize the phosphorylation sites preferences and their functional consequences within BRCA2 N-terminus, we have produced and analyzed the BRCA2 fragment from amino acid 48 to amino acid 284 (BRCA248-284). Here, we report the assignment of 1H, 15N, 13CO, 13Cα and 13Cβ NMR chemical shifts of this region. Analysis of these chemical shifts confirmed that BRCA248-284 shows no stable fold: it is intrinsically disordered, with only short, transient α-helices.
Collapse
Affiliation(s)
- Manon Julien
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
- Paris Sud University, Paris-Saclay University CNRS, UMR3348, 91405, Orsay, France
| | - Simona Miron
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Aura Carreira
- Paris Sud University, Paris-Saclay University CNRS, UMR3348, 91405, Orsay, France
- Institut Curie, PSL Research University, UMR3348, 91405, Orsay, France
- CNRS, UMR3348, 91405, Orsay, France
| | - François-Xavier Theillet
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Sophie Zinn-Justin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette Cedex, France.
| |
Collapse
|
21
|
Petsalaki E, Zachos G. DNA damage response proteins regulating mitotic cell division: double agents preserving genome stability. FEBS J 2020; 287:1700-1721. [PMID: 32027459 DOI: 10.1111/febs.15240] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/10/2020] [Accepted: 02/04/2020] [Indexed: 12/11/2022]
Abstract
The DNA damage response recognizes DNA lesions and coordinates a cell cycle arrest with the repair of the damaged DNA, or removal of the affected cells to prevent the passage of genetic alterations to the next generation. The mitotic cell division, on the other hand, is a series of processes that aims to accurately segregate the genomic material from the maternal to the two daughter cells. Despite their great importance in safeguarding genomic integrity, the DNA damage response and the mitotic cell division were long viewed as unrelated processes, mainly because animal cells that are irradiated during mitosis continue cell division without repairing the broken chromosomes. However, recent studies have demonstrated that DNA damage proteins play an important role in mitotic cell division. This is performed through regulation of the onset of mitosis, mitotic spindle formation, correction of misattached kinetochore-microtubules, spindle checkpoint signaling, or completion of cytokinesis (abscission), in the absence of DNA damage. In this review, we summarize the roles of DNA damage proteins in unperturbed mitosis, analyze the molecular mechanisms involved, and discuss the potential implications of these findings in cancer therapy.
Collapse
Affiliation(s)
- Eleni Petsalaki
- Department of Biology, University of Crete, Heraklion, Greece
| | - George Zachos
- Department of Biology, University of Crete, Heraklion, Greece
| |
Collapse
|
22
|
lncRNA miat functions as a ceRNA to upregulate sirt1 by sponging miR-22-3p in HCC cellular senescence. Aging (Albany NY) 2019; 11:7098-7122. [PMID: 31503007 PMCID: PMC6756895 DOI: 10.18632/aging.102240] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 08/22/2019] [Indexed: 12/19/2022]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer related deaths and lacks effective therapies. Cellular senescence acts as a barrier against cancer progression and plays an important role in tumor suppression. Senescence associated long noncoding RNAs (SAL-RNAs) are thought to be critical regulators of cancer development. Here, the long noncoding RNA (lncRNA) myocardial infarction-associated transcript (miat) was first identified as an HCC specific SALncRNA. Knockdown of miat significantly promoted cellular senescence and inhibited HCC progression. Mechanistic study revealed that SAL-miat acted as a competitive endogenous RNA (ceRNA) that upregulated the expression of sirt1 by sponging miR-22-3p. Moreover, miat downregulation activated the tumor suppressor pathway (p53/p21 and p16/pRb) and stimulated senescent cancer cells to secrete senescence-associated secretory phenotype (SASP), which contributed to inhibition of tumor cell proliferation, and resulted in the suppression of HCC tumorigenesis. Together, our study provided mechanistic insights into a critical role of miat as a miRNA sponge in HCC cellular senescence, which might offer a potential therapeutic strategy for HCC treatment.
Collapse
|
23
|
Macedo GS, Alemar B, Ashton-Prolla P. Reviewing the characteristics of BRCA and PALB2-related cancers in the precision medicine era. Genet Mol Biol 2019; 42:215-231. [PMID: 31067289 PMCID: PMC6687356 DOI: 10.1590/1678-4685-gmb-2018-0104] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 10/24/2018] [Indexed: 12/24/2022] Open
Abstract
Germline mutations in BRCA1 and BRCA2 (BRCA) genes confer high risk of developing cancer, especially breast and ovarian tumors. Since the cloning of these tumor suppressor genes over two decades ago, a significant amount of research has been done. Most recently, monoallelic loss-of-function mutations in PALB2 have also been shown to increase the risk of breast cancer. The identification of BRCA1, BRCA2 and PALB2 as proteins involved in DNA double-strand break repair by homologous recombination and of the impact of complete loss of BRCA1 or BRCA2 within tumors have allowed the development of novel therapeutic approaches for patients with germline or somatic mutations in said genes. Despite the advances, especially in the clinical use of PARP inhibitors, key gaps remain. Now, new roles for BRCA1 and BRCA2 are emerging and old concepts, such as the classical two-hit hypothesis for tumor suppression, have been questioned, at least for some BRCA functions. Here aspects regarding cancer predisposition, cellular functions, histological and genomic findings in BRCA and PALB2-related tumors will be presented, in addition to an up-to-date review of the evolution and challenges in the development and clinical use of PARP inhibitors.
Collapse
Affiliation(s)
- Gabriel S Macedo
- Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Precision Medicine Program, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Barbara Alemar
- Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Patricia Ashton-Prolla
- Post-Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.,Precision Medicine Program, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
24
|
Kwon M, Lee JJ, Min J, Hwang K, Park SG, Kim E, Kim BC, Bhak J, Lee H. Brca2 abrogation engages with the alternative lengthening of telomeres via break‐induced replication. FEBS J 2019; 286:1841-1858. [DOI: 10.1111/febs.14796] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 01/21/2019] [Accepted: 02/25/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Mi‐Sun Kwon
- Department of Biological Sciences Institute of Molecular Biology and Genetics (IMBG) Seoul National University South Korea
| | - Jennifer J. Lee
- Department of Biological Sciences Institute of Molecular Biology and Genetics (IMBG) Seoul National University South Korea
| | - Jaewon Min
- Department of Biological Sciences Institute of Molecular Biology and Genetics (IMBG) Seoul National University South Korea
| | - Kwangwoo Hwang
- Department of Biological Sciences Institute of Molecular Biology and Genetics (IMBG) Seoul National University South Korea
| | - Seung Gu Park
- Department of Biomedical Engineering UNIST Ulsan Korea
| | - Eun‐Hye Kim
- Department of Biomedical Engineering UNIST Ulsan Korea
| | | | - Jong Bhak
- Department of Biomedical Engineering UNIST Ulsan Korea
- Clinomics Inc. Ulsan Korea
| | - Hyunsook Lee
- Department of Biological Sciences Institute of Molecular Biology and Genetics (IMBG) Seoul National University South Korea
| |
Collapse
|
25
|
Genotypic and Phenotypic Variables Affect Meiotic Cell Cycle Progression, Tumor Ploidy, and Cancer-Associated Mortality in a brca2-Mutant Zebrafish Model. JOURNAL OF ONCOLOGY 2019; 2019:9218251. [PMID: 30930946 PMCID: PMC6413366 DOI: 10.1155/2019/9218251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/10/2019] [Accepted: 01/28/2019] [Indexed: 11/17/2022]
Abstract
Successful cell replication requires both cell cycle completion and accurate chromosomal segregation. The tumor suppressor BRCA2 is positioned to influence both of these outcomes, and thereby influence genomic integrity, during meiotic and mitotic cell cycles. Accordingly, mutations in BRCA2 induce chromosomal abnormalities and disrupt cell cycle progression in both germ cells and somatic cells. Despite these findings, aneuploidy is not more prevalent in BRCA2-associated versus non-BRCA2-associated human cancers. More puzzlingly, diploidy in BRCA2-associated cancers is a negative prognostic factor, unlike non-BRCA2-associated cancers and many other human cancers. We used a brca2-mutant/tp53-mutant cancer-prone zebrafish model to explore the impact of BRCA2 mutation on cell cycle progression, ploidy, and cancer-associated mortality by performing DNA content/cell cycle analysis on zebrafish germ cells, somatic cells, and cancer cells. First, we determined that combined brca2/tp53 mutations uniquely disrupt meiotic progression. Second, we determined that sex significantly influences ploidy outcome in zebrafish cancers. Third, we determined that brca2 mutation and female sex each significantly reduce survival time in cancer-bearing zebrafish. Finally, we provide evidence to support a link between BRCA2 mutation, tumor diploidy, and poor survival outcome. These outcomes underscore the utility of this model for studying BRCA2-associated genomic aberrations in normal and cancer cells.
Collapse
|
26
|
Murthy P, Muggia F. Women's cancers: how the discovery of BRCA genes is driving current concepts of cancer biology and therapeutics. Ecancermedicalscience 2019; 13:904. [PMID: 30915162 PMCID: PMC6411414 DOI: 10.3332/ecancer.2019.904] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Indexed: 12/15/2022] Open
Abstract
Over the last two decades, discoveries related to the breast cancer susceptibility genes 1 and 2 (BRCA1 and BRCA2) have profoundly changed our understanding and management of hereditary breast and ovarian cancers. The concept of synthetic lethality, which arises when cells become vulnerable to a combination of deficiencies in DNA repair, has driven the expanding roles of poly (adenosine diphosphate (ADP)-ribose) polymerase inhibitors in breast and ovarian cancers, and prevention strategies are taking into account the tissue specificity, natural history (fallopian tube origin of some high-grade serous ovarian cancers) and hormone sensitivity of BRCA-associated cancers. Current research has focussed on further elucidating the roles of BRCA proteins in DNA repair, investigating other key DNA repair processes and proteins and linking aberrant DNA repair with carcinogenesis. The ultimate goal is to translate this evolving knowledge into improving the clinical care and treatment of patients with pathogenic BRCA variants or other deficiencies in homologous recombination (HR). In this review, we will discuss 1) the role of BRCA proteins in DNA repair; 2) emerging concepts in the biology of HR deficiency and 3) implications for prevention and treatment.
Collapse
Affiliation(s)
- Pooja Murthy
- New York University School of Medicine, New York, NY 10016, USA
- Maimonides Cancer Center, Brooklyn, NY 11220, USA
| | - Franco Muggia
- New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
27
|
Choi E, Yu H. Spindle Checkpoint Regulators in Insulin Signaling. Front Cell Dev Biol 2018; 6:161. [PMID: 30555826 PMCID: PMC6281718 DOI: 10.3389/fcell.2018.00161] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 11/08/2018] [Indexed: 12/17/2022] Open
Abstract
The spindle checkpoint ensures accurate chromosome segregation during mitosis and guards against aneuploidy. Insulin signaling governs metabolic homeostasis and cell growth, and its dysregulation leads to metabolic disorders, such as diabetes. These critical pathways have been extensively investigated, but a link between the two has not been established until recently. Our recent study reveals a critical role of spindle checkpoint regulators in insulin signaling and metabolic homeostasis through regulating endocytosis of the insulin receptor (IR). These findings have linked spindle checkpoint proteins to metabolic regulation, expanding the connection between cell division and metabolism. Here, we briefly review the unexpected roles of spindle checkpoint regulators in vesicle trafficking and insulin signaling.
Collapse
Affiliation(s)
- Eunhee Choi
- Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Hongtao Yu
- Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
28
|
Brasacchio D, Busuttil RA, Noori T, Johnstone RW, Boussioutas A, Trapani JA. Down-regulation of a pro-apoptotic pathway regulated by PCAF/ADA3 in early stage gastric cancer. Cell Death Dis 2018; 9:442. [PMID: 29670108 PMCID: PMC5906598 DOI: 10.1038/s41419-018-0470-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 01/10/2018] [Accepted: 03/06/2018] [Indexed: 12/28/2022]
Abstract
The loss of p300/CBP-associated protein (PCAF) expression is associated with poor clinical outcome in gastric cancer, and a potential bio-marker for invasive and aggressive tumors. However, the mechanism linking loss of PCAF to the onset of gastric cancer has not been identified. Given that PCAF and its binding partner transcriptional adaptor protein 3 (ADA3) were recently shown to regulate the intrinsic (mitochondrial) pathway to apoptosis via epigenetic regulation of phosphofurin acidic cluster sorting proteins 1 and 2 (PACS1, PACS2), we analyzed PCAF, ADA3, and PACS1/2 expression in 99 patient-matched surgical samples ranging from normal gastric mucosa, through pre-malignant chronic gastritis and intestinal metaplasia to stage I–III invasive cancers. PCAF mRNA levels were not reduced in either pre-malignant state but were significantly down-regulated in all stages of gastric cancer, commencing at AJCC stage I (p < 0.05), thus linking reduced PCAF expression with early malignant change. Furthermore, patients with combined reduction of PCAF and PACS1 had significantly poorer overall survival (p = 0.0257), confirmed in an independent dataset of 359 patients (p = 5.8 × 10e-6). At the protein level, PCAF, ADA3, and PACS1 expression were all significantly down-regulated in intestinal-type gastric cancer, and correlated with reduced progression free survival. We conclude that a pro-apoptotic mechanism centered on the intrinsic (mitochondrial) pathway and regulated by PCAF/ADA3 can influence the progression from premalignant to malignant change, and thus act as a tumor suppression mechanism in gastric cancer.
Collapse
Affiliation(s)
- Daniella Brasacchio
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Rita A Busuttil
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Upper Gastrointestinal Translational Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Tahereh Noori
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Ricky W Johnstone
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Cancer Therapeutics Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Alex Boussioutas
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.,Upper Gastrointestinal Translational Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Joseph A Trapani
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia. .,Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
| |
Collapse
|
29
|
Feng W, Jasin M. Homologous Recombination and Replication Fork Protection: BRCA2 and More! COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2018; 82:329-338. [PMID: 29686033 DOI: 10.1101/sqb.2017.82.035006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BRCA2 is a breast and ovarian tumor suppressor that guards against genome instability, a hallmark of cancer. Significant progress has been made in improving our understanding of BRCA2 function from biochemical, cellular, and mouse studies. The knowledge gained has been actively exploited to develop therapeutic strategies, including PARP inhibition, which has shown promising clinical outcomes. Recently, tremendous excitement has been generated by the findings of the roles of BRCA2 and other proteins in suppressing replication stress through homologous recombination and in the protection of stalled replication forks. Processes such as mitotic DNA synthesis and fork reversal have taken center stage in these studies. Here, we discuss our recent findings in the context of these advances.
Collapse
Affiliation(s)
- Weiran Feng
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065.,Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065.,Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
30
|
Chen CC, Feng W, Lim PX, Kass EM, Jasin M. Homology-Directed Repair and the Role of BRCA1, BRCA2, and Related Proteins in Genome Integrity and Cancer. ANNUAL REVIEW OF CANCER BIOLOGY 2018; 2:313-336. [PMID: 30345412 PMCID: PMC6193498 DOI: 10.1146/annurev-cancerbio-030617-050502] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Germ-line and somatic mutations in genes that promote homology-directed repair (HDR), especially BRCA1 and BRCA2, are frequently observed in several cancers, in particular, breast and ovary but also prostate and other cancers. HDR is critical for the error-free repair of DNA double-strand breaks and other lesions, and HDR factors also protect stalled replication forks. As a result, loss of BRCA1 or BRCA2 poses significant risks to genome integrity, leading not only to cancer predisposition but also to sensitivity to DNA-damaging agents, affecting therapeutic approaches. Here we review recent advances in our understanding of BRCA1 and BRCA2, including how they genetically interact with other repair factors, how they protect stalled replication forks, how they affect the response to aldehydes, and how loss of their functions links to mutation signatures. Importantly, given the recent advances with poly(ADP-ribose) polymerase inhibitors (PARPi) for the treatment of HDR-deficient tumors, we discuss mechanisms by which BRCA-deficient tumors acquire resistance to PARPi and other agents.
Collapse
Affiliation(s)
- Chun-Chin Chen
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065
| | - Weiran Feng
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Pei Xin Lim
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Elizabeth M Kass
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| |
Collapse
|
31
|
Abstract
Fanconi anaemia (FA) is a genetic disorder that is characterized by bone marrow failure (BMF), developmental abnormalities and predisposition to cancer. Together with other proteins involved in DNA repair processes and cell division, the FA proteins maintain genome homeostasis, and germline mutation of any one of the genes that encode FA proteins causes FA. Monoallelic inactivation of some FA genes, such as FA complementation group D1 (FANCD1; also known as the breast and ovarian cancer susceptibility gene BRCA2), leads to adult-onset cancer predisposition but does not cause FA, and somatic mutations in FA genes occur in cancers in the general population. Carcinogenesis resulting from a dysregulated FA pathway is multifaceted, as FA proteins monitor multiple complementary genome-surveillance checkpoints throughout interphase, where monoubiquitylation of the FANCD2-FANCI heterodimer by the FA core complex promotes recruitment of DNA repair effectors to chromatin lesions to resolve DNA damage and mitosis. In this Review, we discuss how the FA pathway safeguards genome integrity throughout the cell cycle and show how studies of FA have revealed opportunities to develop rational therapeutics for this genetic disease and for malignancies that acquire somatic mutations within the FA pathway.
Collapse
Affiliation(s)
- Grzegorz Nalepa
- Department of Pediatrics, Section of Pediatric Hematology-Oncology, Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 W Walnut Street, R4-421, Indianapolis, Indiana 46202, USA
- Riley Hospital for Children at Indiana University Health, 705 Riley Hospital Drive, Room 5900, Indianapolis, Indiana 46202, USA
- Department of Biochemistry, Indiana University School of Medicine
- Department of Medical and Molecular Genetics, Indiana University School of Medicine
| | - D Wade Clapp
- Riley Hospital for Children at Indiana University Health, 705 Riley Hospital Drive, Room 5900, Indianapolis, Indiana 46202, USA
- Department of Biochemistry, Indiana University School of Medicine
- Department of Microbiology and Immunology, Indiana University School of Medicine
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA
| |
Collapse
|
32
|
Rytelewski M, Maleki Vareki S, Mangala LS, Romanow L, Jiang D, Pradeep S, Rodriguez-Aguayo C, Lopez-Berestein G, Figueredo R, Ferguson PJ, Vincent M, Sood AK, Koropatnick JD. Reciprocal positive selection for weakness - preventing olaparib resistance by inhibiting BRCA2. Oncotarget 2018; 7:20825-39. [PMID: 26959114 PMCID: PMC4991495 DOI: 10.18632/oncotarget.7883] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 02/17/2016] [Indexed: 12/20/2022] Open
Abstract
Human tumor heterogeneity promotes therapeutic failure by increasing the likelihood of resistant cell subpopulations. The PARP-1 inhibitor olaparib is approved for use in BRCA-mutated ovarian cancers but BRCA2-reversion mutations lead to functional homologous recombination repair (HRR) and olaparib resistance. To overcome that resistance and expand use of PARP1 inhibition to cancers with functional HRR, we developed an antisense strategy to render the majority of tumor cells in a population BRCA2-deficient. We predicted that this strategy would render HRR-proficient tumor cells sensitive to olaparib and prevent emergence of resistance in a tumor cell population heterogeneous for HRR proficiency. We report that BRCA2 downregulation sensitized multiple human tumor cell lines (but not non-cancer human kidney cells) to olaparib and, combined with olaparib, increased aneuploidy and chromosomal translocations in human tumor cells. In a mixed HRR-proficient and HRR-deficient cell population, olaparib monotherapy allowed outgrowth of HRR-proficient cells resistant to subsequent olaparib treatment. Combined BRCA2 inhibition and olaparib treatment prevented selection of HRR-proficient cells and inhibited proliferation of the entire population. Treatment with BRCA2 siRNA and olaparib decreased ovarian xenograft growth in mice more effectively than either treatment alone. In vivo use of BRCA2 antisense oligonucleotides may be a viable option to expand clinical use of olaparib and prevent resistance.
Collapse
Affiliation(s)
- Mateusz Rytelewski
- Department of Microbiology and Immunology, Western University, London, ON, Canada.,Lawson Health Research Institute, London, ON, Canada
| | | | - Lingegowda S Mangala
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center for RNA Interference and Non-coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Larissa Romanow
- Department of Microbiology and Immunology, Western University, London, ON, Canada
| | - Dahai Jiang
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sunila Pradeep
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christian Rodriguez-Aguayo
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center for RNA Interference and Non-coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rene Figueredo
- Department of Oncology, Western University, London, ON, Canada
| | | | - Mark Vincent
- Department of Oncology, Western University, London, ON, Canada.,Lawson Health Research Institute, London, ON, Canada
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Center for RNA Interference and Non-coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James D Koropatnick
- Department of Microbiology and Immunology, Western University, London, ON, Canada.,Department of Oncology, Western University, London, ON, Canada.,Lawson Health Research Institute, London, ON, Canada
| |
Collapse
|
33
|
Han J, Ruan C, Huen MSY, Wang J, Xie A, Fu C, Liu T, Huang J. BRCA2 antagonizes classical and alternative nonhomologous end-joining to prevent gross genomic instability. Nat Commun 2017; 8:1470. [PMID: 29133916 PMCID: PMC5684403 DOI: 10.1038/s41467-017-01759-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/13/2017] [Indexed: 12/27/2022] Open
Abstract
BRCA2-deficient cells exhibit gross genomic instability, but the underlying mechanisms are not fully understood. Here we report that inactivation of BRCA2 but not RAD51 destabilizes RPA-coated single-stranded DNA (ssDNA) structures at resected DNA double-strand breaks (DSBs) and greatly enhances the frequency of nuclear fragmentation following cell exposure to DNA damage. Importantly, these BRCA2-associated deficits are fueled by the aberrant activation of classical (c)- and alternative (alt)- nonhomologous end-joining (NHEJ), and rely on the well-defined DNA damage signaling pathway involving the pro-c-NHEJ factor 53BP1 and its downstream effector RIF1. We further show that the 53BP1–RIF1 axis promotes toxic end-joining events via the retention of Artemis at DNA damage sites. Accordingly, loss of 53BP1, RIF1, or Artemis prolongs the stability of RPA-coated DSB intermediates in BRCA2-deficient cells and restores nuclear integrity. We propose that BRCA2 antagonizes 53BP1, RIF1, and Artemis-dependent c-NHEJ and alt-NHEJ to prevent gross genomic instability in a RAD51-independent manner. The genomic instability phenotype characteristic of BRCA2-deficient cells is not fully mechanistically understood. Here the authors show BRCA2 inactivation destabilizes RPA-coated single-stranded DNA and leads to toxic non homologous end-joining events.
Collapse
Affiliation(s)
- Jinhua Han
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Chunyan Ruan
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Michael S Y Huen
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Jiadong Wang
- Institute of Systems Biomedicine, Department of Radiation Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Anyong Xie
- Institute of Translational Medicine, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Chun Fu
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Ting Liu
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Jun Huang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
34
|
Park I, Kwon MS, Paik S, Kim H, Lee HO, Choi E, Lee H. HDAC2/3 binding and deacetylation of BubR1 initiates spindle assembly checkpoint silencing. FEBS J 2017; 284:4035-4050. [DOI: 10.1111/febs.14286] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 08/11/2017] [Accepted: 10/02/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Inai Park
- Department of Biological Sciences and Institute of Molecular Biology and Genetics; Seoul National University; South Korea
| | - Mi-Sun Kwon
- Department of Biological Sciences and Institute of Molecular Biology and Genetics; Seoul National University; South Korea
| | - Sangjin Paik
- Department of Biological Sciences and Institute of Molecular Biology and Genetics; Seoul National University; South Korea
| | - Hyeonjong Kim
- Department of Biological Sciences and Institute of Molecular Biology and Genetics; Seoul National University; South Korea
| | - Hae-Ock Lee
- Department of Biological Sciences and Institute of Molecular Biology and Genetics; Seoul National University; South Korea
| | - Eunhee Choi
- Department of Biological Sciences and Institute of Molecular Biology and Genetics; Seoul National University; South Korea
| | - Hyunsook Lee
- Department of Biological Sciences and Institute of Molecular Biology and Genetics; Seoul National University; South Korea
| |
Collapse
|
35
|
Alternative Lengthening of Telomeres Mediated by Mitotic DNA Synthesis Engages Break-Induced Replication Processes. Mol Cell Biol 2017; 37:MCB.00226-17. [PMID: 28760773 DOI: 10.1128/mcb.00226-17] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 07/20/2017] [Indexed: 01/05/2023] Open
Abstract
Alternative lengthening of telomeres (ALT) is a telomerase-independent telomere maintenance mechanism that occurs in a subset of cancers. By analyzing telomerase-positive cells and their human TERC knockout-derived ALT human cell lines, we show that ALT cells harbor more fragile telomeres representing telomere replication problems. ALT-associated replication defects trigger mitotic DNA synthesis (MiDAS) at telomeres in a RAD52-dependent, but RAD51-independent, manner. Telomeric MiDAS is a conservative DNA synthesis process, potentially mediated by break-induced replication, similar to type II ALT survivors in Saccharomyces cerevisiae Replication stresses induced by ectopic oncogenic expression of cyclin E, G-quadruplexes, or R-loop formation facilitate the ALT pathway and lead to telomere clustering, a hallmark of ALT cancers. The TIMELESS/TIPIN complex suppresses telomere clustering and telomeric MiDAS, whereas the SMC5/6 complex promotes them. In summary, ALT cells exhibit more telomere replication defects that result in persistent DNA damage responses at telomeres, leading to the engagement of telomeric MiDAS (spontaneous mitotic telomere synthesis) that is triggered by DNA replication stress, a potential driver of genomic duplications in cancer.
Collapse
|
36
|
BRCA2 suppresses replication stress-induced mitotic and G1 abnormalities through homologous recombination. Nat Commun 2017; 8:525. [PMID: 28904335 PMCID: PMC5597640 DOI: 10.1038/s41467-017-00634-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 07/12/2017] [Indexed: 02/07/2023] Open
Abstract
Mutations in the tumor suppressor BRCA2 predominantly predispose to breast cancer. Paradoxically, while loss of BRCA2 promotes tumor formation, it also causes cell lethality, although how lethality is triggered is unclear. Here, we generate BRCA2 conditional non-transformed human mammary epithelial cell lines using CRISPR-Cas9. Cells are inviable upon BRCA2 loss, which leads to replication stress associated with under replication, causing mitotic abnormalities, 53BP1 nuclear body formation in the ensuing G1 phase, and G1 arrest. Unexpected from other systems, the role of BRCA2 in homologous recombination, but not in stalled replication fork protection, is primarily associated with supporting human mammary epithelial cell viability, and, moreover, preventing replication stress, a hallmark of pre-cancerous lesions. Thus, we uncover a DNA under replication-53BP1 nuclear body formation-G1 arrest axis as an unanticipated outcome of homologous recombination deficiency, which triggers cell lethality and, we propose, serves as a barrier that must be overcome for tumor formation. BRCA2 mutations promote tumour formation while also paradoxically causing cell lethality. Here the authors generate conditional BRCA2 loss in a non-transformed human mammary cell line and see increased replication stress due to under-replication of DNA.
Collapse
|
37
|
Do TV, Hirst J, Hyter S, Roby KF, Godwin AK. Aurora A kinase regulates non-homologous end-joining and poly(ADP-ribose) polymerase function in ovarian carcinoma cells. Oncotarget 2017; 8:50376-50392. [PMID: 28881569 PMCID: PMC5584138 DOI: 10.18632/oncotarget.18970] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/16/2017] [Indexed: 01/08/2023] Open
Abstract
Ovarian cancer is usually diagnosed at late stages when cancer has spread beyond the ovary and patients ultimately succumb to the development of drug-resistant disease. There is an urgent and unmet need to develop therapeutic strategies that effectively treat ovarian cancer and this requires a better understanding of signaling pathways important for ovarian cancer progression. Aurora A kinase (AURKA) plays an important role in ovarian cancer progression by mediating mitosis and chromosomal instability. In the current study, we investigated the role of AURKA in regulating the DNA damage response and DNA repair in ovarian carcinoma cells. We discovered that AURKA modulated the expression and activity of PARP, a crucial mediator of DNA repair that is a target of therapeutic interest for the treatment of ovarian and other cancers. Further, specific inhibition of AURKA activity with the small molecule inhibitor, alisertib, stimulated the non-homologous end-joining (NHEJ) repair pathway by elevating DNA-PKcs activity, a catalytic subunit required for double-strand break (DSB) repair, as well as decreased the expression of PARP and BRCA1/2, which are required for high-fidelity homologous recombination-based DNA repair. Further, AURKA inhibition stimulates error-prone NHEJ repair of DNA double-strand breaks with incompatible ends. Consistent with in vitro findings, alisertib treatment increased phosphorylated DNA-PKcs(pDNA-PKcsT2609) and decreased PARP levels in vivo. Collectively, these results reveal new non-mitotic functions for AURKA in the regulation of DNA repair, which may inform of new therapeutic targets and strategies for treating ovarian cancer.
Collapse
Affiliation(s)
- Thuy-Vy Do
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jeff Hirst
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Stephen Hyter
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Katherine F. Roby
- Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
- University of Kansas Cancer Center, Kansas City, KS, USA
| | - Andrew K. Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
- University of Kansas Cancer Center, Kansas City, KS, USA
| |
Collapse
|
38
|
Ubiquitin-specific protease 21 stabilizes BRCA2 to control DNA repair and tumor growth. Nat Commun 2017; 8:137. [PMID: 28743957 PMCID: PMC5526993 DOI: 10.1038/s41467-017-00206-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 06/13/2017] [Indexed: 01/23/2023] Open
Abstract
Tumor growth relies on efficient DNA repair to mitigate the detrimental impact of DNA damage associated with excessive cell division. Modulating repair factor function, thus, provides a promising strategy to manipulate malignant growth. Here, we identify the ubiquitin-specific protease USP21 as a positive regulator of BRCA2, a key mediator of DNA repair by homologous recombination. USP21 interacts with, deubiquitinates and stabilizes BRCA2 to promote efficient RAD51 loading at DNA double-strand breaks. As a result, depletion of USP21 decreases homologous recombination efficiency, causes an increase in DNA damage load and impairs tumor cell survival. Importantly, BRCA2 overexpression partially restores the USP21-associated survival defect. Moreover, we show that USP21 is overexpressed in hepatocellular carcinoma, where it promotes BRCA2 stability and inversely correlates with patient survival. Together, our findings identify deubiquitination as a means to regulate BRCA2 function and point to USP21 as a potential therapeutic target in BRCA2-proficient tumors.BRCA2 is essential for the repair of DNA damage; therefore, defects in BRCA2 are associated with tumorigenesis but also with increased susceptibility to genotoxic stress. Here the authors show that USP21 regulates the ability of tumor cells to repair damaged DNA by regulating BRCA2 stability.
Collapse
|
39
|
Lai X, Broderick R, Bergoglio V, Zimmer J, Badie S, Niedzwiedz W, Hoffmann JS, Tarsounas M. MUS81 nuclease activity is essential for replication stress tolerance and chromosome segregation in BRCA2-deficient cells. Nat Commun 2017; 8:15983. [PMID: 28714477 PMCID: PMC5520020 DOI: 10.1038/ncomms15983] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 05/17/2017] [Indexed: 11/28/2022] Open
Abstract
Failure to restart replication forks stalled at genomic regions that are difficult to replicate or contain endogenous DNA lesions is a hallmark of BRCA2 deficiency. The nucleolytic activity of MUS81 endonuclease is required for replication fork restart under replication stress elicited by exogenous treatments. Here we investigate whether MUS81 could similarly facilitate DNA replication in the context of BRCA2 abrogation. Our results demonstrate that replication fork progression in BRCA2-deficient cells requires MUS81. Failure to complete genome replication and defective checkpoint surveillance enables BRCA2-deficient cells to progress through mitosis with under-replicated DNA, which elicits severe chromosome interlinking in anaphase. MUS81 nucleolytic activity is required to activate compensatory DNA synthesis during mitosis and to resolve mitotic interlinks, thus facilitating chromosome segregation. We propose that MUS81 provides a mechanism of replication stress tolerance, which sustains survival of BRCA2-deficient cells and can be exploited therapeutically through development of specific inhibitors of MUS81 nuclease activity.
Collapse
Affiliation(s)
- Xianning Lai
- Genome Stability and Tumourigenesis Group, Department of Oncology, The CR-UK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Ronan Broderick
- Division of Cancer Biology, Institute of Cancer Research, 123 Old Brompton Road, London SW7 3RP, UK
| | - Valérie Bergoglio
- Cancer Research Center of Toulouse, Université de Toulouse, Inserm, CNRS, UPS, Equipe labellisée Ligue Contre le Cancer, Laboratoire d’excellence Toulouse Cancer, 2 Avenue Hubert Curien, Toulouse 31037, France
| | - Jutta Zimmer
- Genome Stability and Tumourigenesis Group, Department of Oncology, The CR-UK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Sophie Badie
- Genome Stability and Tumourigenesis Group, Department of Oncology, The CR-UK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Wojciech Niedzwiedz
- Division of Cancer Biology, Institute of Cancer Research, 123 Old Brompton Road, London SW7 3RP, UK
| | - Jean-Sébastien Hoffmann
- Cancer Research Center of Toulouse, Université de Toulouse, Inserm, CNRS, UPS, Equipe labellisée Ligue Contre le Cancer, Laboratoire d’excellence Toulouse Cancer, 2 Avenue Hubert Curien, Toulouse 31037, France
| | - Madalena Tarsounas
- Genome Stability and Tumourigenesis Group, Department of Oncology, The CR-UK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| |
Collapse
|
40
|
Nieborowska-Skorska M, Sullivan K, Dasgupta Y, Podszywalow-Bartnicka P, Hoser G, Maifrede S, Martinez E, Di Marcantonio D, Bolton-Gillespie E, Cramer-Morales K, Lee J, Li M, Slupianek A, Gritsyuk D, Cerny-Reiterer S, Seferynska I, Stoklosa T, Bullinger L, Zhao H, Gorbunova V, Piwocka K, Valent P, Civin CI, Muschen M, Dick JE, Wang JC, Bhatia S, Bhatia R, Eppert K, Minden MD, Sykes SM, Skorski T. Gene expression and mutation-guided synthetic lethality eradicates proliferating and quiescent leukemia cells. J Clin Invest 2017; 127:2392-2406. [PMID: 28481221 DOI: 10.1172/jci90825] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 03/07/2017] [Indexed: 02/02/2023] Open
Abstract
Quiescent and proliferating leukemia cells accumulate highly lethal DNA double-strand breaks that are repaired by 2 major mechanisms: BRCA-dependent homologous recombination and DNA-dependent protein kinase-mediated (DNA-PK-mediated) nonhomologous end-joining, whereas DNA repair pathways mediated by poly(ADP)ribose polymerase 1 (PARP1) serve as backups. Here we have designed a personalized medicine approach called gene expression and mutation analysis (GEMA) to identify BRCA- and DNA-PK-deficient leukemias either directly, using reverse transcription-quantitative PCR, microarrays, and flow cytometry, or indirectly, by the presence of oncogenes such as BCR-ABL1. DNA-PK-deficient quiescent leukemia cells and BRCA/DNA-PK-deficient proliferating leukemia cells were sensitive to PARP1 inhibitors that were administered alone or in combination with current antileukemic drugs. In conclusion, GEMA-guided targeting of PARP1 resulted in dual cellular synthetic lethality in quiescent and proliferating immature leukemia cells, and is thus a potential approach to eradicate leukemia stem and progenitor cells that are responsible for initiation and manifestation of the disease. Further, an analysis of The Cancer Genome Atlas database indicated that this personalized medicine approach could also be applied to treat numerous solid tumors from individual patients.
Collapse
Affiliation(s)
- Margaret Nieborowska-Skorska
- Temple University Lewis Katz School of Medicine, Department of Microbiology and Immunology and Fels Institute for Cancer Research & Molecular Biology, Philadelphia, Pennsylvania, USA
| | - Katherine Sullivan
- Temple University Lewis Katz School of Medicine, Department of Microbiology and Immunology and Fels Institute for Cancer Research & Molecular Biology, Philadelphia, Pennsylvania, USA
| | - Yashodhara Dasgupta
- Temple University Lewis Katz School of Medicine, Department of Microbiology and Immunology and Fels Institute for Cancer Research & Molecular Biology, Philadelphia, Pennsylvania, USA
| | | | - Grazyna Hoser
- The Center of Postgraduate Medical Education, Laboratory of Flow Cytometry, Warsaw, Poland
| | - Silvia Maifrede
- Temple University Lewis Katz School of Medicine, Department of Microbiology and Immunology and Fels Institute for Cancer Research & Molecular Biology, Philadelphia, Pennsylvania, USA
| | - Esteban Martinez
- Research Institute of Fox Chase Cancer Center, Immune Cell Development and Host Defense, Philadelphia, Pennsylvania, USA
| | - Daniela Di Marcantonio
- Research Institute of Fox Chase Cancer Center, Immune Cell Development and Host Defense, Philadelphia, Pennsylvania, USA
| | - Elisabeth Bolton-Gillespie
- Temple University Lewis Katz School of Medicine, Department of Microbiology and Immunology and Fels Institute for Cancer Research & Molecular Biology, Philadelphia, Pennsylvania, USA
| | - Kimberly Cramer-Morales
- Temple University Lewis Katz School of Medicine, Department of Microbiology and Immunology and Fels Institute for Cancer Research & Molecular Biology, Philadelphia, Pennsylvania, USA
| | - Jaewong Lee
- Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| | - Min Li
- Department of Cancer Biology, Beckman Research Institute, City of Hope, Duarte, California, USA
| | - Artur Slupianek
- Temple University Lewis Katz School of Medicine, Department of Microbiology and Immunology and Fels Institute for Cancer Research & Molecular Biology, Philadelphia, Pennsylvania, USA
| | - Daniel Gritsyuk
- Temple University Lewis Katz School of Medicine, Department of Microbiology and Immunology and Fels Institute for Cancer Research & Molecular Biology, Philadelphia, Pennsylvania, USA
| | - Sabine Cerny-Reiterer
- Medical University of Vienna and Ludwig Boltzmann-Cluster Oncology, and Department of Internal Medicine I, Division of Hematology and Hemostaseology, Vienna, Austria
| | - Ilona Seferynska
- Department of Hematology, Institute of Hematology and Blood Transfusion, Warsaw, Poland
| | - Tomasz Stoklosa
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Lars Bullinger
- Department of Internal Medicine III, University of Ulm, Ulm, Germany
| | - Huaqing Zhao
- Temple University Lewis Katz School of Medicine, Department of Clinical Sciences, Philadelphia, Pennsylvania, USA
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, New York, USA
| | | | - Peter Valent
- Medical University of Vienna and Ludwig Boltzmann-Cluster Oncology, and Department of Internal Medicine I, Division of Hematology and Hemostaseology, Vienna, Austria
| | - Curt I Civin
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Markus Muschen
- Department of Laboratory Medicine, UCSF, San Francisco, California, USA
| | - John E Dick
- Princess Margaret Cancer Centre, University Health Network (UHN), Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jean Cy Wang
- Princess Margaret Cancer Centre, UHN, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Division of Medical Oncology and Hematology, UHN, Toronto, Ontario, Canada
| | | | - Ravi Bhatia
- Division of Hematology-Oncology, Department of Medicine, University of Alabama Birmingham, Birmingham, Alabama, USA
| | - Kolja Eppert
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Mark D Minden
- Princess Margaret Cancer Center, Ontario Cancer Institute, Toronto, Ontario, Canada
| | - Stephen M Sykes
- Research Institute of Fox Chase Cancer Center, Immune Cell Development and Host Defense, Philadelphia, Pennsylvania, USA
| | - Tomasz Skorski
- Temple University Lewis Katz School of Medicine, Department of Microbiology and Immunology and Fels Institute for Cancer Research & Molecular Biology, Philadelphia, Pennsylvania, USA
| |
Collapse
|
41
|
de Wolf B, Kops GJPL. Kinetochore Malfunction in Human Pathologies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1002:69-91. [DOI: 10.1007/978-3-319-57127-0_4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
42
|
Fradet-Turcotte A, Sitz J, Grapton D, Orthwein A. BRCA2 functions: from DNA repair to replication fork stabilization. Endocr Relat Cancer 2016; 23:T1-T17. [PMID: 27530658 DOI: 10.1530/erc-16-0297] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 08/16/2016] [Indexed: 12/12/2022]
Abstract
Maintaining genomic integrity is essential to preserve normal cellular physiology and to prevent the emergence of several human pathologies including cancer. The breast cancer susceptibility gene 2 (BRCA2, also known as the Fanconi anemia (FA) complementation group D1 (FANCD1)) is a potent tumor suppressor that has been extensively studied in DNA double-stranded break (DSB) repair by homologous recombination (HR). However, BRCA2 participates in numerous other processes central to maintaining genome stability, including DNA replication, telomere homeostasis and cell cycle progression. Consequently, inherited mutations in BRCA2 are associated with an increased risk of breast, ovarian and pancreatic cancers. Furthermore, bi-allelic mutations in BRCA2 are linked to FA, a rare chromosome instability syndrome characterized by aplastic anemia in children as well as susceptibility to leukemia and cancer. Here, we discuss the recent developments underlying the functions of BRCA2 in the maintenance of genomic integrity. The current model places BRCA2 as a central regulator of genome stability by repairing DSBs and limiting replication stress. These findings have direct implications for the development of novel anticancer therapeutic approaches.
Collapse
Affiliation(s)
- Amélie Fradet-Turcotte
- Laval University Cancer Research CenterCHU de Québec Research Center - Université Laval, Hôtel-Dieu de Québec, Oncology Axis, Quebec City, Canada
| | - Justine Sitz
- Laval University Cancer Research CenterCHU de Québec Research Center - Université Laval, Hôtel-Dieu de Québec, Oncology Axis, Quebec City, Canada
| | - Damien Grapton
- Lady Davis Institute for Medical ResearchSegal Cancer Centre, Jewish General Hospital, Montreal, Canada
| | - Alexandre Orthwein
- Lady Davis Institute for Medical ResearchSegal Cancer Centre, Jewish General Hospital, Montreal, Canada Department of OncologyMcGill University, Montreal, Canada
| |
Collapse
|
43
|
Xue Y, Toh SY, He P, Lim T, Lim D, Pang CL, Abastado JP, Thierry F. HPV16-E2 induces prophase arrest and activates the cellular DNA damage response in vitro and in precursor lesions of cervical carcinoma. Oncotarget 2016; 6:34979-91. [PMID: 26474276 PMCID: PMC4741503 DOI: 10.18632/oncotarget.5512] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 10/01/2015] [Indexed: 11/25/2022] Open
Abstract
Cervical intraepithelial neoplasia (CIN) is caused by human papillomavirus (HPV) infection and is the precursor to cervical carcinoma. The completion of the HPV productive life cycle depends on the expression of viral proteins which further determines the severity of the cervical neoplasia. Initiation of the viral productive replication requires expression of the E2 viral protein that cooperates with the E1 viral DNA helicase. A decrease in the viral DNA replication ability and increase in the severity of cervical neoplasia is accompanied by simultaneous elevated expression of E6 and E7 oncoproteins. Here we reveal a novel and important role for the HPV16-E2 protein in controlling host cell cycle during malignant transformation. We showed that cells expressing HPV16-E2 in vitro are arrested in prophase alongside activation of a sustained DDR signal. We uncovered evidence that HPV16-E2 protein is present in vivo in cells that express both mitotic and DDR signals specifically in CIN3 lesions, immediate precursors of cancer, suggesting that E2 may be one of the drivers of genomic instability and carcinogenesis in vivo.
Collapse
Affiliation(s)
- Yuezhen Xue
- Institute of Medical Biology, A*STAR, Singapore.,Current address: p53 Laboratory, A*STAR, Singapore
| | | | - Pingping He
- Institute of Medical Biology, A*STAR, Singapore
| | - Thimothy Lim
- Department of Gynaecological Oncology, KK Women's and Children's Hospital, Singapore
| | - Diana Lim
- Department of Pathology, National University Hospital, Singapore
| | | | | | | |
Collapse
|
44
|
Rao CV, Asch AS, Yamada HY. Emerging links among Chromosome Instability (CIN), cancer, and aging. Mol Carcinog 2016; 56:791-803. [PMID: 27533343 DOI: 10.1002/mc.22539] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 07/14/2016] [Accepted: 08/15/2016] [Indexed: 12/15/2022]
Abstract
Aneuploidy was predicted to cause cancer. To test the prediction, various Chromosome Instability (CIN) mice models that carry transgenic mutations in mitotic regulators have been created. The availability of these mice has aided researchers in discovering connections between CIN, cancer, and aging. This review will focus on recent interdisciplinary findings regarding how CIN and aneuploidy affect carcinogenesis, immune dysfunction, and aging. High CIN can be generated in vivo by various intrinsic alterations (e.g., gene mutation, epigenetic modification) and extrinsic/environmental challenges (e.g., biological, chemical, biophysical), while immune surveillance, cell death, and natural turnover can remove cells with CIN. CIN itself is mutagenic and may cause further cellular mutations, which can be carcinogenic. Mitotically damaged cells can activate senescence-related tumor suppressors (e.g., p21WAF1 , p27KIP1 , p16INK4A ), which may lead to tissue-level senescence/aging through inflammatory paracrine mechanisms called Senescence-Associated Secretory Phenotype (SASP) and Senescence Inflammatory Response (SIR). Organs with high CIN show altered gene expressions in both organ-specific and non-specific manners. Organ-specific gene expression signatures include activation of oncogenic pathways. Non-organ-specific gene expression signatures include metabolic changes and downregulations in immune functions. Immune surveillance normally targets senescent cells and tetraploid cells, a form of aneuploidy, for elimination. However, with partial immune dysfunction, immune surveillance is weakened with systemic CIN. In this case, more senescent cells and aneuploid cells survive, which further leads to an inflammatory, pro-tumorigenic, and senescent/aging microenvironment. We also discuss how we may intervene in this sequence of events to prevent CIN- or age-related carcinogenesis and/or some aspects of tissue aging. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chinthalapally V Rao
- Department of Medicine, Center for Cancer Prevention and Drug Development, Hematology/Oncology Section, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma.,Stephenson Cancer Center, Hematology/Oncology, University of Oklahoma, Oklahoma City, Oklahoma
| | - Adam S Asch
- Stephenson Cancer Center, Hematology/Oncology, University of Oklahoma, Oklahoma City, Oklahoma
| | - Hiroshi Y Yamada
- Department of Medicine, Center for Cancer Prevention and Drug Development, Hematology/Oncology Section, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, Oklahoma.,Stephenson Cancer Center, Hematology/Oncology, University of Oklahoma, Oklahoma City, Oklahoma
| |
Collapse
|
45
|
Martinez JS, Baldeyron C, Carreira A. Molding BRCA2 function through its interacting partners. Cell Cycle 2016; 14:3389-95. [PMID: 26566862 DOI: 10.1080/15384101.2015.1093702] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The role of the tumor suppressor BRCA2 has been shaped over 2 decades thanks to the discovery of its protein and nucleic acid partners, biochemical and structural studies of the protein, and the functional evaluation of germline variants identified in breast cancer patients. Yet, the pathogenic and functional effect of many germline mutations in BRCA2 remains undetermined, and the heterogeneity of BRCA2-associated tumors challenges the identification of causative variants that drive tumorigenesis. In this review, we propose an overview of the established and emerging interacting partners and functional pathways attributed to BRCA2, and we speculate on how variants altering these functions may contribute to cancer susceptibility.
Collapse
Affiliation(s)
- Juan S Martinez
- a Institut Curie; Centre de Recherche ; Orsay , France.,b CNRS UMR3348; Genotoxic Stress and Cancer; Centre Universitaire ; Orsay , France
| | - Céline Baldeyron
- a Institut Curie; Centre de Recherche ; Orsay , France.,b CNRS UMR3348; Genotoxic Stress and Cancer; Centre Universitaire ; Orsay , France
| | - Aura Carreira
- a Institut Curie; Centre de Recherche ; Orsay , France.,b CNRS UMR3348; Genotoxic Stress and Cancer; Centre Universitaire ; Orsay , France
| |
Collapse
|
46
|
Abdul-Sater Z, Cerabona D, Potchanant ES, Sun Z, Enzor R, He Y, Robertson K, Goebel WS, Nalepa G. FANCA safeguards interphase and mitosis during hematopoiesis in vivo. Exp Hematol 2015; 43:1031-1046.e12. [PMID: 26366677 PMCID: PMC4666759 DOI: 10.1016/j.exphem.2015.08.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 08/19/2015] [Indexed: 12/20/2022]
Abstract
The Fanconi anemia (FA/BRCA) signaling network controls multiple genome-housekeeping checkpoints, from interphase DNA repair to mitosis. The in vivo role of abnormal cell division in FA remains unknown. Here, we quantified the origins of genomic instability in FA patients and mice in vivo and ex vivo. We found that both mitotic errors and interphase DNA damage significantly contribute to genomic instability during FA-deficient hematopoiesis and in nonhematopoietic human and murine FA primary cells. Super-resolution microscopy coupled with functional assays revealed that FANCA shuttles to the pericentriolar material to regulate spindle assembly at mitotic entry. Loss of FA signaling rendered cells hypersensitive to spindle chemotherapeutics and allowed escape from the chemotherapy-induced spindle assembly checkpoint. In support of these findings, direct comparison of DNA crosslinking and anti-mitotic chemotherapeutics in primary FANCA-/- cells revealed genomic instability originating through divergent cell cycle checkpoint aberrations. Our data indicate that FA/BRCA signaling functions as an in vivo gatekeeper of genomic integrity throughout interphase and mitosis, which may have implications for future targeted therapies in FA and FA-deficient cancers.
Collapse
Affiliation(s)
- Zahi Abdul-Sater
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Donna Cerabona
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Elizabeth Sierra Potchanant
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Zejin Sun
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Rikki Enzor
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ying He
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kent Robertson
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - W Scott Goebel
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Grzegorz Nalepa
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana; Bone Marrow Failure Program, Division of Pediatric Hematology-Oncology, Riley Hospital for Children, Indianapolis, Indiana.
| |
Collapse
|
47
|
Prakash R, Zhang Y, Feng W, Jasin M. Homologous recombination and human health: the roles of BRCA1, BRCA2, and associated proteins. Cold Spring Harb Perspect Biol 2015; 7:a016600. [PMID: 25833843 DOI: 10.1101/cshperspect.a016600] [Citation(s) in RCA: 576] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Homologous recombination (HR) is a major pathway for the repair of DNA double-strand breaks in mammalian cells, the defining step of which is homologous strand exchange directed by the RAD51 protein. The physiological importance of HR is underscored by the observation of genomic instability in HR-deficient cells and, importantly, the association of cancer predisposition and developmental defects with mutations in HR genes. The tumor suppressors BRCA1 and BRCA2, key players at different stages of HR, are frequently mutated in familial breast and ovarian cancers. Other HR proteins, including PALB2 and RAD51 paralogs, have also been identified as tumor suppressors. This review summarizes recent findings on BRCA1, BRCA2, and associated proteins involved in human disease with an emphasis on their molecular roles and interactions.
Collapse
Affiliation(s)
- Rohit Prakash
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Yu Zhang
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Weiran Feng
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065 Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065 Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
48
|
Jeong JH, Jo A, Park P, Lee H, Lee HO. Brca2 deficiency leads to T cell loss and immune dysfunction. Mol Cells 2015; 38:251-8. [PMID: 25666348 PMCID: PMC4363725 DOI: 10.14348/molcells.2015.2302] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 12/03/2014] [Accepted: 12/04/2014] [Indexed: 12/19/2022] Open
Abstract
Germline mutations in the breast cancer type 2 susceptibility gene (BRCA2) are linked to familial breast cancer and the progressive bone marrow failure syndrome Fanconi anaemia. Established Brca2 mouse knockout models show embryonic lethality, but those with a truncating mutation at the C-terminus survive to birth and develop thymic lymphoma at an early age. To overcome early lethality and investigate the function of BRCA2, we used T cell-specific conditional Brca2 knockout mice, which were previously shown to develop thymic lymphoma at a low penetrance. In the current study we showed that the number of peripheral T cells, particularly naïve pools, drastically declined with age. This decline was primarily ascribed to improper peripheral maintenance. Furthermore, heterozygous mice with one wild-type Brca2 allele manifested reduced T cell numbers, suggesting that Brca2 haploinsufficiency might also result in T cell loss. Our study reveals molecular events occurring in Brca2-deficient T cells and suggests that both heterozygous and homozygous Brca2 mutation may lead to dysfunction in T cell populations.
Collapse
Affiliation(s)
- Jun-hyeon Jeong
- Department of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul 151-742,
Korea
| | - Areum Jo
- Samsung Genome Institute, Samsung Medical Center, Seoul 135-710,
Korea
- SAIHST, Sungkyunkwan University School of Medicine, Seoul 135-710,
Korea
| | - Pilgu Park
- Department of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul 151-742,
Korea
| | - Hyunsook Lee
- Department of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul 151-742,
Korea
| | - Hae-Ock Lee
- Samsung Genome Institute, Samsung Medical Center, Seoul 135-710,
Korea
- SAIHST, Sungkyunkwan University School of Medicine, Seoul 135-710,
Korea
| |
Collapse
|
49
|
Lee YK, Park I, Lee H. Partial Hepatectomy in Acetylation-Deficient BubR1 Mice Corroborates that Chromosome Missegregation Initiates Tumorigenesis. Endocrinol Metab (Seoul) 2014; 29:561-6. [PMID: 25559578 PMCID: PMC4285024 DOI: 10.3803/enm.2014.29.4.561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 04/02/2014] [Accepted: 05/01/2014] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Aneuploidy has been suggested as one of the major causes of cancer from the time of Boveri. In support of this notion, many studies have shown that cancer cells exhibit aneuploidy. However, there are evidences that do not support the aneuploidy hypothesis. We have previously reported that the spindle assembly checkpoint protein BubR1 is acetylated in mitosis and that the acetylation of BubR1 is crucial for checkpoint maintenance and chromosome-spindle attachment. Mice heterozygous for acetylation-deficient BubR1 (K243R/+) spontaneously develop cancer with chromosome instability. As K243R/+ mice develop hepatocellular carcinoma, we set out to test if chromosome mis-segregation was the cause of their liver cancer. METHODS Primary hepatocytes in the regenerating liver after partial hepatectomy (PH) were analyzed and compared for various mitotic parameters. RESULTS Primary hepatocytes isolated from K243R/+ mice after PH displayed a marked increase of chromosome misalignment, accompanied by an increase of micronuclei. In comparison, the number of nuclei per cell and the centrosome numbers were not different between wild-type and K243R/+ mice. Taken together, chromosome mis-segregation provokes tumorigenesis in mouse liver. CONCLUSION Our results corroborate that PH provides a reliable tool for assessing mitotic infidelity and cancer in mice.
Collapse
Affiliation(s)
- Yoo Kyung Lee
- Department of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea.; Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Inai Park
- Department of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea
| | - Hyunsook Lee
- Department of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Korea.
| |
Collapse
|
50
|
Lee H. Cycling with BRCA2 from DNA repair to mitosis. Exp Cell Res 2014; 329:78-84. [DOI: 10.1016/j.yexcr.2014.10.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 10/03/2014] [Accepted: 10/06/2014] [Indexed: 01/07/2023]
|