1
|
Sharma I, Malathi P, Srinivasan R, Bhat SR, Sreenivasulu Y. Embryo sac cellularization defects lead to supernumerary egg cells and twin embryos in Arabidopsis thaliana. iScience 2024; 27:109890. [PMID: 38827396 PMCID: PMC11141147 DOI: 10.1016/j.isci.2024.109890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/26/2024] [Accepted: 04/30/2024] [Indexed: 06/04/2024] Open
Abstract
Arabidopsis lines with loss-of-function mutation in Embryo sac-specific Pectin MethylEsterase Inhibitor (Atepmei) gene showed seed sterility with embryo sac cellularization defects. Examination of tissue-cleared mature ovules revealed irregularly positioned nuclei/embryos within the embryo sacs. Egg cell-specific marker (DD45) expression analysis confirmed the presence of multiple egg cells in the mutant embryo sacs. These supernumerary egg cells were functional as evident from the production of twin embryos when supernumerary sperm cells were provided. The results of ruthenium red and tannic acid-ferric chloride staining of developing Atepmei mutant ovules showed that cell wall formation and maintenance were altered around embryo sac nuclei, which also coincided with change in the gamete specification. This report implicates the role of cell walls in gamete cell fate determination by altering cell-cell communication. Our analysis of the twin-embryo phenotype of epmei mutants also sheds light on the boundary conditions for double fertilization in plant reproduction.
Collapse
Affiliation(s)
- Isha Sharma
- CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
| | - Pinninti Malathi
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India
| | | | | | - Yelam Sreenivasulu
- CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, Telangana, India
| |
Collapse
|
2
|
Wang W, Malka R, Lindemeier M, Cyprys P, Tiedemann S, Sun K, Zhang X, Xiong H, Sprunck S, Sun MX. EGG CELL 1 contributes to egg-cell-dependent preferential fertilization in Arabidopsis. NATURE PLANTS 2024; 10:268-282. [PMID: 38287093 DOI: 10.1038/s41477-023-01616-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 12/20/2023] [Indexed: 01/31/2024]
Abstract
During double fertilization in angiosperms, the pollen tube delivers two sperm cells into an embryo sac; one sperm cell fuses with an egg cell, and the other sperm cell fuses with the central cell. It has long been proposed that the preference for fusion with one or another female gamete cell depends on the sperm cells and occurs during gamete recognition. However, up to now, sperm-dependent preferential fertilization has not been demonstrated, and results on preferred fusion with either female gamete have remained conflicting. To investigate this topic, we generated Arabidopsis thaliana mutants that produce single sperm-like cells or whose egg cells are eliminated; we found that although the three different types of sperm-like cell are functionally equivalent in their ability to fertilize the egg and the central cell, each type of sperm-like cell fuses predominantly with the egg cell. This indicates that it is the egg cell that controls its preferential fertilization. We also found that sperm-activating small secreted EGG CELL 1 proteins are involved in the regulation of egg-cell-dependent preferential fertilization, revealing another important role for this protein family during double fertilization.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Raphael Malka
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany
| | - Maria Lindemeier
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany
| | - Philipp Cyprys
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany
| | - Sophie Tiedemann
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany
| | - Kaiting Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xuecheng Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hanxian Xiong
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China.
| | - Stefanie Sprunck
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany.
| | - Meng-Xiang Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
3
|
Herbst J, Nagy SH, Vercauteren I, De Veylder L, Kunze R. The long non-coding RNA LINDA restrains cellular collapse following DNA damage in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1370-1384. [PMID: 37616189 DOI: 10.1111/tpj.16431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/04/2023] [Accepted: 08/12/2023] [Indexed: 08/26/2023]
Abstract
The genomic integrity of every organism is endangered by various intrinsic and extrinsic stresses. To maintain genomic integrity, a sophisticated DNA damage response (DDR) network is activated rapidly after DNA damage. Notably, the fundamental DDR mechanisms are conserved in eukaryotes. However, knowledge about many regulatory aspects of the plant DDR is still limited. Important, yet little understood, regulatory factors of the DDR are the long non-coding RNAs (lncRNAs). In humans, 13 lncRNAs functioning in DDR have been characterized to date, whereas no such lncRNAs have been characterized in plants yet. By meta-analysis, we identified the putative long intergenic non-coding RNA induced by DNA damage (LINDA) that responds strongly to various DNA double-strand break-inducing treatments, but not to replication stress induced by mitomycin C. After DNA damage, LINDA is rapidly induced in an ATM- and SOG1-dependent manner. Intriguingly, the transcriptional response of LINDA to DNA damage is similar to that of its flanking hypothetical protein-encoding gene. Phylogenetic analysis of putative Brassicales and Malvales LINDA homologs indicates that LINDA lncRNAs originate from duplication of a flanking small protein-encoding gene followed by pseudogenization. We demonstrate that LINDA is not only needed for the regulation of this flanking gene but also fine-tuning of the DDR after the occurrence of DNA double-strand breaks. Moreover, Δlinda mutant root stem cells are unable to recover from DNA damage, most likely due to hyper-induced cell death.
Collapse
Affiliation(s)
- Josephine Herbst
- Department of Biology, Chemistry and Pharmacy, Molecular Genetics of Plants, Institute of Biology, Freie Universität Berlin, Berlin, D-14195, Germany
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, B-9052, Belgium
| | - Solveig Henriette Nagy
- Department of Biology, Chemistry and Pharmacy, Molecular Genetics of Plants, Institute of Biology, Freie Universität Berlin, Berlin, D-14195, Germany
| | - Ilse Vercauteren
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, B-9052, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- Center for Plant Systems Biology, VIB, Ghent, B-9052, Belgium
| | - Reinhard Kunze
- Department of Biology, Chemistry and Pharmacy, Molecular Genetics of Plants, Institute of Biology, Freie Universität Berlin, Berlin, D-14195, Germany
| |
Collapse
|
4
|
Chettoor AM, Yang B, Evans MMS. Control of cellularization, nuclear localization, and antipodal cell cluster development in maize embryo sacs. Genetics 2023; 225:iyad101. [PMID: 37232380 DOI: 10.1093/genetics/iyad101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 03/30/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
The maize female gametophyte contains four cell types: two synergids, an egg cell, a central cell, and a variable number of antipodal cells. In maize, these cells are produced after three rounds of free-nuclear divisions followed by cellularization, differentiation, and proliferation of the antipodal cells. Cellularization of the eight-nucleate syncytium produces seven cells with two polar nuclei in the central cell. Nuclear localization is tightly controlled in the embryo sac. This leads to precise allocation of the nuclei into the cells upon cellularization. Nuclear positioning within the syncytium is highly correlated with their identity after cellularization. Two mutants are described with extra polar nuclei, abnormal antipodal cell morphology, and reduced antipodal cell number, as well as frequent loss of antipodal cell marker expression. Mutations in one of these genes, indeterminate gametophyte2 encoding a MICROTUBULE ASSOCIATED PROTEIN65-3 homolog, shows a requirement for MAP65-3 in cellularization of the syncytial embryo sac as well as for normal seed development. The timing of the effects of ig2 suggests that the identity of the nuclei in the syncytial female gametophyte can be changed very late before cellularization.
Collapse
Affiliation(s)
- Antony M Chettoor
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Bing Yang
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
- Division of Plant Science and Technology, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Matthew M S Evans
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| |
Collapse
|
5
|
Zhai X, Bai J, Xu W, Yang X, Jia Z, Xia W, Wu X, Liang Q, Li B, Jia N. The molecular chaperone mtHSC70-1 interacts with DjA30 to regulate female gametophyte development and fertility in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1677-1698. [PMID: 37294615 DOI: 10.1111/tpj.16347] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/26/2023] [Indexed: 06/10/2023]
Abstract
Arabidopsis mitochondria-targeted heat shock protein 70 (mtHSC70-1) plays important roles in the establishment of cytochrome c oxidase-dependent respiration and redox homeostasis during the vegetative growth of plants. Here, we report that knocking out the mtHSC70-1 gene led to a decrease in plant fertility; the fertility defect of the mutant was completely rescued by introducing the mtHSC70-1 gene. mtHSC70-1 mutants also showed defects in female gametophyte (FG) development, including delayed mitosis, abnormal nuclear position, and ectopic gene expression in the embryo sacs. In addition, we found that an Arabidopsis mitochondrial J-protein gene (DjA30) mutant, j30+/- , had defects in FG development and fertility similar to those of mtHSC70-1 mutant. mtHSC70-1 and DjA30 had similar expression patterns in FGs and interacted in vivo, suggesting that these two proteins might cooperate during female gametogenesis. Further, respiratory chain complex IV activity in mtHSC70-1 and DjA30 mutant embryo sacs was markedly downregulated; this led to the accumulation of mitochondrial reactive oxygen species (ROS). Scavenging excess ROS by introducing Mn-superoxide dismutase 1 or catalase 1 gene into the mtHSC70-1 mutant rescued FG development and fertility. Altogether, our results suggest that mtHSC70-1 and DjA30 are essential for the maintenance of ROS homeostasis in the embryo sacs and provide direct evidence for the roles of ROS homeostasis in embryo sac maturation and nuclear patterning, which might determine the fate of gametic and accessory cells.
Collapse
Affiliation(s)
- Xiaoting Zhai
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, 050024, China
- College of Agriculture and Forestry, Hebei North University, Zhangjiakou, 075000, China
| | - Jiaoteng Bai
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, 050024, China
| | - Wenyan Xu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiujuan Yang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, 050024, China
| | - Zichao Jia
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, 050024, China
| | - Wenxuan Xia
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiaoqing Wu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, 050024, China
| | - Qi Liang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, 050024, China
| | - Bing Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Normal University, Shijiazhuang, 050024, China
| | - Ning Jia
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
6
|
Yu SX, Hu LQ, Yang LH, Zhang T, Dai RB, Zhang YJ, Xie ZP, Lin WH. RLI2 regulates Arabidopsis female gametophyte and embryo development by facilitating the assembly of the translational machinery. Cell Rep 2023; 42:112741. [PMID: 37421624 DOI: 10.1016/j.celrep.2023.112741] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 04/01/2023] [Accepted: 06/20/2023] [Indexed: 07/10/2023] Open
Abstract
Eukaryotic protein translation is a complex process that requires the participation of different proteins. Defects in the translational machinery often result in embryonic lethality or severe growth defects. Here, we report that RNase L inhibitor 2/ATP-BINDING CASSETTE E2 (RLI2/ABCE2) regulates translation in Arabidopsis thaliana. Null mutation of rli2 is gametophytic and embryonic lethal, whereas knockdown of RLI2 causes pleiotropic developmental defects. RLI2 interacts with several translation-related factors. Knockdown of RLI2 affects the translational efficiency of a subset of proteins involved in translation regulation and embryo development, indicating that RLI2 has critical roles in these processes. In particular, RLI2 knockdown mutant exhibits decreased expression of genes involved in auxin signaling and female gametophyte and embryo development. Therefore, our results reveal that RLI2 facilitates assembly of the translational machinery and indirectly modulates auxin signaling to regulate plant growth and development.
Collapse
Affiliation(s)
- Shi-Xia Yu
- The Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Collaborative Innovation Center of Agri-Seeds/Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai 200240, China; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li-Qin Hu
- The Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Collaborative Innovation Center of Agri-Seeds/Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai 200240, China; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lu-Han Yang
- The Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tao Zhang
- The Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruo-Bing Dai
- Zhiyuan College, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan-Jie Zhang
- The Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhi-Ping Xie
- The Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wen-Hui Lin
- The Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Collaborative Innovation Center of Agri-Seeds/Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
7
|
Wang X, Liu X, Yi X, Wang M, Shi W, Li R, Tang W, Zhang L, Sun M, Peng X. The female germ unit is essential for pollen tube funicular guidance in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2023; 238:155-168. [PMID: 36527238 DOI: 10.1111/nph.18686] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
In angiosperm, two immotile sperm cells are delivered to the female gametes for fertilization by a pollen tube, which perceives guidance cues from ovules at least at two critical sites, micropyle for short-distance guidance and funiculus for comparably longer distance guidance. Compared with the great progress in understanding pollen tube micropylar guidance, little is known about the signaling for funicular guidance. Here, we show that funiculus plays an important role in pollen tube guidance and report that female gametophyte (FG) plays a critical role in funicular guidance by analysis of a 3-dehydroquinate synthase (DHQS) mutant. Loss function of DHQS in FG interrupts pollen tube funicular guidance, suggesting that the guiding signal is generated from FG. We show the evidence that the capacity of funicular guidance is established during FG functional specification after the establishment of cell identity. Specific expression of DHQS in the synergid cells, central cells, or egg cells can rescue funicular guidance defect in dhqs/+, indicating all the female germ unit cells are involved in the funicular guidance. The finding reveals that the attracting signal of pollen tube funicular guidance was generated at a site and stage manner and provides novel clue to locate and search for the signal.
Collapse
Affiliation(s)
- Xiu Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Xiangfeng Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xinlei Yi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Min Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Wenxin Shi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ruiping Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Wenyue Tang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Liyao Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Mengxiang Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiongbo Peng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
8
|
Cao F, Wei R, Xie J, Hou L, Kang C, Zhao T, Sun C, Yang M, Zhao Y, Li C, Wang N, Wu X, Liu C, Jiang H, Chen Q. Fine mapping and candidate gene analysis of proportion of four-seed pods by soybean CSSLs. FRONTIERS IN PLANT SCIENCE 2023; 13:1104022. [PMID: 36743549 PMCID: PMC9890659 DOI: 10.3389/fpls.2022.1104022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Soybean yield, as one of the most important and consistent breeding goals, can be greatly affected by the proportion of four-seed pods (PoFSP). In this study, QTL mapping was performed by PoFSP data and BLUE (Best Linear Unbiased Estimator) value of the chromosome segment substitution line population (CSSLs) constructed previously by the laboratory from 2016 to 2018, and phenotype-based bulked segregant analysis (BSA) was performed using the plant lines with PoFSP extreme phenotype. Totally, 5 ICIM QTLs were repeatedly detected, and 6 BSA QTLs were identified in CSSLs. For QTL (qPoFSP13-1) repeated in ICIM and BSA results, the secondary segregation populations were constructed for fine mapping and the interval was reduced to 100Kb. The mapping results showed that the QTL had an additive effect of gain from wild parents. A total of 14 genes were annotated in the delimited interval by fine mapping. Sequence analysis showed that all 14 genes had genetic variation in promoter region or CDS region. The qRT-PCR results showed that a total of 5 candidate genes were differentially expressed between the plant lines having antagonistic extreme phenotype (High PoFSP > 35.92%, low PoFSP< 17.56%). The results of haplotype analysis showed that all five genes had two or more major haplotypes in the resource population. Significant analysis of phenotypic differences between major haplotypes showed all five candidate genes had haplotype differences. And the genotypes of the major haplotypes with relatively high PoFSP of each gene were similar to those of wild soybean. The results of this study were of great significance to the study of candidate genes affecting soybean PoFSP, and provided a basis for the study of molecular marker-assisted selection (MAS) breeding and four-seed pods domestication.
Collapse
Affiliation(s)
- Fubin Cao
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Ruru Wei
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Jianguo Xie
- Jilin Academy of Agricultural Sciences, Soybean Research Institute, Changchun, Jilin, China
| | - Lilong Hou
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Chaorui Kang
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Tianyu Zhao
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Chengcheng Sun
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Mingliang Yang
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Ying Zhao
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Candong Li
- Jiamusi Branch Institute, Heilongjiang Academy of Agricultural Sciences, Jiamusi, Heilongjiang, China
| | - Nannan Wang
- Jiamusi Branch Institute, Heilongjiang Academy of Agricultural Sciences, Jiamusi, Heilongjiang, China
| | - Xiaoxia Wu
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Chunyan Liu
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Hongwei Jiang
- Jilin Academy of Agricultural Sciences, Soybean Research Institute, Changchun, Jilin, China
| | - Qingshan Chen
- College of Agriculture, Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, China
| |
Collapse
|
9
|
Zhu M, Tao L, Zhang J, Liu R, Tian H, Hu C, Zhu Y, Li M, Wei Z, Yi J, Li J, Gou X. The type-B response regulators ARR10, ARR12, and ARR18 specify the central cell in Arabidopsis. THE PLANT CELL 2022; 34:4714-4737. [PMID: 36130292 PMCID: PMC9709988 DOI: 10.1093/plcell/koac285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/15/2022] [Indexed: 06/15/2023]
Abstract
In Arabidopsis thaliana, the female gametophyte consists of two synergid cells, an egg cell, a diploid central cell, and three antipodal cells. CYTOKININ INDEPENDENT 1 (CKI1), a histidine kinase constitutively activating the cytokinin signaling pathway, specifies the central cell and restricts the egg cell. However, the mechanism regulating CKI1-dependent central cell specification is largely unknown. Here, we showed that the type-B ARABIDOPSIS RESPONSE REGULATORS10, 12, and 18 (ARR10/12/18) localize at the chalazal pole of the female gametophyte. Phenotypic analysis showed that the arr10 12 18 triple mutant is female sterile. We examined the expression patterns of embryo sac marker genes and found that the embryo sac of arr10 12 18 plants had lost central cell identity, a phenotype similar to that of the Arabidopsis cki1 mutant. Genetic analyses demonstrated that ARR10/12/18, CKI1, and ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN2, 3, and 5 (AHP2/3/5) function in a common pathway to regulate female gametophyte development. In addition, constitutively activated ARR10/12/18 in the cki1 embryo sac partially restored the fertility of cki1. Results of transcriptomic analysis supported the conclusion that ARR10/12/18 and CKI1 function together to regulate the identity of the central cell. Our results demonstrated that ARR10/12/18 function downstream of CKI1-AHP2/3/5 as core factors to determine cell fate of the female gametophyte.
Collapse
Affiliation(s)
- Mingsong Zhu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Liang Tao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jinghua Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Ruini Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hongai Tian
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chong Hu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yafen Zhu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Meizhen Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhuoyun Wei
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jing Yi
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaoping Gou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
10
|
Jiang YT, Zheng JX, Li RH, Wang YC, Shi J, Ferjani A, Lin WH. Tonoplast proton pumps regulate nuclear spacing of female gametophytes via mediating polar auxin transport in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:1006735. [PMID: 36176689 PMCID: PMC9513470 DOI: 10.3389/fpls.2022.1006735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
The vacuole is an important organelle with multiple functions in plants, and the tonoplast that wraps the vacuole also plays essential roles in intracellular trafficking and ion homeostasis. Previous studies found that tonoplast proton pumps regulate embryo development and morphogenesis through their effects on vacuole biogenesis and distribution, as well as polar auxin transport and concomitant auxin gradient. However, the precise roles of the tonoplast proton pumps in gametophyte development remain unclear. Here we demonstrated that the lack of two types of tonoplast proton pumps or the absence of V-ATPase alone leads to abnormal development and nuclear localization of female gametophyte (FG), and slowed endosperm nuclei division after fertilization of the central cell. We further revealed that V-ATPase regulates auxin levels in ovules through coordinating the content and localization of PIN-FORMED 1 (PIN1) protein, hence influencing nuclear spacing between centra cell and egg cell, and subsequent endosperm development. Collectively, our findings revealed a crucial role of V-ATPase in auxin-mediated FG development in Arabidopsis and expanded our understanding of the functions of tonoplast proton pumps in seed plants reproductive development.
Collapse
Affiliation(s)
- Yu-Tong Jiang
- Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, The Joint International Research, Shanghai Jiao Tong University, Shanghai, China
| | - Ji-Xuan Zheng
- Zhiyuan College, Shanghai Jiao Tong University, Shanghai, China
| | - Rong-Han Li
- Zhiyuan College, Shanghai Jiao Tong University, Shanghai, China
| | - Yu-Chen Wang
- Zhiyuan College, Shanghai Jiao Tong University, Shanghai, China
| | - Jianxin Shi
- Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, The Joint International Research, Shanghai Jiao Tong University, Shanghai, China
| | - Ali Ferjani
- Department of Biology, Tokyo Gakugei University, Koganei, Japan
| | - Wen-Hui Lin
- Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, The Joint International Research, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Collaborative Innovation Center of Agri-Seeds/Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
11
|
Huang X, Sun MX. H3K27 methylation regulates the fate of two cell lineages in male gametophytes. THE PLANT CELL 2022; 34:2989-3005. [PMID: 35543471 PMCID: PMC9338816 DOI: 10.1093/plcell/koac136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/03/2022] [Indexed: 05/14/2023]
Abstract
During angiosperm male gametogenesis, microspores divide to produce a vegetative cell (VC) and a male germline (MG), each with distinct cell fates. The mechanism underlying determination of the MG cell/VC fate remains an important area of research, with many unanswered questions. Here, we report that H3K27me3 is essential for VC fate commitment in male Arabidopsis thaliana gametophytes; H3K27me3 erasure contributes to MG cell fate initiation. VC-targeted H3K27me3 erasure disturbed VC development and shifted the VC fate toward a gamete destination, which suggests that MG cells require H3K27me3 erasure to trigger gamete cell fate. Multi-omics and cytological analyses confirmed the occurrence of extensive cell identity transition due to H3K27me3 erasure. Therefore, we experimentally confirmed that MG cell/VC fate is epigenetically regulated. H3K27 methylation plays a critical role in guiding MG cell/VC fate determination for pollen fertility in Arabidopsis. Our work also provides evidence for two previous hypotheses: the germline cell fate is specified by the differential distribution of unknown determinants and VC maintains the default microspore program (i.e. the H3K27me3 setting) while MG requires reprogramming.
Collapse
Affiliation(s)
- Xiaorong Huang
- State Key Laboratory of Hybrid Rice, College of Life Science, Wuhan University, Wuhan 430072, China
| | | |
Collapse
|
12
|
Abstract
In angiosperms, double fertilization triggers the concomitant development of two closely juxtaposed tissues, the embryo and the endosperm. Successful seed development and germination require constant interactions between these tissues, which occur across their common interface. The embryo-endosperm interface is a complex and poorly understood compound apoplast comprising components derived from both tissues, across which nutrients transit to fuel embryo development. Interface properties, which affect molecular diffusion and thus communication, are themselves dynamically regulated by molecular and physical dialogues between the embryo and endosperm. We review the current understanding of embryo-endosperm interactions, with a focus on the structure, properties, and function of their shared interface. Concentrating on Arabidopsis, but with reference to other species, we aim to situate recent findings within the broader context of seed physiology, developmental biology, and genetic factors such as parental conflicts over resource allocation.
Collapse
Affiliation(s)
- Nicolas M Doll
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium;
- VIB Center of Plant Systems Biology, Ghent, Belgium
| | - Gwyneth C Ingram
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, CNRS, INRAE, Université de Lyon 1, Lyon, France;
| |
Collapse
|
13
|
Zhao P, Shi C, Wang L, Sun MX. The parental contributions to early plant embryogenesis and the concept of maternal-to-zygotic transition in plants. CURRENT OPINION IN PLANT BIOLOGY 2022; 65:102144. [PMID: 34823206 DOI: 10.1016/j.pbi.2021.102144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
The maternal-to-zygotic transition (MZT) is a major developmental transition in the life cycles of animals. It consists of two associated processes: maternal transcript clearance and zygotic genome activation (ZGA). The concept of MZT has been controversially discussed in plants. In this short review, we summarize recent advances in understanding the timing of ZGA and the similarities and differences between ZGA in eudicots and monocots. We discuss the parental contributions to the transcriptome of the proembryo and parental control of early embryogenesis, and we examine distinct differences in the ZGA between animals and plants, update relevant concepts on MZT, and highlight outstanding questions in this field.
Collapse
Affiliation(s)
- Peng Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China; Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Ce Shi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ling Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Meng-Xiang Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
14
|
Yu X, Zhang X, Zhao P, Peng X, Chen H, Bleckmann A, Bazhenova A, Shi C, Dresselhaus T, Sun MX. Fertilized egg cells secrete endopeptidases to avoid polytubey. Nature 2021; 592:433-437. [PMID: 33790463 DOI: 10.1038/s41586-021-03387-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 02/24/2021] [Indexed: 11/09/2022]
Abstract
Upon gamete fusion, animal egg cells secrete proteases from cortical granules to establish a fertilization envelope as a block to polyspermy1-4. Fertilization in flowering plants is more complex and involves the delivery of two non-motile sperm cells by pollen tubes5,6. Simultaneous penetration of ovules by multiple pollen tubes (polytubey) is usually avoided, thus indirectly preventing polyspermy7,8. How plant egg cells regulate the rejection of extra tubes after successful fertilization is not known. Here we report that the aspartic endopeptidases ECS1 and ECS2 are secreted to the extracellular space from a cortical network located at the apical domain of the Arabidopsis egg cell. This reaction is triggered only after successful fertilization. ECS1 and ECS2 are exclusively expressed in the egg cell and transcripts are degraded immediately after gamete fusion. ECS1 and ESC2 specifically cleave the pollen tube attractor LURE1. As a consequence, polytubey is frequent in ecs1 ecs2 double mutants. Ectopic secretion of these endopeptidases from synergid cells led to a decrease in the levels of LURE1 and reduced the rate of pollen tube attraction. Together, these findings demonstrate that plant egg cells sense successful fertilization and elucidate a mechanism as to how a relatively fast post-fertilization block to polytubey is established by fertilization-induced degradation of attraction factors.
Collapse
Affiliation(s)
- Xiaobo Yu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xuecheng Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Peng Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiongbo Peng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hong Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Andrea Bleckmann
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany
| | - Anastasiia Bazhenova
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany
| | - Ce Shi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany.
| | - Meng-Xiang Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
15
|
Hou XL, Chen WQ, Hou Y, Gong HQ, Sun J, Wang Z, Zhao H, Cao X, Song XF, Liu CM. DEAD-BOX RNA HELICASE 27 regulates microRNA biogenesis, zygote division, and stem cell homeostasis. THE PLANT CELL 2021; 33:66-84. [PMID: 33751089 PMCID: PMC8136522 DOI: 10.1093/plcell/koaa001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 10/14/2020] [Indexed: 05/18/2023]
Abstract
After double fertilization, zygotic embryogenesis initiates a new life cycle, and stem cell homeostasis in the shoot apical meristem (SAM) and root apical meristem (RAM) allows plants to produce new tissues and organs continuously. Here, we report that mutations in DEAD-BOX RNA HELICASE 27 (RH27) affect zygote division and stem cell homeostasis in Arabidopsis (Arabidopsis thaliana). The strong mutant allele rh27-1 caused a zygote-lethal phenotype, while the weak mutant allele rh27-2 led to minor defects in embryogenesis and severely compromised stem cell homeostasis in the SAM and RAM. RH27 is expressed in embryos from the zygote stage, and in both the SAM and RAM, and RH27 is a nucleus-localized protein. The expression levels of genes related to stem cell homeostasis were elevated in rh27-2 plants, alongside down-regulation of their regulatory microRNAs (miRNAs). Further analyses of rh27-2 plants revealed reduced levels of a large subset of miRNAs and their pri-miRNAs in shoot apices and root tips. In addition, biochemical studies showed that RH27 associates with pri-miRNAs and interacts with miRNA-biogenesis components, including DAWDLE, HYPONASTIC LEAVES 1, and SERRATE. Therefore, we propose that RH27 is a component of the microprocessor complex and is critical for zygote division and stem cell homeostasis.
Collapse
Affiliation(s)
- Xiu-Li Hou
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen-Qiang Chen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifeng Hou
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hua-Qin Gong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Jing Sun
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhen Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Heng Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaofeng Cao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, CAS Center for Excellence in Molecular Plant Sciences, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiu-Fen Song
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chun-Ming Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
16
|
Khanday I, Sundaresan V. Plant zygote development: recent insights and applications to clonal seeds. CURRENT OPINION IN PLANT BIOLOGY 2021; 59:101993. [PMID: 33422964 DOI: 10.1016/j.pbi.2020.101993] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 05/22/2023]
Abstract
In flowering plants, haploid gametes - an egg cell and a sperm cell fuse to form the first diploid cell - the zygote. The zygote is the progenitor stem cell that gives rise to all the embryonic and post embryonic tissues and organs. Unlike animals, both maternal and paternal gene products participate in the initial development of zygotes in plants. Here, we discuss recent advances in understanding of the zygotic transition and embryo initiation in angiosperms, including the role of parental contributions to gene expression in the zygote. We further discuss utilization of this knowledge in agricultural biotechnology through synthetic apomixis. Parthenogenesis obtained by manipulation of embryogenic factors, combined with mutations that bypass meiosis, enables clonal propagation of hybrid crops through seeds.
Collapse
Affiliation(s)
- Imtiyaz Khanday
- Department of Plant Biology, University of California, Davis, CA, USA; Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Venkatesan Sundaresan
- Department of Plant Biology, University of California, Davis, CA, USA; Innovative Genomics Institute, University of California, Berkeley, CA, USA; Department of Plant Sciences, University of California, Davis, CA, USA.
| |
Collapse
|
17
|
Cheng T, Zhao P, Ren Y, Zou J, Sun MX. AtMIF1 increases seed oil content by attenuating GL2 inhibition. THE NEW PHYTOLOGIST 2021; 229:2152-2162. [PMID: 33098089 DOI: 10.1111/nph.17016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 09/30/2020] [Indexed: 05/22/2023]
Abstract
Vegetable oil is a major edible oil and an important industrial raw material. However, breeders have found it challenging to improve the oil content of crop seeds, and little is known about regulators with the potential to increase oil content via molecular engineering in modern oil crop breeding. We reported an F-box protein, Arabidopsis thaliana MYB Interaction Factor 1 (AtMIF1), which is a member of the ubiquitin-protein ligase E3 complex involved in the 26S proteasome protein degradation pathway. AtMIF1 physically interacts with MYB domain protein 5 (MYB5), which results in MYB5 degradation, so that transcriptional activation of the MYB/bHLH/WD-repeat (MBW) complex does not occur normally and GLABRA2 (GL2), encoding an inhibitor of oil content and functioning as a direct downstream gene of MBW, is not properly transcribed. AtMIF1 functioned as a positive regulator that increases oil content by attenuating GL2 inhibition. We overexpressed AtMIF1 and obtained transgenic plants with significantly higher seed oil contents. Importantly, both vegetative and reproductive growth of the transgenic plants appeared normal. In summary, this work reveals a novel regulator, AtMIF1, and a new regulatory pathway, 26S proteasome-AtMIF1-MYB5, for increasing the oil content of seeds without affecting plant growth, thus facilitating oil crop breeding.
Collapse
Affiliation(s)
- Tianhe Cheng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Peng Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yanru Ren
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jun Zou
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meng-Xiang Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
18
|
Wang Y, Ye H, Bai J, Ren F. The regulatory framework of developmentally programmed cell death in floral organs: A review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:103-112. [PMID: 33307422 DOI: 10.1016/j.plaphy.2020.11.052] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/30/2020] [Indexed: 05/27/2023]
Abstract
Developmentally programmed cell death (dPCD) is a tightly controlled biological process. In recent years, vital roles of dPCD on regulating floral organ growth and development have been reported. It is well known that flower is an essential organ for reproduction and a turning point of plants' life cycle. Hence, uncovering the complex molecular networks which regulates dPCD processes in floral organs is utmost important. So far, our understanding of dPCD on floral organ growth and development is just starting. Herein, we summarize the important factors that involved in the tapetal degeneration, pollen tube rupture, receptive synergid cell death, nucellar degradation, and antipodal cell degradation. Meanwhile, the known factors that involved in transmitting tract formation and self-incompatibility-induced PCD were also introduced. Furthermore, the genes that associated with anther dehiscence and petal senescence and abscission were reviewed as well. The functions of various types of factors involved in floral dPCD processes are highlighted principally. The regulatory panorama described here can provide us some insights about flower-specific dPCD process.
Collapse
Affiliation(s)
- Yukun Wang
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan.
| | - Hong Ye
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Jianfang Bai
- Beijing Engineering Research Center for Hybrid Wheat, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, PR China
| | - Fei Ren
- School of Agricultural Science and Engineering, Shaoguan University, 288 Daxue Road, Shaoguan, 512000, PR China.
| |
Collapse
|
19
|
Zhao P, Zhou X, Zheng Y, Ren Y, Sun MX. Equal parental contribution to the transcriptome is not equal control of embryogenesis. NATURE PLANTS 2020; 6:1354-1364. [PMID: 33106635 DOI: 10.1038/s41477-020-00793-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 09/16/2020] [Indexed: 05/06/2023]
Abstract
In animals, early embryogenesis is maternally controlled, whereas in plants, parents contribute equally to the proembryo transcriptome. Thus, the question remains whether equivalent parental contribution to the transcriptome of the early proembryo means equal control of early embryogenesis. Here, on the basis of cell-lineage-specific and allele-specific transcriptome analysis, we reveal that paternal and maternal genomes contribute equally to the transcriptomes of both the apical cell lineage and the basal cell lineage of early proembryos. However, a strong maternal effect on basal cell lineage development was found, indicating that equal parental contribution to the transcriptome is not necessarily coupled with equivalent parental control of proembryonic development. Parental contributions to embryogenesis therefore cannot be concluded solely on the basis of the ratio of paternal/maternal transcripts. Furthermore, we demonstrate that parent-of-origin genes display developmental-stage-dependent and cell-lineage-dependent allelic expression patterns. These findings will facilitate the investigation of specific parental roles in specific processes of early embryogenesis.
Collapse
Affiliation(s)
- Peng Zhao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China.
| | - Xuemei Zhou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- College of Life Sciences, South-Central University for Nationalities, Wuhan, China
| | - Yifan Zheng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yanru Ren
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Meng-Xiang Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
20
|
Li HJ, Yang WC. Central Cell in Flowering Plants: Specification, Signaling, and Evolution. FRONTIERS IN PLANT SCIENCE 2020; 11:590307. [PMID: 33193544 PMCID: PMC7609669 DOI: 10.3389/fpls.2020.590307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 09/28/2020] [Indexed: 05/05/2023]
Abstract
During the reproduction of animals and lower plants, one sperm cell usually outcompetes the rivals to fertilize a single egg cell. But in flowering plants, two sperm cells fertilize the two adjacent dimorphic female gametes, the egg and central cell, respectively, to initiate the embryo and endosperm within a seed. The endosperm nourishes the embryo development and is also the major source of nutrition in cereals for humankind. Central cell as one of the key innovations of flowering plants is the biggest cell in the multicellular haploid female gametophyte (embryo sac). The embryo sac differentiates from the meiotic products through successive events of nuclear divisions, cellularization, and cell specification. Nowadays, accumulating lines of evidence are raveling multiple roles of the central cell rather than only the endosperm precursor. In this review, we summarize the current understanding on its cell fate specification, intercellular communication, and evolution. We also highlight some key unsolved questions for the further studies in this field.
Collapse
Affiliation(s)
- Hong-Ju Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Wei-Cai Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Three STIGMA AND STYLE STYLISTs Pattern the Fine Architectures of Apical Gynoecium and Are Critical for Male Gametophyte-Pistil Interaction. Curr Biol 2020; 30:4780-4788.e5. [PMID: 33007250 DOI: 10.1016/j.cub.2020.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 08/02/2020] [Accepted: 09/03/2020] [Indexed: 11/22/2022]
Abstract
The gynoecium is derived from the fusion of carpels and is considered to have evolved from a simple setup followed by adaptive adjustment in cell type and tissue distribution to facilitate efficient sexual reproduction [1, 2]. As a sequence of the adjustment, the apical gynoecium differentiates into a stigma and a style. Both the structural patterning and functional specification of the apical gynoecium are critical for plant fertility [3, 4]. However, how the fine structures of the apical gynoecium are established at the interface interacting with pollen and pollen tubes remain to be elucidated. Here, we report a novel angiosperm-specific gene family, STIGMA AND STYLE STYLIST 1-3 (SSS1, SSS2, and SSS3). The SSS1 expresses predominately in the transmitting tract tissue of style, SSS2 expresses intensively in stigma, and SSS3 expresses mainly in stylar peripheral region round the transmitting tract. SSSs coregulate the patterning of the apical gynoecium via controlling cell expansion or elongation. Both the architecture and function of apical gynoecium can be affected by the alteration of SSS expression, indicating their critical roles in the establishment of a proper female interface for communication with pollen tubes. The NGATHA3 (NGA3) transcription factor [5, 6] can directly bind to SSSs promoter and control SSSs expression. Overexpression of SSSs could rescue the stylar defect of nga1nga3 double mutant, indicating their context in the same regulatory pathway. Our findings reveal a novel molecular mechanism responsible for patterning the fine architecture of apical gynoecium and establishing a proper interface for pollen tube growth, which is therefore crucial for plant sexual reproduction.
Collapse
|
22
|
Chen D, Wang Y, Zhang W, Li N, Dai B, Xie F, Sun Y, Sun M, Peng X. Gametophyte-specific DEAD-box RNA helicase 29 is required for functional maturation of male and female gametophytes in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4083-4092. [PMID: 32280991 DOI: 10.1093/jxb/eraa190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/10/2020] [Indexed: 06/11/2023]
Abstract
The maturation of male and female gametophytes together with its impact on plant sexual reproduction has not received much attention, and the molecular mechanisms underlying the process are largely unknown. Here, we show that Arabidopsis DEAD-box RNA helicase 29 (RH29) is critical for the functional maturation of both male and female gametophytes. Homozygous rh29 mutants could not be obtained, and heterozygous mutant plants were semi-sterile. Progression of the cell cycle in rh29 female gametophytes was delayed. Delayed pollination experiments showed that rh29 female gametophytes underwent cell-fate specification but were unable to develop into functional gametophytes. Functional specification but not morphogenesis was also disrupted in rh29 male gametophytes, causing defective pollen tube growth in the pistil. RH29 was highly and specifically expressed in gametophytic cells. RH29 shares high amino acid sequence identity with yeast Dbp10p, which partially rescues the aborted-ovules phenotype of rh29/RH29 plants. RH29 is essential for the synthesis of REGULATORY PARTICLE TRIPLE A ATPase 5a (RPT5a), a subunit of the regulatory particle of the 26S proteasome. Our results suggest that gametophyte functional maturation is a necessary process for successful fertilization and that RH29 is essential for the functional maturation of both male and female gametophytes.
Collapse
Affiliation(s)
- Dan Chen
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yameng Wang
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wen Zhang
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Na Li
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Bo Dai
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fei Xie
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yang Sun
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Mengxiang Sun
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiongbo Peng
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
23
|
Lu C, Xie Z, Yu F, Tian L, Hao X, Wang X, Chen L, Li D. Mitochondrial ribosomal protein S9M is involved in male gametogenesis and seed development in Arabidopsis. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:655-667. [PMID: 32141186 DOI: 10.1111/plb.13108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
Mitochondrial function is critical for cell vitality in all eukaryotes including plants. Although plant mitochondria contain many proteins, few have been studied in the context of plant development and physiology. We used knock-down mutant RPS9M to study its important role in male gametogenesis and seed development in Arabidopsis thaliana. Knock-down of RPS9M in the rps9m-3 mutant led to abnormal pollen development and impaired pollen tube growth. In addition, both embryo and endosperm development were affected. Phenotype analysis revealed that the rps9m-3 mutant contained a lower amount of endosperm and nuclear proteins, and both embryo cell division and embryo pattern were affected, resulting in an abnormal and defective embryo. Lowering the level of RPS9M in rps9m-3 affects mitochondrial ribosome biogenesis, energy metabolism and production of ROS. Our data revealed that RPS9M plays important roles in normal gametophyte development and seed formation, possibly by sustaining mitochondrial function.
Collapse
Affiliation(s)
- C Lu
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, China
- Shenzhen Institute of Molecular Crop Design, Shenzhen, China
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Z Xie
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, China
| | - F Yu
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, China
| | - L Tian
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, China
| | - X Hao
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, China
| | - X Wang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, China
| | - L Chen
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, China
| | - D Li
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, China
| |
Collapse
|
24
|
Doronina TV, Sheval EV, Lazareva EM. Programmed Cell Death during Formation of the Embryo Sac and Seed. Russ J Dev Biol 2020. [DOI: 10.1134/s1062360420030029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Hater F, Nakel T, Groß-Hardt R. Reproductive Multitasking: The Female Gametophyte. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:517-546. [PMID: 32442389 DOI: 10.1146/annurev-arplant-081519-035943] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Fertilization of flowering plants requires the organization of complex tasks, many of which become integrated by the female gametophyte (FG). The FG is a few-celled haploid structure that orchestrates division of labor to coordinate successful interaction with the sperm cells and their transport vehicle, the pollen tube. As reproductive outcome is directly coupled to evolutionary success, the underlying mechanisms are under robust molecular control, including integrity check and repair mechanisms. Here, we review progress on understanding the development and function of the FG, starting with the functional megaspore, which represents the haploid founder cell of the FG. We highlight recent achievements that have greatly advanced our understanding of pollen tube attraction strategies and the mechanisms that regulate plant hybridization and gamete fusion. In addition, we discuss novel insights into plant polyploidization strategies that expand current concepts on the evolution of flowering plants.
Collapse
Affiliation(s)
- Friederike Hater
- Centre for Biomolecular Interactions, University of Bremen, 28359 Bremen, Germany;
| | - Thomas Nakel
- Centre for Biomolecular Interactions, University of Bremen, 28359 Bremen, Germany;
| | - Rita Groß-Hardt
- Centre for Biomolecular Interactions, University of Bremen, 28359 Bremen, Germany;
| |
Collapse
|
26
|
Luo A, Zhan H, Zhang X, Du H, Zhang Y, Peng X. Cytoplasmic ribosomal protein L14B is essential for fertilization in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 292:110394. [PMID: 32005399 DOI: 10.1016/j.plantsci.2019.110394] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/28/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
Plant cytoplasmic ribosomal proteins not only participate in protein synthesis, but also have specific roles in developmental regulation. However, the high heterogeneity of plant ribosome makes our understanding of these proteins very limited. Here we reported that RPL14B, a component of the ribosome large subunit, is critical for fertilization in Arabidopsis. RPL14B is existed in a majority of organs and tissues. No homozygous rpl14b mutant is available, indicating that RPL14B is irreplaceable for sexual reproduction. Smaller-sized rpl14b pollens could germinate normally, but pollen tube competitiveness is grievously weakened. Beside, cell fate specification is impaired in female gametophytes from heterozygous rpl14b/RPL14B ovules, resulting in defect of micropylar pollen tube attraction. However, this defect could be restored by restricted expression of RPL14B in synergid cells. Successful fertilization requires normal pollen tube growth and precise pollen tube guidance. Thus our results show a novel role of RPL14B in fertilization and shed new light on regulatory mechanism of pollen tube growth and precise pollen tube guidance.
Collapse
Affiliation(s)
- An Luo
- College of Life Science, Yangtze University, Jingzhou, 434023, China
| | - Huadong Zhan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuecheng Zhang
- College of Life Science, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| | - Hewei Du
- College of Life Science, Yangtze University, Jingzhou, 434023, China
| | - Yubo Zhang
- Department of Food Science, Foshan University, Foshan, 528231, China.
| | - Xiongbo Peng
- College of Life Science, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
27
|
Maruyama D, Higashiyama T, Endo T, Nishikawa SI. Fertilization-Coupled Sperm Nuclear Fusion Is Required for Normal Endosperm Nuclear Proliferation. PLANT & CELL PHYSIOLOGY 2020; 61:29-40. [PMID: 31410484 DOI: 10.1093/pcp/pcz158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 08/07/2019] [Indexed: 05/13/2023]
Abstract
Angiosperms exhibit double fertilization, a process in which one of the sperm cells released from the pollen tube fertilizes the egg, while the other sperm cell fertilizes the central cell, giving rise to the embryo and endosperm, respectively. We have previously reported two polar nuclear fusion-defective double knockout mutants of Arabidopsis thaliana immunoglobulin binding protein (BiP), a molecular chaperone of the heat shock protein 70 (Hsp70) localized in the endoplasmic reticulum (ER), (bip1 bip2) and its partner ER-resident J-proteins, ERdj3A and P58IPK (erdj3a p58ipk). These mutants are defective in the fusion of outer nuclear membrane and exhibit characteristic seed developmental defects after fertilization with wild-type pollen, which are accompanied by aberrant endosperm nuclear proliferation. In this study, we used time-lapse live-cell imaging analysis to determine the cause of aberrant endosperm nuclear division in these mutant seeds. We found that the central cell of bip1 bip2 or erdj3a p58ipk double mutant female gametophytes was also defective in sperm nuclear fusion at fertilization. Sperm nuclear fusion was achieved after the onset of the first endosperm nuclear division. However, division of the condensed sperm nucleus resulted in aberrant endosperm nuclear divisions and delayed expression of paternally derived genes. By contrast, the other double knockout mutant, erdj3b p58ipk, which is defective in the fusion of inner membrane of polar nuclei but does not show aberrant endosperm nuclear proliferation, was not defective in sperm nuclear fusion at fertilization. We thus propose that premitotic sperm nuclear fusion in the central cell is critical for normal endosperm nuclear proliferation.
Collapse
Affiliation(s)
- Daisuke Maruyama
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602 Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, 244-0813 Japan
| | - Tetsuya Higashiyama
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602 Japan
- WPI-Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601 Japan
| | - Toshiya Endo
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602 Japan
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, 603-8555 Japan
| | - Shuh-Ichi Nishikawa
- Department of Biology, Faculty of Science, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata, 950-2181 Japan
| |
Collapse
|
28
|
Abstract
The plant haploid generation is specified late in higher plant development, and post-meiotic haploid plant cells divide mitotically to produce a haploid gametophyte, in which a subset of cells differentiates into the gametes. The immediate mother of the angiosperm seed is the female gametophyte, also called the embryo sac. In most flowering plants the embryo sac is comprised of two kinds of gametes (egg and central cell) and two kinds of subsidiary cells (antipodals and synergids) all of which descend from a single haploid spore produced by meiosis. The embryo sac develops within a specialized organ of the flower called the ovule, which supports and controls many steps in the development of both the embryo sac and the seed. Double fertilization of the central cell and egg cell by the two sperm cells of a pollen grain produce the endosperm and embryo of the seed, respectively. The endosperm and embryo develop under the influence of their precursor gametes and the surrounding tissues of the ovule and the gametophyte. The final size and pattern of the angiosperm seed then is the result of complex interactions across multiple tissues of three different generations (maternal sporophyte, maternal gametophyte, and the fertilization products) and three different ploidies (haploid gametophyte, diploid parental sporophyte and embryo, and triploid endosperm).
Collapse
|
29
|
Luo A, Li X, Zhang X, Zhan H, Du H, Zhang Y, Peng X. Identification of AtHsp90.6 involved in early embryogenesis and its structure prediction by molecular dynamics simulations. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190219. [PMID: 31218061 PMCID: PMC6550000 DOI: 10.1098/rsos.190219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 04/02/2019] [Indexed: 05/29/2023]
Abstract
Heat-shock protein of 90 kDa (Hsp90) is a key molecular chaperone involved in folding the synthesized protein and controlling protein quality. Conformational dynamics coupled to ATPase activity in N-terminal domain is essential for Hsp90's function. However, the relevant process is still largely unknown in plant Hsp90s, especially those required for plant embryogenesis which is inextricably tied up with human survival. Here, AtHsp90.6, a member of Hsp90 family in Arabidopsis, was firstly identified as a protein essential for embryogenesis. Thus we modelled AtHsp90.6 in its functionally closed 'lid-down' and open 'lid-up' states, exploring the nucleotide binding mechanism in these two states. Free energy landscape and electrostatic potential analysis revealed the switching mechanism between these two states. Collectively, this study quantitatively analysed the conformational changes of AtHsp90.6 bound to ATP or ADP. This result may help us understand the mechanism of action of AtHsp90.6 in future.
Collapse
Affiliation(s)
- An Luo
- College of Life Science, Yangtze University, Jingzhou 434023, People's Republic of China
| | - Xinbo Li
- College of Life Science, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, People's Republic of China
- Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430072, People's Republic of China
| | - Xuecheng Zhang
- College of Life Science, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, People's Republic of China
| | - Huadong Zhan
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Hewei Du
- College of Life Science, Yangtze University, Jingzhou 434023, People's Republic of China
| | - Yubo Zhang
- Department of Food Science, Foshan University, Foshan 528231, People's Republic of China
| | - Xiongbo Peng
- College of Life Science, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan 430072, People's Republic of China
| |
Collapse
|
30
|
Erbasol Serbes I, Palovaara J, Groß-Hardt R. Development and function of the flowering plant female gametophyte. Curr Top Dev Biol 2019; 131:401-434. [DOI: 10.1016/bs.ctdb.2018.11.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Hu T, Tian Y, Zhu J, Wang Y, Jing R, Lei J, Sun Y, Yu Y, Li J, Chen X, Zhu X, Hao Y, Liu L, Wang Y, Wan J. OsNDUFA9 encoding a mitochondrial complex I subunit is essential for embryo development and starch synthesis in rice. PLANT CELL REPORTS 2018; 37:1667-1679. [PMID: 30151559 DOI: 10.1007/s00299-018-2338-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/22/2018] [Indexed: 05/23/2023]
Abstract
Loss of function of a mitochondrial complex I subunit (OsNDUFA9) causes abnormal embryo development and affects starch synthesis by altering the expression of starch synthesis-related genes and proteins. Proton-pumping NADH: ubiquinone oxidoreductase (also called complex I) is thought to be the largest and most complicated enzyme of the mitochondrial respiratory chain. Mutations of complex I subunits have been revealed to link with a number of growth inhibitions in plants. However, the function of complex I subunits in rice remains unclear. Here, we isolated a rice floury endosperm mutant (named flo13) that was embryonic lethal and failed to germinate. Semi-thin sectioning analysis showed that compound starch grain development in the mutant was greatly impaired, leading to significantly compromised starch biosynthesis and decreased 1000-grain weight relative to the wild type. Map-based cloning revealed that FLO13 encodes an accessory subunit of complex I protein (designated as OsNDUFA9). A single nucleotide substitution (G18A) occurred in the first exon of OsNDUFA9, introducing a premature stop codon in the flo13 mutant gene. OsNDUFA9 was ubiquitously expressed in various tissues and the OsNDUFA9 protein was localized to the mitochondria. Quantitative RT-PCR and protein blotting indicated loss of function of OsNDUFA9 altered gene expression and protein accumulation associated with respiratory electron chain complex in the mitochondria. Moreover, transmission electron microscopic analysis showed that the mutant lacked obvious mitochondrial cristae structure in the mitochondria of endosperm cell. Our results demonstrate that the OsNDUFA9 subunit of complex I is essential for embryo development and starch synthesis in rice endosperm.
Collapse
Affiliation(s)
- Tingting Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Xuzhou, 221131, China
| | - Yunlu Tian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianping Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yunlong Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruonan Jing
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Lei
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yinglun Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanfang Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jingfang Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoli Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaopin Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanyuan Hao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Linglong Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yihua Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
32
|
Mimura M, Kudo T, Wu S, McCarty DR, Suzuki M. Autonomous and non-autonomous functions of the maize Shohai1 gene, encoding a RWP-RK putative transcription factor, in regulation of embryo and endosperm development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:892-908. [PMID: 29901832 DOI: 10.1111/tpj.13996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/30/2018] [Accepted: 06/04/2018] [Indexed: 05/26/2023]
Abstract
In plants, establishment of the basic body plan during embryogenesis involves complex processes of axis formation, cell fate specification and organ differentiation. While molecular mechanisms of embryogenesis have been well studied in the eudicot Arabidopsis, only a small number of genes regulating embryogenesis has been identified in grass species. Here, we show that a RKD-type RWP-RK transcription factor encoded by Shohai1 (Shai1) is indispensable for embryo and endosperm development in maize. Loss of Shai1 function causes variable morphological defects in the embryo including small scutellum, shoot axis bifurcation and arrest during early organogenesis. Analysis of molecular markers in mutant embryos reveals disturbed patterning of gene expression and altered polar auxin transport. In contrast with typical embryo-defective (emb) mutants that expose a vacant embryo pocket in the endosperm, the endosperm of shai1 kernels conforms to the varied size and shape of the embryo. Furthermore, genetic analysis confirms that Shai1 is required for autonomous formation of the embryo pocket in endosperm of emb mutants. Analyses of genetic mosaic kernels generated by B-A translocation revealed that expression of Shai1 in the endosperm could partially rescue a shai1 mutant embryo and suggested that Shai1 is involved in non-cell autonomous signaling from endosperm that supports normal embryo growth. Taken together, we propose that the Shai1 gene functions in regulating embryonic patterning during grass embryogenesis partly by endosperm-to-embryo interaction.
Collapse
Affiliation(s)
- Manaki Mimura
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Toru Kudo
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Shan Wu
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Donald R McCarty
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Masaharu Suzuki
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
33
|
Huang X, Peng X, Xie F, Mao W, Chen H, Sun MX. The stereotyped positioning of the generative cell associated with vacuole dynamics is not required for male gametogenesis in rice pollen. THE NEW PHYTOLOGIST 2018; 218:463-469. [PMID: 29424430 DOI: 10.1111/nph.15038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 01/14/2018] [Indexed: 06/08/2023]
Abstract
During male gametogenesis in cereals, the generative cell undergoes a positioning process that parallels the dynamics of the central vacuole, which is believed to be associated with generative cell movement in the male gametophyte. However, the impact of the generative cell positioning and the central vacuole dynamics on male gametogenesis has remained poorly understood. Here, we report that OsGCD1 (GAMETE CELLS DEFECTIVE1) dysfunction influenced pollen development and disrupted pollen germination. Loss of function of OsGCD1 altered the central vacuole dynamics and the generative cell was mispositioned. Nevertheless, twin sperm cells were generated normally, indicating that gametogenesis does not rely on positional information as long as a generative cell is produced. The normal vacuole dynamics seems necessary only for pollen maturation and germination. Our findings also indicate that osgcd1 mutation resulted in rice male sterility in which pollen has full cell viability and generated normal gametes, but lacks the potential to germinate.
Collapse
Affiliation(s)
- Xiaorong Huang
- College of Life Science, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| | - Xiongbo Peng
- College of Life Science, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| | - Fei Xie
- College of Life Science, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| | - Wanying Mao
- College of Life Science, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| | - Hong Chen
- College of Life Science, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| | - Meng-Xiang Sun
- College of Life Science, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
34
|
Erdmann RM, Hoffmann A, Walter HK, Wagenknecht HA, Groß-Hardt R, Gehring M. Molecular movement in the Arabidopsis thaliana female gametophyte. PLANT REPRODUCTION 2017; 30:141-146. [PMID: 28695277 PMCID: PMC5599461 DOI: 10.1007/s00497-017-0304-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/02/2017] [Indexed: 05/03/2023]
Abstract
Size limits on molecular movement among female gametes. Cellular decisions can be influenced by information communicated from neighboring cells. Communication can occur via signaling or through the direct transfer of molecules. Movement of RNAs and proteins has frequently been observed among symplastically connected plant cells. In flowering plants, the female gametes, the egg cell and central cell, are closely apposed within the female gametophyte. Here we investigated the ability of fluorescently labeled dyes and small RNAs to move from the Arabidopsis thaliana central cell to the egg apparatus following microinjection. These results define a size limit of at least 20 kDa for symplastic movement between the two gametes, somewhat larger than that previously observed in Torenia fournieri. Our results indicate that symplastic connectivity in Arabidopsis thaliana changes after fertilization and suggest that prior to fertilization mechanisms are in place to facilitate small RNA movement from the central cell to the egg cell and synergids.
Collapse
Affiliation(s)
- Robert M Erdmann
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Anja Hoffmann
- Department of Plant Molecular Genetics, University of Bremen, 28359, Bremen, Germany
| | - Heidi-Kristin Walter
- Institute for Organic Chemistry, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Hans-Achim Wagenknecht
- Institute for Organic Chemistry, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | - Rita Groß-Hardt
- Department of Plant Molecular Genetics, University of Bremen, 28359, Bremen, Germany
| | - Mary Gehring
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
35
|
Huang J, Chen D, Yan H, Xie F, Yu Y, Zhang L, Sun M, Peng X. Acetylglutamate kinase is required for both gametophyte function and embryo development in Arabidopsis thaliana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:642-656. [PMID: 28294536 DOI: 10.1111/jipb.12536] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/14/2017] [Indexed: 06/06/2023]
Abstract
The specific functions of the genes encoding arginine biosynthesis enzymes in plants are not well characterized. We report the isolation and characterization of Arabidopsis thaliana N-acetylglutamate kinase (NAGK), which catalyzes the second step of arginine biosynthesis. NAGK is a plastid-localized protein and is expressed during most developmental processes in Arabidopsis. Heterologous expression of the Arabidopsis NAGK gene in a NAGK-deficient Escherichia coli strain fully restores bacterial growth on arginine-deficient medium. nagk mutant pollen tubes grow more slowly than wild type pollen tubes and the phenotype is restored by either specifically through complementation by NAGK in pollen, or exogenous supplementation of arginine. nagk female gametophytes are defective in micropylar pollen tube guidance due to the fact that female gametophyte cell fate specification was specifically affected. Expression of NAGK in synergid cells rescues the defect of nagk female gametophytes. Loss-of-function of NAGK results in Arabidopsis embryos not developing beyond the four-celled embryo stage. The embryo-defective phenotype in nagk/NAGK plants cannot be rescued by watering nagk/NAGK plants with arginine or ornithine supplementation. In conclusion, our results reveal a novel role of NAGK and arginine in regulating gametophyte function and embryo development, and provide valuable insights into arginine transport during embryo development.
Collapse
Affiliation(s)
- Jie Huang
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Dan Chen
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hailong Yan
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Fei Xie
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ying Yu
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Liyao Zhang
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Mengxiang Sun
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiongbo Peng
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
36
|
Qu LJ, Sun MX. Plant reproduction: Recent discoveries from China. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:591-593. [PMID: 28805951 DOI: 10.1111/jipb.12576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Affiliation(s)
- Li-Jia Qu
- College of Life Sciences, Peking University, Beijing, China
| | - Meng-Xiang Sun
- College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
37
|
Huang X, Peng X, Sun MX. OsGCD1 is essential for rice fertility and required for embryo dorsal-ventral pattern formation and endosperm development. THE NEW PHYTOLOGIST 2017; 215:1039-1058. [PMID: 28585692 DOI: 10.1111/nph.14625] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/25/2017] [Indexed: 05/20/2023]
Abstract
Rice fertility is critical for rice reproduction and is thus a focus of interest. Most studies have addressed male sterility and its relation to rice production. The mechanisms of regulation of embryogenesis and endosperm development are essential for rice reproduction, but remain largely unknown. Here, we report a functional analysis of the rice gene OsGCD1, which encodes a highly conserved homolog of Arabidopsis GCD1 (GAMETE CELLS DEFECTIVE1). OsGCD1 mutants were generated using the CRISPR/Cas9 system and subjected to functional analysis. The homozygote mutants cannot be obtained, whereas heterozygotes showed altered phenotypes. In the majority of aborted seeds, the endosperm nucleus divided a limited number of times. The free nuclei were distributed only at the micropylar end of embryo sacs, and their oriented positioning was blocked. In addition, aleurone differentiation was interrupted. The embryo developed slowly, and pattern formation, particularly the dorsal-ventral pattern and symmetry establishment, of embryos was disturbed. Thus, the embryos showed various morphological and structural dysplasias. Our findings reveal that OsGCD1 is essential for rice fertility and is required for dorsal-ventral pattern formation and endosperm free nucleus positioning, suggesting a critical role in sexual reproduction of both monocotyledon and dicotyledon plants.
Collapse
Affiliation(s)
- Xiaorong Huang
- College of Life Science, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| | - Xiongbo Peng
- College of Life Science, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| | - Meng-Xiang Sun
- College of Life Science, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
38
|
Lu C, Yu F, Tian L, Huang X, Tan H, Xie Z, Hao X, Li D, Luan S, Chen L. RPS9M, a Mitochondrial Ribosomal Protein, Is Essential for Central Cell Maturation and Endosperm Development in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:2171. [PMID: 29312411 PMCID: PMC5744018 DOI: 10.3389/fpls.2017.02171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 12/11/2017] [Indexed: 05/15/2023]
Abstract
During double fertilization of angiosperms, the central cell of the female gametophyte fuses with a sperm cell to produce the endosperm, a storage tissue that nourishes the developing embryo within the seed. Although many genetic mutants defective in female gametophytic functions have been characterized, the molecular mechanisms controlling the specification and differentiation of the central cell are still not fully understood. Here, we report a mitochondrial ribosomal protein, RPS9M, is required for central cell maturation. RPS9M was highly expressed in the male and female gametophytes before and after double fertilization. The female gametophytes were defective in the rps9m mutant specifically concerning maturation of central cells. The morphological defects include unfused polar nuclei and smaller central vacuole in central cells. In addition, embryo initiation and early endosperm development were also severely affected in rps9m female gametophytes even after fertilized with wild type pollens. The RPS9M can interact with ANK6, an ankyrin-repeat protein in mitochondria previously reported to be required for fertilization. The expression pattern and mutant phenotype of RPS9M are similar to those of ANK6 as well, suggesting that RPS9M may work together with ANK6 in controlling female gametophyte development, possibly by regulating the expression of some mitochondrial proteins.
Collapse
Affiliation(s)
- Changqing Lu
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, China
| | - Feng Yu
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, China
| | - Lianfu Tian
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, China
| | - Xiaoying Huang
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, China
| | - Hong Tan
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, China
| | - Zijing Xie
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, China
| | - Xiaohua Hao
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, China
| | - Dongping Li
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, China
- *Correspondence: Dongping Li, Sheng Luan, Liangbi Chen,
| | - Sheng Luan
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, China
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
- *Correspondence: Dongping Li, Sheng Luan, Liangbi Chen,
| | - Liangbi Chen
- Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, Hunan Normal University, Changsha, China
- *Correspondence: Dongping Li, Sheng Luan, Liangbi Chen,
| |
Collapse
|
39
|
He S, Sun Y, Yang Q, Zhang X, Huang Q, Zhao P, Sun M, Liu J, Qian W, Qin G, Gu H, Qu LJ. A Novel Imprinted Gene NUWA Controls Mitochondrial Function in Early Seed Development in Arabidopsis. PLoS Genet 2017; 13:e1006553. [PMID: 28095407 PMCID: PMC5283763 DOI: 10.1371/journal.pgen.1006553] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 01/31/2017] [Accepted: 12/24/2016] [Indexed: 12/28/2022] Open
Abstract
Imprinted genes display biased expression of paternal and maternal alleles and are only found in mammals and flowering plants. Compared to several hundred imprinted genes that are functionally characterized in mammals, very few imprinted genes were confirmed in plants and even fewer of them have been functionally investigated. Here, we report a new imprinted gene, NUWA, in plants. NUWA is an essential gene, because loss of its function resulted in reduced transmission through the female gametophyte and defective cell/nuclear proliferation in early Arabidopsis embryo and endosperm. NUWA is a maternally expressed imprinted gene, as only the maternal allele of NUWA is transcribed and translated from gametogenesis to the 16-cell globular embryo stage after fertilization, and the de novo transcription of the maternal allele of NUWA starts from the zygote stage. Different from other identified plant imprinted genes whose encoded proteins are mostly localized to the nucleus, the NUWA protein was localized to the mitochondria and was essential for mitochondria function. Our work uncovers a novel imprinted gene of a previously unidentified type, namely, a maternal-specific expressed nuclear gene with its encoded protein localizing to and controlling the function of the maternally inherited mitochondria. This reveals a unique mechanism of maternal control of the mitochondria and adds an extra layer of complexity to the regulation of nucleus-organelle coordination during early plant development.
Collapse
Affiliation(s)
- Shan He
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Yan Sun
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Qian Yang
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Xiangyu Zhang
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Qingpei Huang
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Peng Zhao
- Department of Cell and Development Biology, College of Life Science, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, China
| | - Mengxiang Sun
- Department of Cell and Development Biology, College of Life Science, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, China
| | - Jingjing Liu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Weiqiang Qian
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Genji Qin
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Hongya Gu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
- The National Plant Gene Research Center (Beijing), Beijing, China
| | - Li-Jia Qu
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
- The National Plant Gene Research Center (Beijing), Beijing, China
| |
Collapse
|
40
|
An Efficient Antipodal Cell Isolation Method for Screening of Cell Type-Specific Genes in Arabidopsis thaliana. PLoS One 2016; 11:e0166390. [PMID: 27875553 PMCID: PMC5119737 DOI: 10.1371/journal.pone.0166390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 10/27/2016] [Indexed: 11/19/2022] Open
Abstract
In flowering plants, the mature embryo sac consists of seven cells, namely two synergid cells and an egg cell at the micropylar end, one central cell, and three antipodal cells at the chalazal end. Excluding the antipodal cell, as a model for the study of cell fate determination and cell type specification, the roles of these embryo sac component cells in fertilization and seed formation have been widely investigated. At this time, little is known regarding the function of antipodal cells and their cell type-specific gene expression patterns. One reason for this is difficulties related to the observation and isolation of cells for detailed functional analyses. Here, we report a method for antipodal cell isolation and transcriptome analysis. We identified antipodal cell-specific marker line K44-1, and based on this marker line, established a procedure allowing us to isolate antipodal cells with both high quality and quantity. PCR validation of antipodal-specific genes from antipodal cell cDNA showed that the isolated cells are qualified and can be used for transcriptome analysis and screening of cell type-specific marker genes. The isolated cells could keep viable for a week in culture condition. This method can be used to efficiently isolate antipodal cells of high quality and will promote the functional investigation of antipodal cells in Arabidopsis thaliana. This increases our understanding of the molecular regulatory mechanism of antipodal cell specification.
Collapse
|
41
|
Xie T, Chen D, Wu J, Huang X, Wang Y, Tang K, Li J, Sun M, Peng X. Growing Slowly 1 locus encodes a PLS-type PPR protein required for RNA editing and plant development in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5687-5698. [PMID: 27670716 PMCID: PMC5066490 DOI: 10.1093/jxb/erw331] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Most pentatricopeptide repeat (PPR) proteins are involved in organelle post-transcriptional processes, including RNA editing. The PPR proteins include the PLS subfamily, containing characteristic triplets of P, L, and S motifs; however, their editing mechanisms and roles in developmental processes are not fully understood. In this study, we isolated the Arabidopsis thaliana Growing slowly 1 (AtGRS1) gene and showed that it functions in RNA editing and plant development. Arabidopsis null mutants of grs1 exhibit slow growth and sterility. Further analysis showed that cell division activity was reduced dramatically in the roots of grs1 plants. We determined that GRS1 is a nuclear-encoded mitochondria-localized PPR protein, and is a member of the PLS subfamily. GRS1 is responsible for the RNA editing at four specific sites of four mitochondrial mRNAs: nad1-265, nad4L-55, nad6-103, and rps4-377 The first three of these mRNAs encode for the subunits of complex I of the electron transport chain in mitochondria. Thus, the activity of complex I is strongly reduced in grs1 Changes in RPS4 editing in grs1 plants affect mitochondrial ribosome biogenesis. Expression of the alternative respiratory pathway and the abscisic acid response gene ABI5 were up-regulated in grs1 mutant plants Genetic analysis revealed that ABI5 is involved in the short root phenotype of grs1 Taken together, our results indicate that AtGRS1 regulates plant development by controlling RNA editing in Arabidopsis.
Collapse
Affiliation(s)
- Tingting Xie
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Dan Chen
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jian Wu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaorong Huang
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yifan Wang
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Keli Tang
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Mengxiang Sun
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiongbo Peng
- State Key Laboratory for Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
42
|
Ribosomal protein L18aB is required for both male gametophyte function and embryo development in Arabidopsis. Sci Rep 2016; 6:31195. [PMID: 27502163 PMCID: PMC4977502 DOI: 10.1038/srep31195] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/14/2016] [Indexed: 01/01/2023] Open
Abstract
Ribosomal proteins are involved in numerous essential cell activities in plants. However, the regulatory role in specific plant developmental processes has not yet been fully elucidated. Here we identified the new ribosomal protein L18aB, which is specifically involved in sexual reproduction and plays a critical role in male gametophyte development and embryo pattern formation. In rpl18aB mutant plants, the mature pollen grains can germinate normally, but their competitiveness for growing in the style is significantly reduced. More interestingly, RPL18aB is required in early embryogenesis. rpl18aB embryos displayed irregular cell division orientations in the early pro-embryo and arrested at the globular stage with possible, secondary pattern formation defects. Further investigations revealed that the polar transportation of auxin is disturbed in the rpl18aB mutant embryos, which may explain the observed failure in embryo pattern formation. The cell type-specific complementation of RPL18aB in rpl18aB was not able to recover the phenotype, indicating that RPL18aB may play an essential role in early cell fate determination. This work unravels a novel role in embryo development for a ribosomal protein, and provides insight into regulatory mechanism of early embryogenesis.
Collapse
|
43
|
Maruyama D, Ohtsu M, Higashiyama T. Cell fusion and nuclear fusion in plants. Semin Cell Dev Biol 2016; 60:127-135. [PMID: 27473789 DOI: 10.1016/j.semcdb.2016.07.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 10/21/2022]
Abstract
Eukaryotic cells are surrounded by a plasma membrane and have a large nucleus containing the genomic DNA, which is enclosed by a nuclear envelope consisting of the outer and inner nuclear membranes. Although these membranes maintain the identity of cells, they sometimes fuse to each other, such as to produce a zygote during sexual reproduction or to give rise to other characteristically polyploid tissues. Recent studies have demonstrated that the mechanisms of plasma membrane or nuclear membrane fusion in plants are shared to some extent with those of yeasts and animals, despite the unique features of plant cells including thick cell walls and intercellular connections. Here, we summarize the key factors in the fusion of these membranes during plant reproduction, and also focus on "non-gametic cell fusion," which was thought to be rare in plant tissue, in which each cell is separated by a cell wall.
Collapse
Affiliation(s)
- Daisuke Maruyama
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa 244-0813, Japan.
| | - Mina Ohtsu
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Tetsuya Higashiyama
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan; Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan; JST ERATO Higashiyama Live-Holonics Project, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| |
Collapse
|
44
|
Yu C, Wang L, Xu S, Zeng Y, He C, Chen C, Huang W, Zhu Y, Hu J. Mitochondrial ORFH79 is Essential for Drought and Salt Tolerance in Rice. PLANT & CELL PHYSIOLOGY 2015; 56:2248-2258. [PMID: 26454879 DOI: 10.1093/pcp/pcv137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/16/2015] [Indexed: 06/05/2023]
Abstract
The mitochondrion is deemed to be one of the most important organelles, and plays an essential role in various biological processes. Nonetheless, the role of mitochondria in response to abiotic stress remains unclear. Here, we report that accumulation of the cytoplasmic male sterility (CMS) protein ORFH79 in the vegetative tissues resulted in the dysfunction of mitochondria with decreased enzymatic activities of respiratory chain complexes, reduced ATP content and even a morphological change of the mitochondria. However, the suppression of orfH79 by overexpressing a fertility restorer gene Rf5, which is targeted to mitochondria and induced an endonucleolytic cleavage on the atp6-orfH79 transcripts, could recover the function of mitochondria and further significantly improved the tolerance to drought and salt stress. The above evidence suggests that the mitochondrion plays a pivotal role in tolerance to drought and salt stress in rice.
Collapse
Affiliation(s)
- Changchun Yu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Lili Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Shanglin Xu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Yafei Zeng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Chunlan He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Cong Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Wenchao Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Yingguo Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Jun Hu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China Suzhou Institute of Wuhan University, Suzhou, 215123, Jiangsu, China
| |
Collapse
|
45
|
Song X, Yuan L, Sundaresan V. Antipodal cells persist through fertilization in the female gametophyte of Arabidopsis. PLANT REPRODUCTION 2014; 27:197-203. [PMID: 25389024 DOI: 10.1007/s00497-014-0251-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 10/29/2014] [Indexed: 05/09/2023]
Abstract
The female gametophyte of most flowering plants forms four cell types after cellularization, namely synergid cell, egg cell, central cell and antipodal cell. Of these, only the antipodal cells have no established functions, and it has been proposed that in many plants including Arabidopsis, the antipodal cells undergo programmed cell death during embryo sac maturation and prior to fertilization. Here, we examined the expression of female gametophyte-specific fluorescent reporters in mature embryo sacs of Arabidopsis, and in developing seeds shortly after fertilization. We observed expression of the fluorescence from the reporter genes in the three antipodal cells in the mature stage embryo sac, and continuing through the early syncytial endosperm stages. These observations suggest that rather than undergoing programmed cell death and degenerating at the mature stage of female gametophyte as previously supposed, the antipodal cells in Arabidopsis persist beyond fertilization, even when the other cell types are no longer present. The results support the concept that the Arabidopsis female gametophyte at maturity should be considered to be composed of seven cells and four cell types, rather than the previously prevailing view of four cells and three cell types.
Collapse
Affiliation(s)
- Xiaoya Song
- Department of Plant Biology, University of California-Davis, One Shields Ave., Davis, CA, 95616, USA
| | | | | |
Collapse
|
46
|
Martin MV, Distéfano AM, Bellido A, Córdoba JP, Soto D, Pagnussat GC, Zabaleta E. Role of mitochondria during female gametophyte development and fertilization in A. thaliana. Mitochondrion 2014; 19 Pt B:350-6. [DOI: 10.1016/j.mito.2014.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/27/2014] [Accepted: 01/31/2014] [Indexed: 10/25/2022]
|
47
|
Heydlauff J, Groß-Hardt R. Love is a battlefield: programmed cell death during fertilization. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1323-30. [PMID: 24567492 DOI: 10.1093/jxb/eru030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Plant development and growth is sustained by the constant generation of tremendous amounts of cells, which become integrated into various types of tissues and organs. What is all too often overlooked is that this thriving life also requires the targeted degeneration of selected cells, which undergo cell death according to genetically encoded programmes or environmental stimuli. The side-by-side existence of generation and demise is particularly evident in the haploid phase of the flowering plants cycle. Here, the lifespan of terminally differentiated accessory cells contrasts with that of germ cells, which by definition live on to form the next generation. In fact, with research in recent years it is becoming increasingly clear that the gametophytes of flowering plants constitute an attractive and powerful system for investigating the molecular mechanisms underlying selective cell death.
Collapse
Affiliation(s)
- Juliane Heydlauff
- Center for Plant Molecular Biology (ZMBP), University of Tuebingen, Auf der Morgenstelle 1, D-72076 Tübingen, Germany
| | | |
Collapse
|
48
|
Wu JJ, Peng XB, Sun MX. Mitochondria-responsive signaling between egg and central cell controls their coordinated maturation. PLANT SIGNALING & BEHAVIOR 2013; 8:e24076. [PMID: 23455024 PMCID: PMC3907393 DOI: 10.4161/psb.24076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Recent studies suggest a complex regulatory network in female gametophyte of angiosperm. The cell-cell communication between female gametes was confirmed during their maturation and functional specialization. The mitochondria-responsive signaling may play a critical role in this process. Here, we briefly summarized the recent discussion on this topic and proposed a two-pathway's mechanism for regulating coordinated development of the female gamete cells.
Collapse
|