1
|
Gibbs JR, Mei C, Wunderlich Z. Beyond the heat shock pathway: Heat stress responses in Drosophila development. Dev Biol 2025; 518:53-60. [PMID: 39557149 PMCID: PMC11703687 DOI: 10.1016/j.ydbio.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024]
Abstract
Heat stress has broad effects on an organism and is an inevitable part of life. Embryos face a particular challenge when faced with heat stress - the intricate molecular processes that pattern the embryo can all be affected by heat, and the embryo lacks some of the strategies that adults can use to manage or avoid heat stress. We use Drosophila melanogaster as a model, as insects are capable of developing normally under a wide range of temperatures and are exposed to daily temperature swings as they develop. Research has focused on the heat shock pathway and the transcription of heat shock proteins as the main response to heat and heat damage. This review explores embryonic heat responses beyond the heat shock pathway. We examine the effects of heat from a biochemical standpoint, as well as highlighting other mechanisms of heat stress regulation, such as miRNA activity or other signaling pathways. We discuss how different elements of the heat stress response must be coordinated across the embryo to enable development under a wide range of temperatures. Studying heat stress in Drosophila melanogaster can be a powerful lens into how developmental systems ensure robustness to environmental factors.
Collapse
Affiliation(s)
- Julia R Gibbs
- Department of Biology, Biological Design Center, Boston University, Boston, MA, 02215, USA
| | - Christian Mei
- Department of Biology, Biological Design Center, Boston University, Boston, MA, 02215, USA
| | - Zeba Wunderlich
- Department of Biology, Biological Design Center, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
2
|
Kim MS, Yang Z, Lee JS. In silico identification and characterization of microRNAs from rotifers, cladocerans, and copepods. MARINE POLLUTION BULLETIN 2024; 209:117098. [PMID: 39442355 DOI: 10.1016/j.marpolbul.2024.117098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024]
Abstract
MicroRNAs (miRNAs) are short non-coding RNA molecules that regulate post-transcription and influence various biological processes across species. Despite various studies of miRNAs in vertebrates, plants, and other organisms, miRNA data in aquatic invertebrates are insufficient. In this study, we identified miRNAs from four aquatic invertebrate species that are widely used in aquatic toxicology: the rotifer Brachionus koreanus, the water flea Daphnia magna, the cyclopoid copepod Paracyclopina nana, and the harpacticoid copepod Tigriopus japonicus, using next-generation sequencing and in silico analysis. We identified total 188, 41, 47, and 100 miRNAs from each species, and target genes were predicted based on 3'-untranslated region information. Target prediction and functional annotation results provided the biological processes of these miRNAs in various development-related mechanisms, signaling transduction, and metabolism-related pathways. Moreover, the network between the miRNAs and their targets concerning defense-related and antioxidant genes suggests the suitability of miRNAs as biomarkers in ecotoxicological studies.
Collapse
Affiliation(s)
- Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
3
|
Carney TD, Shcherbata HR. Tumor suppressor miR-317 and lncRNA Peony are expressed from a polycistronic non-coding RNA locus that regulates germline differentiation and testis morphology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617551. [PMID: 39416153 PMCID: PMC11482908 DOI: 10.1101/2024.10.10.617551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
This research focuses on investigating the impact of non-coding RNAs on stem cell biology and differentiation processes. We found that miR-317 plays a role in germline stem cell progeny differentiation. miR-317 and its neighbor, the lncRNA Peony, originate and are co-expressed from a singular polycistronic non-coding RNA locus. Alternative polyadenylation is implicated in regulation of their differential expression. While the increased expression of the lncRNA Peony results in the disruption of the muscle sheath covering the testis, the absence of miR-317 leads to the emergence of germline tumors in young flies. The deficiency of miR-317 increases Notch signaling activity in the somatic cyst cells, which drives germline tumorigenesis. Germline tumors also arise from upregulation of several predicted targets of miR-317, among which are regulators of the Notch pathway. This implicates miR-317 as a novel tumor suppressor that modulates Notch signaling strength.
Collapse
Affiliation(s)
- Travis D Carney
- Institute of Cell Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
- Mount Desert Island Biological Laboratory, Bar Harbor, ME 04609, USA
| | - Halyna R Shcherbata
- Institute of Cell Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
- Mount Desert Island Biological Laboratory, Bar Harbor, ME 04609, USA
| |
Collapse
|
4
|
Zhao L, Xue H, Elumalai P, Zhu X, Wang L, Zhang K, Li D, Ji J, Luo J, Cui J, Gao X. Sublethal acetamiprid affects reproduction, development and disrupts gene expression in Binodoxys communis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33415-6. [PMID: 38656721 DOI: 10.1007/s11356-024-33415-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
At present, understanding of neonicotinoid toxicity in arthropods remains limited. We here evaluated the lethal and sublethal effects of acetamiprid in F0 and F1 generations of Binodoxys communis using a range of sublethal concentrations. The 10% lethal concentration (LC10) and half lethal concentration (LC25) of ACE had negative effects on the B. communis survival rate, adult longevity, parasitism rate, and emergence rate, and significantly prolonged the duration of the developmental cycle. ACE also had intergenerational effects, with some biological indices affected in the F1 generation after pesticide exposure. Transcriptomic analysis demonstrated that differentially expressed genes were enriched in specific pathways including the amino acid metabolism, carbohydrate metabolism, energy metabolism, exogenous metabolism, signal transduction, and glutathione metabolism pathways. These results indicated strong contact toxicity of ACE to B. communis, which may inhibit their biological control capacity. These results improve our understanding of the toxicological mechanisms of parasitic natural enemies in response to insecticide exposure.
Collapse
Affiliation(s)
- Likang Zhao
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Hui Xue
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Punniyakotti Elumalai
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xiangzhen Zhu
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Li Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Kaixin Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Dongyang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Jichao Ji
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Junyu Luo
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Jinjie Cui
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xueke Gao
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
5
|
Quesnelle DC, Bendena WG, Chin-Sang ID. A Compilation of the Diverse miRNA Functions in Caenorhabditis elegans and Drosophila melanogaster Development. Int J Mol Sci 2023; 24:ijms24086963. [PMID: 37108126 PMCID: PMC10139094 DOI: 10.3390/ijms24086963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
MicroRNAs are critical regulators of post-transcriptional gene expression in a wide range of taxa, including invertebrates, mammals, and plants. Since their discovery in the nematode, Caenorhabditis elegans, miRNA research has exploded, and they are being identified in almost every facet of development. Invertebrate model organisms, particularly C. elegans, and Drosophila melanogaster, are ideal systems for studying miRNA function, and the roles of many miRNAs are known in these animals. In this review, we compiled the functions of many of the miRNAs that are involved in the development of these invertebrate model species. We examine how gene regulation by miRNAs shapes both embryonic and larval development and show that, although many different aspects of development are regulated, several trends are apparent in the nature of their regulation.
Collapse
Affiliation(s)
| | - William G Bendena
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Ian D Chin-Sang
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
6
|
Li C, Wu W, Tang J, Feng F, Chen P, Li B. Identification and Characterization of Development-Related microRNAs in the Red Flour Beetle, Tribolium castaneum. Int J Mol Sci 2023; 24:ijms24076685. [PMID: 37047657 PMCID: PMC10094939 DOI: 10.3390/ijms24076685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 04/07/2023] Open
Abstract
MicroRNAs (miRNAs) play important roles in insect growth and development, but they were poorly studied in insects. In this study, a total of 883 miRNAs were detected from the early embryo (EE), late larva (LL), early pupa (EP), late pupa (LP), and early adult (EA) of Tribolium castaneum by microarray assay. Further analysis identified 179 differentially expressed unique miRNAs (DEmiRNAs) during these developmental stages. Of the DEmiRNAs, 102 DEmiRNAs exhibited stage-specific expression patterns during development, including 53 specifically highly expressed miRNAs and 20 lowly expressed miRNAs in EE, 19 highly expressed miRNAs in LL, 5 weakly expressed miRNAs in EP, and 5 abundantly expressed miRNAs in EA. These miRNAs were predicted to target 747, 265, 472, 234, and 121 genes, respectively. GO enrichment analysis indicates that the targets were enriched by protein phosphorylation, calcium ion binding, sequence-specific DNA binding transcription factor activity, and cytoplasm. An RNA interference-mediated knockdown of the DEmiRNAs tca-miR-6-3p, tca-miR-9a-3p, tca-miR-9d-3p, tca-miR-11-3p, and tca-miR-13a-3p led to defects in metamorphosis and wing development of T. castaneum. This study has completed the identification and characterization of development-related miRNAs in T. castaneum, and will enable us to investigate their roles in the growth and development of insect.
Collapse
Affiliation(s)
- Chengjun Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Wei Wu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jing Tang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Fan Feng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Peng Chen
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
7
|
Moucaud B, Prince E, Jagla K, Soler C. Developmental origin of tendon diversity in Drosophila melanogaster. Front Physiol 2023; 14:1176148. [PMID: 37143929 PMCID: PMC10151533 DOI: 10.3389/fphys.2023.1176148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/28/2023] [Indexed: 05/06/2023] Open
Abstract
Myogenesis is a developmental process that is largely conserved in both Drosophila and higher organisms. Consequently, the fruit fly is an excellent in vivo model for identifying the genes and mechanisms involved in muscle development. Moreover, there is growing evidence indicating that specific conserved genes and signaling pathways govern the formation of tissues that connect the muscles to the skeleton. In this review, we present an overview of the different stages of tendon development, from the specification of tendon progenitors to the assembly of a stable myotendinous junction across three different myogenic contexts in Drosophila: larval, flight and leg muscle development. We underline the different aspects of tendon cell specification and differentiation in embryo and during metamorphosis that result into tendon morphological and functional diversity.
Collapse
|
8
|
Li X, Zhao MH, Tian MM, Zhao J, Cai WL, Hua HX. An InR/mir-9a/NlUbx regulatory cascade regulates wing diphenism in brown planthoppers. INSECT SCIENCE 2021; 28:1300-1313. [PMID: 32935926 DOI: 10.1111/1744-7917.12872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/09/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
Wing polymorphism significantly contributes to the ecological success of some insect species. For example, the brown planthopper (BPH) Nilaparvata lugens, which is one of the most destructive rice pests in Asia, can develop into either highly mobile long-winged or highly fecund short-winged adult morphs. A recent study reported a highly provocative result that the Hox gene Ultrabithorax (Ubx) is expressed in BPH forewings and showed that this wing development gene is differentially expressed in nymphs that develop into long-winged versus short-winged morphs. Here, we found that Ubx may be a mir-9a target, and used dual luciferase reporter assays and injected micro RNA (miRNA) mimics and inhibitors to confirm the interactions between mir-9a and NlUbx. We measured the mir-9a and NlUbx expression profiles in nymphs and found that the expression of these two biomolecules was negatively correlated. By rearing BPH nymphs on host rice plants with different nutritional status, we were able to characterize a regulatory cascade between insulin receptor genes, mir-9a, and NlUbx that regulate wing length in BPHs. When host quality was low, NlInR1 expression in the nymph terga increased and NlInR2 expression decreased; this led to a higher mir-9a level, which in turn reduced the NlUbx transcript level and ultimately resulted in longer wing lengths. Beyond extending our understanding of the interplay between host plant status and genetic events that modulate polymorphism, we demonstrated both the upstream signal and miRNA-based regulatory mechanism that control Ubx expression in BPH forewings.
Collapse
Affiliation(s)
- Xiang Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mu-Hua Zhao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Miao-Miao Tian
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jing Zhao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wan-Lun Cai
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hong-Xia Hua
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
9
|
Matsumoto Y, Miglietta MP. Cellular Reprogramming and Immortality: Expression Profiling Reveals Putative Genes Involved in Turritopsis dohrnii's Life Cycle Reversal. Genome Biol Evol 2021; 13:evab136. [PMID: 34132809 PMCID: PMC8480191 DOI: 10.1093/gbe/evab136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2021] [Indexed: 12/02/2022] Open
Abstract
To gather insight on the genetic network of cell reprogramming and reverse development in a nonmodel cnidarian system, we produced and annotated a transcriptome of the hydrozoan Turritopsis dohrnii, whose medusae respond to damage or senescence by metamorphosing into a juvenile stage (the polyp), briefly passing through an intermediate and uncharacterized stage (the cyst), where cellular transdifferentiation occurs. We conducted sequential and pairwise differential gene expression (DGE) analyses of the major life cycle stages involved in the ontogenetic reversal of T. dohrnii. Our DGE analyses of sequential stages of T. dohrnii's life cycle stages show that novel and characterized genes associated with aging/lifespan, regulation of transposable elements, DNA repair, and damage response, and Ubiquitin-related processes, among others, were enriched in the cyst stage. Our pairwise DGE analyses show that, when compared with the colonial polyp, the medusa is enriched with genes involved in membrane transport, the nervous system, components of the mesoglea, and muscle contraction, whereas genes involved in chitin metabolism and the formation of the primary germ layers are suppressed. The colonial polyp and reversed polyp (from cyst) show significant differences in gene expression. The reversed polyp is enriched with genes involved in processes such as chromatin remodeling and organization, matrix metalloproteinases, and embryonic development whereas suppressing genes involved in RAC G-protein signaling pathways. In summary, we identify genetic networks potentially involved in the reverse development of T. dohrnii and produce a transcriptome profile of all its life cycle stages, and paving the way for its use as a system for research on cell reprogramming.
Collapse
Affiliation(s)
- Yui Matsumoto
- Department of Marine Biology, Texas A&M University at Galveston, Texas, USA
| | | |
Collapse
|
10
|
Yatsenko AS, Kucherenko MM, Xie Y, Urlaub H, Shcherbata HR. Exocyst-mediated membrane trafficking of the lissencephaly-associated ECM receptor dystroglycan is required for proper brain compartmentalization. eLife 2021; 10:63868. [PMID: 33620318 PMCID: PMC7929561 DOI: 10.7554/elife.63868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
To assemble a brain, differentiating neurons must make proper connections and establish specialized brain compartments. Abnormal levels of cell adhesion molecules disrupt these processes. Dystroglycan (Dg) is a major non-integrin cell adhesion receptor, deregulation of which is associated with dramatic neuroanatomical defects such as lissencephaly type II or cobblestone brain. The previously established Drosophila model for cobblestone lissencephaly was used to understand how Dg is regulated in the brain. During development, Dg has a spatiotemporally dynamic expression pattern, fine-tuning of which is crucial for accurate brain assembly. In addition, mass spectrometry analyses identified numerous components associated with Dg in neurons, including several proteins of the exocyst complex. Data show that exocyst-based membrane trafficking of Dg allows its distinct expression pattern, essential for proper brain morphogenesis. Further studies of the Dg neuronal interactome will allow identification of new factors involved in the development of dystroglycanopathies and advance disease diagnostics in humans.
Collapse
Affiliation(s)
- Andriy S Yatsenko
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Mariya M Kucherenko
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Yuanbin Xie
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Research Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.,University Medical Center Göttingen, Bioanalytics, Institute for Clinical Chemistry, Göttingen, Germany
| | - Halyna R Shcherbata
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany.,Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
11
|
Narayanan N, Calve S. Extracellular matrix at the muscle - tendon interface: functional roles, techniques to explore and implications for regenerative medicine. Connect Tissue Res 2021; 62:53-71. [PMID: 32856502 PMCID: PMC7718290 DOI: 10.1080/03008207.2020.1814263] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The muscle-tendon interface is an anatomically specialized region that is involved in the efficient transmission of force from muscle to tendon. Due to constant exposure to loading, the interface is susceptible to injury. Current treatment methods do not meet the socioeconomic demands of reduced recovery time without compromising the risk of reinjury, requiring the need for developing alternative strategies. The extracellular matrix (ECM) present in muscle, tendon, and at the interface of these tissues consists of unique molecules that play significant roles in homeostasis and repair. Better, understanding the function of the ECM during development, injury, and aging has the potential to unearth critical missing information that is essential for accelerating the repair at the muscle-tendon interface. Recently, advanced techniques have emerged to explore the ECM for identifying specific roles in musculoskeletal biology. Simultaneously, there is a tremendous increase in the scope for regenerative medicine strategies to address the current clinical deficiencies. Advancements in ECM research can be coupled with the latest regenerative medicine techniques to develop next generation therapies that harness ECM for treating defects at the muscle-tendon interface. The current work provides a comprehensive review on the role of muscle and tendon ECM to provide insights about the role of ECM in the muscle-tendon interface and discusses the latest research techniques to explore the ECM to gathered information for developing regenerative medicine strategies.
Collapse
Affiliation(s)
- Naagarajan Narayanan
- Paul M. Rady Department of Mechanical Engineering, University of Colorado – Boulder, 1111 Engineering Drive, Boulder, Colorado 80309 – 0427
| | - Sarah Calve
- Paul M. Rady Department of Mechanical Engineering, University of Colorado – Boulder, 1111 Engineering Drive, Boulder, Colorado 80309 – 0427
| |
Collapse
|
12
|
Galagali H, Kim JK. The multifaceted roles of microRNAs in differentiation. Curr Opin Cell Biol 2020; 67:118-140. [PMID: 33152557 DOI: 10.1016/j.ceb.2020.08.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) are major drivers of cell fate specification and differentiation. The post-transcriptional regulation of key molecular factors by microRNAs contributes to the progression of embryonic and postembryonic development in several organisms. Following the discovery of lin-4 and let-7 in Caenorhabditis elegans and bantam microRNAs in Drosophila melanogaster, microRNAs have emerged as orchestrators of cellular differentiation and developmental timing. Spatiotemporal control of microRNAs and associated protein machinery can modulate microRNA activity. Additionally, adaptive modulation of microRNA expression and function in response to changing environmental conditions ensures that robust cell fate specification during development is maintained. Herein, we review the role of microRNAs in the regulation of differentiation during development.
Collapse
Affiliation(s)
- Himani Galagali
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - John K Kim
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
13
|
Poovathumkadavil P, Jagla K. Genetic Control of Muscle Diversification and Homeostasis: Insights from Drosophila. Cells 2020; 9:cells9061543. [PMID: 32630420 PMCID: PMC7349286 DOI: 10.3390/cells9061543] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022] Open
Abstract
In the fruit fly, Drosophila melanogaster, the larval somatic muscles or the adult thoracic flight and leg muscles are the major voluntary locomotory organs. They share several developmental and structural similarities with vertebrate skeletal muscles. To ensure appropriate activity levels for their functions such as hatching in the embryo, crawling in the larva, and jumping and flying in adult flies all muscle components need to be maintained in a functionally stable or homeostatic state despite constant strain. This requires that the muscles develop in a coordinated manner with appropriate connections to other cell types they communicate with. Various signaling pathways as well as extrinsic and intrinsic factors are known to play a role during Drosophila muscle development, diversification, and homeostasis. In this review, we discuss genetic control mechanisms of muscle contraction, development, and homeostasis with particular emphasis on the contractile unit of the muscle, the sarcomere.
Collapse
|
14
|
Liu WG, Luo J, Ren QY, Qu ZQ, Lin HL, Xu XF, Ni J, Xiao RH, Chen RG, Rashid M, Wu ZG, Tan YC, Qiu XF, Luo JX, Yin H, Wang H, Yang ZQ, Xiao S, Liu GY. A Novel miRNA-hlo-miR-2-Serves as a Regulatory Factor That Controls Molting Events by Targeting CPR1 in Haemaphysalis longicornis Nymphs. Front Microbiol 2020; 11:1098. [PMID: 32547523 PMCID: PMC7274079 DOI: 10.3389/fmicb.2020.01098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 05/04/2020] [Indexed: 11/16/2022] Open
Abstract
Successful completion of the molting process requires new epidermal growth and ecdysis of the old cuticle in Haemaphysalis longicornis (H. longicornis). MicroRNAs (miRNAs) participate in the development of organisms by inhibiting the expression of their target mRNAs. In this study, a novel tick-specific miRNA was identified and denoted hlo-miR-2 that serves as a novel regulator of molting events in H. longicornis nymphs by targeting a cuticular protein. The full length of this cuticular protein was first obtained and named it CPR1. A qRT-PCR analysis showed that hlo-miR-2 and CPR1 exhibit significant tissue and temporal specificity and that their transcription levels are negatively correlated during the molting process. CPR1, as a direct target of hlo-miR-2, was identified by a luciferase reporter assay in vitro. Agomir treatment indicated that the overexpression of hlo-miR-2 significantly reduced the protein expression level of CPR1, decreased the molting rate and delayed the molting time point in H. longicornis nymphs. RNA interference (RNAi) experiments demonstrated that CPR1 was significantly associated with the molting process in H. longicornis nymphs. Phenotypic rescue experiments convincingly showed that hlo-miR-2 participated in molting events by targeting CPR1 in H. longicornis nymphs. In summary, we present evidence demonstrating that miRNAs constitute a novel important regulator of molting events in addition to hormones. The described functional evidence implicating CPR1 in molting events contributes to an improved understanding of the distinct functions of the CPR family in ticks and will aid the development of a promising application of cuticular protein RNAi in tick control.
Collapse
Affiliation(s)
- Wen-Ge Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jin Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qiao-Yun Ren
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhi-Qiang Qu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Han-Liang Lin
- Xinjiang Animal Health Supervision Station, Ürümqi, China
| | - Xiao-Feng Xu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jun Ni
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Rong-Hai Xiao
- Ruili Entry-Exit Inspection and Quarantine Bureau Inspection and Quarantine Comprehensive Technology Center, Yunnan, China
| | - Rong-Gui Chen
- Ili Center of Animal Disease Control and Diagnosis, Ili, China
| | - Muhammad Rashid
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ze-Gong Wu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yang-Chun Tan
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiao-Fei Qiu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jian-Xun Luo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Hui Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Department of Engineering, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Zeng-Qi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Sa Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Guang-Yuan Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
15
|
Cerqueira Campos F, Dennis C, Alégot H, Fritsch C, Isabella A, Pouchin P, Bardot O, Horne-Badovinac S, Mirouse V. Oriented basement membrane fibrils provide a memory for F-actin planar polarization via the Dystrophin-Dystroglycan complex during tissue elongation. Development 2020; 147:dev.186957. [PMID: 32156755 DOI: 10.1242/dev.186957] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/24/2020] [Indexed: 12/31/2022]
Abstract
How extracellular matrix contributes to tissue morphogenesis is still an open question. In the Drosophila ovarian follicle, it has been proposed that after Fat2-dependent planar polarization of the follicle cell basal domain, oriented basement membrane (BM) fibrils and F-actin stress fibers constrain follicle growth, promoting its axial elongation. However, the relationship between BM fibrils and stress fibers and their respective impact on elongation are unclear. We found that Dystroglycan (Dg) and Dystrophin (Dys) are involved in BM fibril deposition. Moreover, they also orient stress fibers, by acting locally and in parallel to Fat2. Importantly, Dg-Dys complex-mediated cell-autonomous control of F-actin fiber orientation relies on the preceding BM fibril deposition, indicating two distinct but interdependent functions. Thus, the Dg-Dys complex works as a crucial organizer of the epithelial basal domain, regulating both F-actin and BM. Furthermore, BM fibrils act as a persistent cue for the orientation of stress fibers that are the main effector of elongation.
Collapse
Affiliation(s)
- Fabiana Cerqueira Campos
- iGReD (Institute of Genetics, Reproduction and Development), Université Clermont Auvergne - UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Cynthia Dennis
- iGReD (Institute of Genetics, Reproduction and Development), Université Clermont Auvergne - UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Hervé Alégot
- iGReD (Institute of Genetics, Reproduction and Development), Université Clermont Auvergne - UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Cornelia Fritsch
- iGReD (Institute of Genetics, Reproduction and Development), Université Clermont Auvergne - UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Adam Isabella
- Committee on Development, Regeneration and Stem Cell Biology, and Department of Molecular Genetics and Cell Biology - The University of Chicago, 920 East 58th Street, Chicago IL 60653, USA
| | - Pierre Pouchin
- iGReD (Institute of Genetics, Reproduction and Development), Université Clermont Auvergne - UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Olivier Bardot
- iGReD (Institute of Genetics, Reproduction and Development), Université Clermont Auvergne - UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| | - Sally Horne-Badovinac
- Committee on Development, Regeneration and Stem Cell Biology, and Department of Molecular Genetics and Cell Biology - The University of Chicago, 920 East 58th Street, Chicago IL 60653, USA
| | - Vincent Mirouse
- iGReD (Institute of Genetics, Reproduction and Development), Université Clermont Auvergne - UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France
| |
Collapse
|
16
|
Yatsenko AS, Kucherenko MM, Xie Y, Aweida D, Urlaub H, Scheibe RJ, Cohen S, Shcherbata HR. Profiling of the muscle-specific dystroglycan interactome reveals the role of Hippo signaling in muscular dystrophy and age-dependent muscle atrophy. BMC Med 2020; 18:8. [PMID: 31959160 PMCID: PMC6971923 DOI: 10.1186/s12916-019-1478-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/05/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Dystroglycanopathies are a group of inherited disorders characterized by vast clinical and genetic heterogeneity and caused by abnormal functioning of the ECM receptor dystroglycan (Dg). Remarkably, among many cases of diagnosed dystroglycanopathies, only a small fraction can be linked directly to mutations in Dg or its regulatory enzymes, implying the involvement of other, not-yet-characterized, Dg-regulating factors. To advance disease diagnostics and develop new treatment strategies, new approaches to find dystroglycanopathy-related factors should be considered. The Dg complex is highly evolutionarily conserved; therefore, model genetic organisms provide excellent systems to address this challenge. In particular, Drosophila is amenable to experiments not feasible in any other system, allowing original insights about the functional interactors of the Dg complex. METHODS To identify new players contributing to dystroglycanopathies, we used Drosophila as a genetic muscular dystrophy model. Using mass spectrometry, we searched for muscle-specific Dg interactors. Next, in silico analyses allowed us to determine their association with diseases and pathological conditions in humans. Using immunohistochemical, biochemical, and genetic interaction approaches followed by the detailed analysis of the muscle tissue architecture, we verified Dg interaction with some of the discovered factors. Analyses of mouse muscles and myocytes were used to test if interactions are conserved in vertebrates. RESULTS The muscle-specific Dg complexome revealed novel components that influence the efficiency of Dg function in the muscles. We identified the closest human homologs for Dg-interacting partners, determined their significant enrichment in disease-associations, and verified some of the newly identified Dg interactions. We found that Dg associates with two components of the mechanosignaling Hippo pathway: the WW domain-containing proteins Kibra and Yorkie. Importantly, this conserved interaction manages adult muscle size and integrity. CONCLUSIONS The results presented in this study provide a new list of muscle-specific Dg interactors, further analysis of which could aid not only in the diagnosis of muscular dystrophies, but also in the development of new therapeutics. To regulate muscle fitness during aging and disease, Dg associates with Kibra and Yorkie and acts as a transmembrane Hippo signaling receptor that transmits extracellular information to intracellular signaling cascades, regulating muscle gene expression.
Collapse
Affiliation(s)
- Andriy S Yatsenko
- Gene Expression and Signaling Group, Institute of Cell Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Mariya M Kucherenko
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.,Present Address: Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.,Institute of Physiology, Charité - University Medicine Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Yuanbin Xie
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.,Present Address: University Medical Center, Centre for Anatomy, Institute of Neuroanatomy, Georg-August-University Göttingen, Kreuzbergring 36, 37075, Göttingen, Germany
| | - Dina Aweida
- Faculty of Biology, Technion, 32000, Haifa, Israel
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Research Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.,Bioanalytics Institute for Clinical Chemistry, University Medical Center Goettingen, Robert Koch Strasse 40, 37075, Göttingen, Germany
| | - Renate J Scheibe
- Gene Expression and Signaling Group, Institute of Cell Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | | | - Halyna R Shcherbata
- Gene Expression and Signaling Group, Institute of Cell Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany. .,Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.
| |
Collapse
|
17
|
Shcherbata HR. miRNA functions in stem cells and their niches: lessons from the Drosophila ovary. CURRENT OPINION IN INSECT SCIENCE 2019; 31:29-36. [PMID: 31109670 DOI: 10.1016/j.cois.2018.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/09/2018] [Accepted: 07/16/2018] [Indexed: 06/09/2023]
Abstract
From the very beginning of the miRNA era, Drosophila has served as an excellent model for explanation of miRNA biogenesis. Now Drosophila continues to be used in numerous studies aiming to decipher biological roles of individual miRNAs in a living organism. MiRNAs have emerged as an important regulatory class that adjusts gene expression in response to stress; therefore, it is particularly important to elucidate miRNA-based regulatory networks that appear in response to fluctuations in intrinsic and extrinsic environments. This review explores the major advances in understanding condition-dependent roles of miRNAs in adult stem cell biology using the Drosophila ovarian germline stem cell niche community as a model system.
Collapse
Affiliation(s)
- Halyna R Shcherbata
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen, Germany; Institute of Cell Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany.
| |
Collapse
|
18
|
Dubin JA, Greenberg DR, Iglinski-Benjamin KC, Abrams GD. Effect of micro-RNA on tenocytes and tendon-related gene expression: A systematic review. J Orthop Res 2018; 36:2823-2829. [PMID: 29873411 DOI: 10.1002/jor.24064] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/21/2018] [Indexed: 02/04/2023]
Abstract
The purpose of the review was to synthesize the current literature regarding the effect of miRNA on biological processes known to be involved in tendon and tenocyte development and homeostasis. Using multiple databases, a systematic review was performed with a customized search term crafted to identify any study examining micro-RNA in relation to tendon and/or tenocytes. Results were classified based on the following categories: Gene expression, tenocyte development and differentiation, tendon tissue repair, and tenocyte senescence. A total of 3,112 potentially relevant studies were reviewed, and after exclusion criteria was applied, 15 investigations were included in the final analysis. There were 14 specific miRNA included in this review, with 11 studies reporting on tendon-related gene expression, five reporting on tendon development and/or tenocyte differentiation, six reporting on tendon tissue repair, and five reporting on tenocyte senescence. The miR-29 family was the most commonly reported micro-RNA in the investigation. We also report on a number of micro-RNA which are associated with both positive and negative effects on tendon homeostasis. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:2823-2829, 2018.
Collapse
Affiliation(s)
- Jeremy A Dubin
- Veterans Administration-Palo Alto, Palo Alto, California
| | - Daniel R Greenberg
- Department of Orthopedic Surgery, Stanford University School of Medicine, 341 Galvez Street Mail Code 6175, Stanford, California
| | - Kag C Iglinski-Benjamin
- Veterans Administration-Palo Alto, Palo Alto, California.,Department of Orthopedic Surgery, Stanford University School of Medicine, 341 Galvez Street Mail Code 6175, Stanford, California
| | - Geoffrey D Abrams
- Veterans Administration-Palo Alto, Palo Alto, California.,Department of Orthopedic Surgery, Stanford University School of Medicine, 341 Galvez Street Mail Code 6175, Stanford, California
| |
Collapse
|
19
|
Kucherenko MM, Shcherbata HR. miRNA targeting and alternative splicing in the stress response - events hosted by membrane-less compartments. J Cell Sci 2018; 131:131/4/jcs202002. [PMID: 29444950 DOI: 10.1242/jcs.202002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Stress can be temporary or chronic, and mild or acute. Depending on its extent and severity, cells either alter their metabolism, and adopt a new state, or die. Fluctuations in environmental conditions occur frequently, and such stress disturbs cellular homeostasis, but in general, stresses are reversible and last only a short time. There is increasing evidence that regulation of gene expression in response to temporal stress happens post-transcriptionally in specialized subcellular membrane-less compartments called ribonucleoprotein (RNP) granules. RNP granules assemble through a concentration-dependent liquid-liquid phase separation of RNA-binding proteins that contain low-complexity sequence domains (LCDs). Interestingly, many factors that regulate microRNA (miRNA) biogenesis and alternative splicing are RNA-binding proteins that contain LCDs and localize to stress-induced liquid-like compartments. Consequently, gene silencing through miRNAs and alternative splicing of pre-mRNAs are emerging as crucial post-transcriptional mechanisms that function on a genome-wide scale to regulate the cellular stress response. In this Review, we describe the interplay between these two post-transcriptional processes that occur in liquid-like compartments as an adaptive cellular response to stress.
Collapse
Affiliation(s)
- Mariya M Kucherenko
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen, Germany
| | - Halyna R Shcherbata
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen, Germany
| |
Collapse
|
20
|
Yatsenko AS, Shcherbata HR. Stereotypical architecture of the stem cell niche is spatiotemporally established by miR-125-dependent coordination of Notch and steroid signaling. Development 2018; 145:dev.159178. [PMID: 29361571 PMCID: PMC5818007 DOI: 10.1242/dev.159178] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/15/2018] [Indexed: 12/15/2022]
Abstract
Stem cell niches act as signaling platforms that regulate stem cell self-renewal and sustain stem cells throughout life; however, the specific developmental events controlling their assembly are not well understood. Here, we show that during Drosophila ovarian germline stem cell niche formation, the status of Notch signaling in the cell can be reprogrammed. This is controlled via steroid-induced miR-125, which targets a negative regulator of Notch signaling, Tom. Thus, miR-125 acts as a spatiotemporal coordinator between paracrine Notch and endocrine steroid signaling. Moreover, a dual security mechanism for Notch signaling activation exists to ensure the robustness of niche assembly. Particularly, stem cell niche cells can be specified either via lateral inhibition, in which a niche cell precursor acquires Notch signal-sending status randomly, or via peripheral induction, whereby Delta is produced by a specific cell. When one mechanism is perturbed due to mutations, developmental defects or environmental stress, the remaining mechanism ensures that the niche is formed, perhaps abnormally, but still functional. This guarantees that the germline stem cells will have their residence, thereby securing progressive oogenesis and, thus, organism reproduction. Highlighted Article: In Drosophila, the robustness of stem cell niche assembly is safeguarded via a dual mechanism of Notch activation. Cellular Notch status can be reprogrammed by miR-125, which spatiotemporally coordinates paracrine and endocrine signaling.
Collapse
Affiliation(s)
- Andriy S Yatsenko
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Halyna R Shcherbata
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
21
|
Overexpression of miRNA-9 Generates Muscle Hypercontraction Through Translational Repression of Troponin-T in Drosophila melanogaster Indirect Flight Muscles. G3-GENES GENOMES GENETICS 2017; 7:3521-3531. [PMID: 28866639 PMCID: PMC5633399 DOI: 10.1534/g3.117.300232] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
MicroRNAs (miRNAs) are small noncoding endogenous RNAs, typically 21-23 nucleotides long, that regulate gene expression, usually post-transcriptionally, by binding to the 3'-UTR of target mRNA, thus blocking translation. The expression of several miRNAs is significantly altered during cardiac hypertrophy, myocardial ischemia, fibrosis, heart failure, and other cardiac myopathies. Recent studies have implicated miRNA-9 (miR-9) in myocardial hypertrophy. However, a detailed mechanism remains obscure. In this study, we have addressed the roles of miR-9 in muscle development and function using a genetically tractable model system, the indirect flight muscles (IFMs) of Drosophila melanogaster Bioinformatics analysis identified 135 potential miR-9a targets, of which 27 genes were associated with Drosophila muscle development. Troponin-T (TnT) was identified as major structural gene target of miR-9a. We show that flies overexpressing miR-9a in the IFMs have abnormal wing position and are flightless. These flies also exhibit a loss of muscle integrity and sarcomeric organization causing an abnormal muscle condition known as "hypercontraction." Additionally, miR-9a overexpression resulted in the reduction of TnT protein levels while transcript levels were unaffected. Furthermore, muscle abnormalities associated with miR-9a overexpression were completely rescued by overexpression of TnT transgenes which lacked the miR-9a binding site. These findings indicate that miR-9a interacts with the 3'-UTR of the TnT mRNA and downregulates the TnT protein levels by translational repression. The reduction in TnT levels leads to a cooperative downregulation of other thin filament structural proteins. Our findings have implications for understanding the cellular pathophysiology of cardiomyopathies associated with miR-9 overexpression.
Collapse
|
22
|
Abstract
Invertebrate microRNAs (miRNAs) can suppress developmental variability that is caused by environmental and genetic variation. In this issue of Developmental Cell, Kasper et al. (2017) show that zebrafish miRNAs suppress variability in cardiovascular development during embryogenesis, providing insight into the conserved link between miRNAs and robustness.
Collapse
Affiliation(s)
- Rachael Bakker
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Richard W Carthew
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
23
|
Kasper DM, Moro A, Ristori E, Narayanan A, Hill-Teran G, Fleming E, Moreno-Mateos M, Vejnar CE, Zhang J, Lee D, Gu M, Gerstein M, Giraldez A, Nicoli S. MicroRNAs Establish Uniform Traits during the Architecture of Vertebrate Embryos. Dev Cell 2017; 40:552-565.e5. [PMID: 28350988 DOI: 10.1016/j.devcel.2017.02.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 01/10/2017] [Accepted: 02/24/2017] [Indexed: 12/28/2022]
Abstract
Proper functioning of an organism requires cells and tissues to behave in uniform, well-organized ways. How this optimum of phenotypes is achieved during the development of vertebrates is unclear. Here, we carried out a multi-faceted and single-cell resolution screen of zebrafish embryonic blood vessels upon mutagenesis of single and multi-gene microRNA (miRNA) families. We found that embryos lacking particular miRNA-dependent signaling pathways develop a vascular trait similar to wild-type, but with a profound increase in phenotypic heterogeneity. Aberrant trait variance in miRNA mutant embryos uniquely sensitizes their vascular system to environmental perturbations. We discovered a previously unrecognized role for specific vertebrate miRNAs to protect tissue development against phenotypic variability. This discovery marks an important advance in our comprehension of how miRNAs function in the development of higher organisms.
Collapse
Affiliation(s)
- Dionna M Kasper
- Section of Cardiology, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Albertomaria Moro
- Section of Cardiology, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Emma Ristori
- Section of Cardiology, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Anand Narayanan
- Section of Cardiology, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Guillermina Hill-Teran
- Section of Cardiology, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Elizabeth Fleming
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Miguel Moreno-Mateos
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Charles E Vejnar
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Jing Zhang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Donghoon Lee
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Mengting Gu
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Mark Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA; Department of Computer Science, Yale University, New Haven, CT 06520, USA
| | - Antonio Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06510, USA; Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Stefania Nicoli
- Section of Cardiology, Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06511, USA; Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
24
|
Brancaccio A, Adams JC. An evaluation of the evolution of the gene structure of dystroglycan. BMC Res Notes 2017; 10:19. [PMID: 28057052 PMCID: PMC5216574 DOI: 10.1186/s13104-016-2322-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 12/06/2016] [Indexed: 11/10/2022] Open
Abstract
Background Dystroglycan (DG) is an adhesion receptor complex composed of two non-covalently associated subunits, transcribed from a single gene. The extracellular α-DG is highly and heterogeneously glycosylated and binds with high affinity to laminins, and the transmembrane β-DG binds intracellular dystrophin. Multiple cellular functions have been proposed for DG, notwithstanding that its role in skeletal muscle appears central as demonstrated by both primary and secondary severe muscular dystrophic phenotypes collectively known as dystroglycanopathies. We recently analysed the molecular phylogeny of the DG core protein and identified the α/β interface, transmembrane and cytoplasmic domains of β-DG as the most conserved region. It was also identified that the IG2_MAT_NU region has been independently duplicated in multiple lineages. Results To understand the evolution of dystroglycan in more depth, we investigated dystroglycan gene structure in 35 species representative of the phyla in which dystroglycan has been identified (i.e., all metazoan phyla except Ctenophora). The gene structure of three exons and two introns is remarkably conserved. However, additional lineage-specific introns were identified, which interrupt the coding sequence at distinct points, were identified in multiple metazoan groups, most prominently in ecdysozoans. Conclusions A coding DNA sequence (CDS) intron that interrupts the encoding of the IG1 domain is universally conserved and this intron is longer in gnathostomes (jawed vertebrates) than in other metazoans. Lineage-specific gain of additional introns has occurred notably in ecdysozoans, where multiple introns interrupt the large 3′ exon. More limited intron gain has also occurred in placozoa, cnidarians, urochordates and the DG paralogues of lamprey and teleost fish. Electronic supplementary material The online version of this article (doi:10.1186/s13104-016-2322-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrea Brancaccio
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168, Rome, Italy. .,School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.
| | - Josephine C Adams
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| |
Collapse
|
25
|
Pérez-Moreno JJ, Espina-Zambrano AG, García-Calderón CB, Estrada B. Kon-tiki/Perdido enhances PS2 integrin adhesion and localizes its ligand, Thrombospondin, in the myotendinous junction. J Cell Sci 2017; 130:950-962. [DOI: 10.1242/jcs.197459] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/13/2017] [Indexed: 12/13/2022] Open
Abstract
Cell-extracellular matrix adhesion is mediated by cell receptors, mainly integrins and transmembrane proteoglycans, which can functionally interact. How these receptors are regulated and coordinated is largely unknown and key to understand cell adhesion in development. We show that the conserved transmembrane proteoglycan Kon-tiki/Perdido (Kon) interacts with αPS2βPS integrin to mediate muscle-tendon adhesion. Double mutant embryos for kon and inflated show a synergistic increase in muscle detachment. Furthermore, Kon modulates αPS2βPS signaling at the muscle attachment, since P-Fak is reduced in kon mutants. This reduction in integrin signaling can be rescued by the expression of a truncated Kon protein containing the transmembrane and extracellular domains, suggesting that these domains are sufficient to mediate this signaling. We show that these domains are sufficient to properly localize the αPS2βPS ligand, Thrombospondin, to the muscle attachment, and to partially rescue Kon dependent muscle-tendon adhesion. We propose that Kon can engage in a protein complex with αPS2βPS and enhance integrin-mediated signaling and adhesion by recruiting its ligand, which would increase integrin-binding affinity to the extracellular matrix, resulting in the consolidation of the myotendinous junction.
Collapse
Affiliation(s)
- J. J. Pérez-Moreno
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC/JA, Seville, Spain
- Present address: Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - A. G. Espina-Zambrano
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC/JA, Seville, Spain
| | - C. B. García-Calderón
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC/JA, Seville, Spain
- Present address: Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - B. Estrada
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC/JA, Seville, Spain
| |
Collapse
|
26
|
220th ENMC workshop: Dystroglycan and the dystroglycanopathies Naarden, The Netherlands, 27-29 May 2016. Neuromuscul Disord 2016; 27:387-395. [PMID: 28089719 DOI: 10.1016/j.nmd.2016.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/14/2016] [Accepted: 12/19/2016] [Indexed: 01/30/2023]
|
27
|
Derepressing muscleblind expression by miRNA sponges ameliorates myotonic dystrophy-like phenotypes in Drosophila. Sci Rep 2016; 6:36230. [PMID: 27805016 PMCID: PMC5090246 DOI: 10.1038/srep36230] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 10/12/2016] [Indexed: 02/06/2023] Open
Abstract
Myotonic Dystrophy type 1 (DM1) originates from alleles of the DMPK gene with hundreds of extra CTG repeats in the 3′ untranslated region (3′ UTR). CUG repeat RNAs accumulate in foci that sequester Muscleblind-like (MBNL) proteins away from their functional target transcripts. Endogenous upregulation of MBNL proteins is, thus, a potential therapeutic approach to DM1. Here we identify two miRNAs, dme-miR-277 and dme-miR-304, that differentially regulate muscleblind RNA isoforms in miRNA sensor constructs. We also show that their sequestration by sponge constructs derepresses endogenous muscleblind not only in a wild type background but also in a DM1 Drosophila model expressing non-coding CUG trinucleotide repeats throughout the musculature. Enhanced muscleblind expression resulted in significant rescue of pathological phenotypes, including reversal of several mis-splicing events and reduced muscle atrophy in DM1 adult flies. Rescued flies had improved muscle function in climbing and flight assays, and had longer lifespan compared to disease controls. These studies provide proof of concept for a similar potentially therapeutic approach to DM1 in humans.
Collapse
|
28
|
Kreipke RE, Kwon YV, Shcherbata HR, Ruohola-Baker H. Drosophila melanogaster as a Model of Muscle Degeneration Disorders. Curr Top Dev Biol 2016; 121:83-109. [PMID: 28057309 DOI: 10.1016/bs.ctdb.2016.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Drosophila melanogaster provides a powerful platform with which researchers can dissect complex genetic questions and biochemical pathways relevant to a vast array of human diseases and disorders. Of particular interest, much work has been done with flies to elucidate the molecular mechanisms underlying muscle degeneration diseases. The fly is particularly useful for modeling muscle degeneration disorders because there are no identified satellite muscle cells to repair adult muscle following injury. This allows for the identification of endogenous processes of muscle degeneration as discrete events, distinguishable from phenotypes due to the lack of stem cell-based regeneration. In this review, we will discuss the ways in which the fruit fly provides a powerful platform with which to study human muscle degeneration disorders.
Collapse
Affiliation(s)
- R E Kreipke
- University of Washington, School of Medicine, Seattle, WA, United States; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, United States
| | - Y V Kwon
- University of Washington, School of Medicine, Seattle, WA, United States
| | - H R Shcherbata
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - H Ruohola-Baker
- University of Washington, School of Medicine, Seattle, WA, United States; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, United States.
| |
Collapse
|
29
|
Carthew RW, Agbu P, Giri R. MicroRNA function in Drosophila melanogaster. Semin Cell Dev Biol 2016; 65:29-37. [PMID: 27000418 DOI: 10.1016/j.semcdb.2016.03.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 03/15/2016] [Accepted: 03/17/2016] [Indexed: 12/19/2022]
Abstract
Over the last decade, microRNAs have emerged as critical regulators in the expression and function of animal genomes. This review article discusses the relationship between microRNA-mediated regulation and the biology of the fruit fly Drosophila melanogaster. We focus on the roles that microRNAs play in tissue growth, germ cell development, hormone action, and the development and activity of the central nervous system. We also discuss the ways in which microRNAs affect robustness. Many gene regulatory networks are robust; they are relatively insensitive to the precise values of reaction constants and concentrations of molecules acting within the networks. MicroRNAs involved in robustness appear to be nonessential under uniform conditions used in conventional laboratory experiments. However, the robust functions of microRNAs can be revealed when environmental or genetic variation otherwise has an impact on developmental outcomes.
Collapse
Affiliation(s)
- Richard W Carthew
- Department of Molecular Biosciences, Northwestern University Evanston, IL 60208, USA; Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Chicago, IL 60611, USA.
| | - Pamela Agbu
- Department of Molecular Biosciences, Northwestern University Evanston, IL 60208, USA
| | - Ritika Giri
- Department of Molecular Biosciences, Northwestern University Evanston, IL 60208, USA
| |
Collapse
|
30
|
mRNA expression characteristics are different in irreversibly atrophic intrinsic muscles of the forepaw compared with reversibly atrophic biceps in a rat model of obstetric brachial plexus palsy (OBPP). J Muscle Res Cell Motil 2016; 37:17-25. [PMID: 26902607 DOI: 10.1007/s10974-016-9442-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/16/2016] [Indexed: 10/22/2022]
Abstract
In obstetric brachial plexus palsy (OBPP), irreversible muscle atrophy occurs much faster in intrinsic muscles of the hand than in the biceps. To elucidate the mechanisms involved, mRNA expression profiles of denervated intrinsic muscles of the forepaw (IMF) and denervated biceps were determined by microarray using the rat model of OBPP where atrophy of IMF is irreversible while atrophy of biceps is reversible. Relative to contralateral control, 446 dysregulated mRNAs were detected in denervated IMF and mapped to 51 KEGG pathways, and 830 dysregulated mRNAs were detected in denervated biceps and mapped to 52 KEGG pathways. In denervated IMF, 10 of the pathways were related to muscle regulation; six with down-regulated and one with up-regulated mRNAs. The remaining three pathways had both up- and down-regulated mRNAs. In denervated biceps, 13 of the pathways were related to muscle regulation, six with up-regulated and seven with down-regulated mRNAs. Five of the pathways with up-regulated mRNAs were related to regrowth and differentiation of muscle cells. Among the 23 pathways with dysregulated mRNAs, 13 were involved in regulation of neuromuscular junctions. Our results demonstrated that mRNAs expression characteristics in irreversibly atrophic denervated IMF were different from those in reversibly atrophic denervated biceps; dysregulated mRNAs in IMF were associated with inactive pathways of muscle regulation, and in biceps they were associated with active pathways of regrowth and differentiation. Lack of self-repair potential in IMF may be a major reason why atrophy of IMF becomes irreversible much faster than atrophy of biceps after denervation.
Collapse
|
31
|
Hedgehog Signaling Strength Is Orchestrated by the mir-310 Cluster of MicroRNAs in Response to Diet. Genetics 2016; 202:1167-83. [PMID: 26801178 PMCID: PMC4788116 DOI: 10.1534/genetics.115.185371] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/18/2016] [Indexed: 01/08/2023] Open
Abstract
Since the discovery of microRNAs (miRNAs) only two decades ago, they have emerged as an essential component of the gene regulatory machinery. miRNAs have seemingly paradoxical features: a single miRNA is able to simultaneously target hundreds of genes, while its presence is mostly dispensable for animal viability under normal conditions. It is known that miRNAs act as stress response factors; however, it remains challenging to determine their relevant targets and the conditions under which they function. To address this challenge, we propose a new workflow for miRNA function analysis, by which we found that the evolutionarily young miRNA family, the mir-310s (mir-310/mir-311/mir-312/mir-313), are important regulators of Drosophila metabolic status. mir-310s-deficient animals have an abnormal diet-dependent expression profile for numerous diet-sensitive components, accumulate fats, and show various physiological defects. We found that the mir-310s simultaneously repress the production of several regulatory factors (Rab23, DHR96, and Ttk) of the evolutionarily conserved Hedgehog (Hh) pathway to sharpen dietary response. As the mir-310s expression is highly dynamic and nutrition sensitive, this signal relay model helps to explain the molecular mechanism governing quick and robust Hh signaling responses to nutritional changes. Additionally, we discovered a new component of the Hh signaling pathway in Drosophila, Rab23, which cell autonomously regulates Hh ligand trafficking in the germline stem cell niche. How organisms adjust to dietary fluctuations to sustain healthy homeostasis is an intriguing research topic. These data are the first to report that miRNAs can act as executives that transduce nutritional signals to an essential signaling pathway. This suggests miRNAs as plausible therapeutic agents that can be used in combination with low calorie and cholesterol diets to manage quick and precise tissue-specific responses to nutritional changes.
Collapse
|
32
|
Abstract
MicroRNAs are short noncoding, ~22-nucleotide RNAs that regulate protein abundance. The growth in our understanding of this class of RNAs has been rapid since their discovery just over a decade ago. We now appreciate that miRNAs are deeply embedded within the genetic networks that control basic features of metazoan cells including their identity, metabolism, and reproduction. The Drosophila melanogaster model system has made and will continue to make important contributions to this analysis. Intended as an introductory overview, here we review the current methods and resources available for functional analysis of fly miRNAs for those interested in performing this type of analysis.
Collapse
Affiliation(s)
- Geetanjali Chawla
- Department of Biology, Indiana University, Jordan Hall, 1001 East Third St., Bloomington, IN, 47405, USA
| | - Arthur Luhur
- Department of Biology, Indiana University, Jordan Hall, 1001 East Third St., Bloomington, IN, 47405, USA
| | - Nicholas Sokol
- Department of Biology, Indiana University, Jordan Hall, 1001 East Third St., Bloomington, IN, 47405, USA.
| |
Collapse
|
33
|
Differential Masking of Natural Genetic Variation by miR-9a in Drosophila. Genetics 2015; 202:675-87. [PMID: 26614743 DOI: 10.1534/genetics.115.183822] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 11/23/2015] [Indexed: 11/18/2022] Open
Abstract
Genetic variation is prevalent among individuals of the same species and yet the potential effects of genetic variation on developmental outcomes are frequently suppressed. Understanding the mechanisms that are responsible for this suppression is an important goal. Previously, we found that the microRNA miR-9a mitigates the impact of natural genetic variants that promote the development of scutellar bristles in adult Drosophila. Here we find that miR-9a does not affect the impact of genetic variants that inhibit the development of scutellar bristles. We show this using both directional and stabilizing selection in the laboratory. This specificity of action suggests that miR-9a does not interact with all functional classes of developmental genetic variants affecting sensory organ development. We also investigate the impact of miR-9a on a fitness trait, which is adult viability. At elevated physiological temperatures, miR-9a contributes to viability through masking genetic variants that hinder adult viability. We conclude that miR-9a activity in different developmental networks contributes to suppression of natural variants from perturbing development.
Collapse
|
34
|
Urbanek MO, Nawrocka AU, Krzyzosiak WJ. Small RNA Detection by in Situ Hybridization Methods. Int J Mol Sci 2015; 16:13259-86. [PMID: 26068454 PMCID: PMC4490494 DOI: 10.3390/ijms160613259] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 06/03/2015] [Indexed: 12/13/2022] Open
Abstract
Small noncoding RNAs perform multiple regulatory functions in cells, and their exogenous mimics are widely used in research and experimental therapies to interfere with target gene expression. MicroRNAs (miRNAs) are the most thoroughly investigated representatives of the small RNA family, which includes short interfering RNAs (siRNAs), PIWI-associated RNA (piRNAs), and others. Numerous methods have been adopted for the detection and characterization of small RNAs, which is challenging due to their short length and low level of expression. These include molecular biology methods such as real-time RT-PCR, northern blotting, hybridization to microarrays, cloning and sequencing, as well as single cell miRNA detection by microscopy with in situ hybridization (ISH). In this review, we focus on the ISH method, including its fluorescent version (FISH), and we present recent methodological advances that facilitated its successful adaptation for small RNA detection. We discuss relevant technical aspects as well as the advantages and limitations of ISH. We also refer to numerous applications of small RNA ISH in basic research and molecular diagnostics.
Collapse
Affiliation(s)
- Martyna O Urbanek
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704 Poznan, Poland.
| | - Anna U Nawrocka
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704 Poznan, Poland.
| | - Wlodzimierz J Krzyzosiak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704 Poznan, Poland.
| |
Collapse
|
35
|
|
36
|
Maartens AP, Brown NH. The many faces of cell adhesion during Drosophila muscle development. Dev Biol 2015; 401:62-74. [DOI: 10.1016/j.ydbio.2014.12.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 10/24/2022]
|
37
|
The dystroglycan: Nestled in an adhesome during embryonic development. Dev Biol 2015; 401:132-42. [DOI: 10.1016/j.ydbio.2014.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/23/2014] [Accepted: 07/08/2014] [Indexed: 01/11/2023]
|
38
|
miRNA-based buffering of the cobblestone-lissencephaly-associated extracellular matrix receptor dystroglycan via its alternative 3'-UTR. Nat Commun 2014; 5:4906. [PMID: 25232965 PMCID: PMC4199286 DOI: 10.1038/ncomms5906] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 08/02/2014] [Indexed: 11/08/2022] Open
Abstract
Many proteins are expressed dynamically during different stages of cellular life and the accuracy of protein amounts is critical for cell endurance. Therefore, cells should have a perceptive system that notifies about fluctuations in the amounts of certain components and an executive system that efficiently restores their precise levels. At least one mechanism that evolution has employed for this task is regulation of 3'-UTR length for microRNA targeting. Here we show that in Drosophila the microRNA complex miR-310s acts as an executive mechanism to buffer levels of the muscular dystrophy-associated extracellular matrix receptor dystroglycan via its alternative 3'-UTR. miR-310s gene expression fluctuates depending on dystroglycan amounts and nitric oxide signalling, which perceives dystroglycan levels and regulates microRNA gene expression. Aberrant levels of dystroglycan or deficiencies in miR-310s and nitric oxide signalling result in cobblestone brain appearance, resembling human lissencephaly type II phenotype.
Collapse
|